Skip to main content
Top
Published in: European Journal of Applied Physiology 8/2014

01-08-2014 | Original Article

Locomotor and diaphragm muscle fatigue in endurance athletes performing time-trials of different durations

Authors: Thomas U. Wüthrich, Elisabeth C. Eberle, Christina M. Spengler

Published in: European Journal of Applied Physiology | Issue 8/2014

Login to get access

Abstract

Purpose

Fatigue in leg muscles might differ between running and cycling due to inherent differences in muscle activation patterns. Moreover, postural demand placed upon the diaphragm during running could augment the development of diaphragm fatigue.

Methods

We investigated quadriceps and diaphragm fatigue in 11 runners and 11 cyclists (age: 29 ± 5 years; \(\dot{V}\)O2,peak: 66.9 ± 5.5 ml min−1 kg−1) by assessing quadriceps twitch force (Q tw) and transdiaphragmatic twitch pressure (P di,tw) before and after 15- and 30-min time-trials (15TT, 30TT). Inspiratory muscle fatigue was also obtained after volitional normocapnic hyperpnoea (NH) where postural demand is negligible. We hypothesized that running and cycling would induce different patterns of fatigue and that runners would develop less respiratory muscle fatigue when performing NH.

Results

The reduction in Q tw was greater in cyclists (32 ± 6 %) compared to runners (13 ± 8 %, p < 0.01), but not different for 15TTs (23 ± 13 %) and 30TTs (21 ± 11 %, p = 0.34). Overall P di,tw was more reduced after 15TTs (24 ± 8 %) than after 30TTs (20 ± 9 %, p = 0.04) while being similar for runners and cyclists (p = 0.78). Meanwhile, breathing duration in NH and the magnitude of inspiratory muscle fatigue were also not different (both p > 0.05).

Conclusion

Different levels of leg muscle fatigue in runners and cyclists could in part be related to the specific muscle activation patterns including concentric contractions in both modalities but eccentric contractions in runners only. Diaphragm fatigue likely resulted from the large ventilatory load which is characteristic for both exercise modalities and which was higher in 15TTs than in 30TTs (+27 %, p < 0.01) while postural demand appears to be of less importance.
Literature
go back to reference Aaron EA, Seow KC, Johnson BD, Dempsey JA (1992) Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol 72:1818–1825PubMed Aaron EA, Seow KC, Johnson BD, Dempsey JA (1992) Oxygen cost of exercise hyperpnea: implications for performance. J Appl Physiol 72:1818–1825PubMed
go back to reference Abbiss CR, Laursen PB (2005) Models to explain fatigue during prolonged endurance cycling. Sports Med 35:865–898PubMedCrossRef Abbiss CR, Laursen PB (2005) Models to explain fatigue during prolonged endurance cycling. Sports Med 35:865–898PubMedCrossRef
go back to reference Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332PubMedCrossRef Allen DG, Lamb GD, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332PubMedCrossRef
go back to reference Amann M (2011) Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc 43:2039–2045PubMedCrossRef Amann M (2011) Central and peripheral fatigue: interaction during cycling exercise in humans. Med Sci Sports Exerc 43:2039–2045PubMedCrossRef
go back to reference Amann M, Dempsey JA (2008) Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol 586:161–173PubMedCentralPubMedCrossRef Amann M, Dempsey JA (2008) Locomotor muscle fatigue modifies central motor drive in healthy humans and imposes a limitation to exercise performance. J Physiol 586:161–173PubMedCentralPubMedCrossRef
go back to reference Amann M, Secher NH (2010) Point: counterpoint: Afferent feedback from fatigued locomotor muscles is/is not an important determinant of endurance exercise performance. J Appl Physiol 108:452–454PubMedCrossRef Amann M, Secher NH (2010) Point: counterpoint: Afferent feedback from fatigued locomotor muscles is/is not an important determinant of endurance exercise performance. J Appl Physiol 108:452–454PubMedCrossRef
go back to reference Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA (2006) Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol 575:937–952PubMedCentralPubMedCrossRef Amann M, Eldridge MW, Lovering AT, Stickland MK, Pegelow DF, Dempsey JA (2006) Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. J Physiol 575:937–952PubMedCentralPubMedCrossRef
go back to reference Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 587:271–283PubMedCentralPubMedCrossRef Amann M, Proctor LT, Sebranek JJ, Pegelow DF, Dempsey JA (2009) Opioid-mediated muscle afferents inhibit central motor drive and limit peripheral muscle fatigue development in humans. J Physiol 587:271–283PubMedCentralPubMedCrossRef
go back to reference ATS/ERS (2002) Statement on respiratory muscle testing. Am J Respir Crit Care Med 166:518–624 ATS/ERS (2002) Statement on respiratory muscle testing. Am J Respir Crit Care Med 166:518–624
go back to reference Babcock MA, Johnson BD, Pegelow DF, Suman OE, Griffin D, Dempsey JA (1995a) Hypoxic effects on exercise-induced diaphragmatic fatigue in normal healthy humans. J Appl Physiol 78:82–92PubMed Babcock MA, Johnson BD, Pegelow DF, Suman OE, Griffin D, Dempsey JA (1995a) Hypoxic effects on exercise-induced diaphragmatic fatigue in normal healthy humans. J Appl Physiol 78:82–92PubMed
go back to reference Babcock MA, Pegelow DF, McClaran SR, Suman OE, Dempsey JA (1995b) Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue. J Appl Physiol 78:1710–1719PubMed Babcock MA, Pegelow DF, McClaran SR, Suman OE, Dempsey JA (1995b) Contribution of diaphragmatic power output to exercise-induced diaphragm fatigue. J Appl Physiol 78:1710–1719PubMed
go back to reference Babcock MA, Pegelow DF, Johnson BD, Dempsey JA (1996) Aerobic fitness effects on exercise-induced low-frequency diaphragm fatigue. J Appl Physiol 81:2156–2164PubMed Babcock MA, Pegelow DF, Johnson BD, Dempsey JA (1996) Aerobic fitness effects on exercise-induced low-frequency diaphragm fatigue. J Appl Physiol 81:2156–2164PubMed
go back to reference Babcock MA, Pegelow DF, Harms CA, Dempsey JA (2002) Effects of respiratory muscle unloading on exercise-induced diaphragm fatigue. J Appl Physiol 93:201–206PubMed Babcock MA, Pegelow DF, Harms CA, Dempsey JA (2002) Effects of respiratory muscle unloading on exercise-induced diaphragm fatigue. J Appl Physiol 93:201–206PubMed
go back to reference Bentley DJ, Smith PA, Davie AJ, Zhou S (2000) Muscle activation of the knee extensors following high intensity endurance exercise in cyclists. Eur J Appl Physiol 81:297–302PubMedCrossRef Bentley DJ, Smith PA, Davie AJ, Zhou S (2000) Muscle activation of the knee extensors following high intensity endurance exercise in cyclists. Eur J Appl Physiol 81:297–302PubMedCrossRef
go back to reference Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7:691–699PubMedCrossRef Bigland-Ritchie B, Woods JJ (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7:691–699PubMedCrossRef
go back to reference Bijker KE, de Groot G, Hollander AP (2002) Differences in leg muscle activity during running and cycling in humans. Eur J Appl Physiol 87:556–561PubMedCrossRef Bijker KE, de Groot G, Hollander AP (2002) Differences in leg muscle activity during running and cycling in humans. Eur J Appl Physiol 87:556–561PubMedCrossRef
go back to reference Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S (2012) Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scand J Med Sci Sports 22:381–391 Decorte N, Lafaix PA, Millet GY, Wuyam B, Verges S (2012) Central and peripheral fatigue kinetics during exhaustive constant-load cycling. Scand J Med Sci Sports 22:381–391
go back to reference Fowles JR, Green HJ, Tupling R, O’Brien S, Roy BD (2002) Human neuromuscular fatigue is associated with altered Na+-K+-ATPase activity following isometric exercise. J Appl Physiol 92:1585–1593PubMed Fowles JR, Green HJ, Tupling R, O’Brien S, Roy BD (2002) Human neuromuscular fatigue is associated with altered Na+-K+-ATPase activity following isometric exercise. J Appl Physiol 92:1585–1593PubMed
go back to reference Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789PubMed Gandevia SC (2001) Spinal and supraspinal factors in human muscle fatigue. Physiol Rev 81:1725–1789PubMed
go back to reference Girard O, Millet GP, Micallef JP, Racinais S (2012) Alteration in neuromuscular function after a 5 km running time trial. Eur J Appl Physiol 112:2323–2330PubMedCrossRef Girard O, Millet GP, Micallef JP, Racinais S (2012) Alteration in neuromuscular function after a 5 km running time trial. Eur J Appl Physiol 112:2323–2330PubMedCrossRef
go back to reference Guenette JA, Romer LM, Querido JS, Chua R, Eves ND, Road JD, McKenzie DC, Sheel AW (2010) Sex differences in exercise-induced diaphragmatic fatigue in endurance-trained athletes. J Appl Physiol 109:35–46PubMedCrossRef Guenette JA, Romer LM, Querido JS, Chua R, Eves ND, Road JD, McKenzie DC, Sheel AW (2010) Sex differences in exercise-induced diaphragmatic fatigue in endurance-trained athletes. J Appl Physiol 109:35–46PubMedCrossRef
go back to reference Hamnegard CH, Wragg S, Mills G, Kyroussis D, Road J, Daskos G, Bake B, Moxham J, Green M (1995) The effect of lung volume on transdiaphragmatic pressure. Eur Respir J 8:1532–1536PubMed Hamnegard CH, Wragg S, Mills G, Kyroussis D, Road J, Daskos G, Bake B, Moxham J, Green M (1995) The effect of lung volume on transdiaphragmatic pressure. Eur Respir J 8:1532–1536PubMed
go back to reference Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Dempsey JA (1997) Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 82:1573–1583PubMed Harms CA, Babcock MA, McClaran SR, Pegelow DF, Nickele GA, Nelson WB, Dempsey JA (1997) Respiratory muscle work compromises leg blood flow during maximal exercise. J Appl Physiol 82:1573–1583PubMed
go back to reference Henderson WR, Guenette JA, Dominelli PB, Griesdale DE, Querido JS, Boushel R, Sheel AW (2012) Limitations of respiratory muscle and vastus lateralis blood flow during continuous exercise. Respir Physiol Neurobiol 181:302–307PubMedCrossRef Henderson WR, Guenette JA, Dominelli PB, Griesdale DE, Querido JS, Boushel R, Sheel AW (2012) Limitations of respiratory muscle and vastus lateralis blood flow during continuous exercise. Respir Physiol Neurobiol 181:302–307PubMedCrossRef
go back to reference Henke KG, Sharratt M, Pegelow D, Dempsey JA (1988) Regulation of end-expiratory lung volume during exercise. J Appl Physiol 64:135–146PubMed Henke KG, Sharratt M, Pegelow D, Dempsey JA (1988) Regulation of end-expiratory lung volume during exercise. J Appl Physiol 64:135–146PubMed
go back to reference Hodges PW, Heijnen I, Gandevia SC (2001) Postural activity of the diaphragm is reduced in humans when respiratory demand increases. J Physiol 537:999–1008PubMedCentralPubMedCrossRef Hodges PW, Heijnen I, Gandevia SC (2001) Postural activity of the diaphragm is reduced in humans when respiratory demand increases. J Physiol 537:999–1008PubMedCentralPubMedCrossRef
go back to reference Hodges PW, Eriksson AE, Shirley D, Gandevia SC (2005) Intra-abdominal pressure increases stiffness of the lumbar spine. J Biomech 38:1873–1880PubMedCrossRef Hodges PW, Eriksson AE, Shirley D, Gandevia SC (2005) Intra-abdominal pressure increases stiffness of the lumbar spine. J Biomech 38:1873–1880PubMedCrossRef
go back to reference Johnson BD, Babcock MA, Suman OE, Dempsey JA (1993) Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol 460:385–405PubMedCentralPubMed Johnson BD, Babcock MA, Suman OE, Dempsey JA (1993) Exercise-induced diaphragmatic fatigue in healthy humans. J Physiol 460:385–405PubMedCentralPubMed
go back to reference Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25:438–444PubMedCrossRef Kufel TJ, Pineda LA, Mador MJ (2002) Comparison of potentiated and unpotentiated twitches as an index of muscle fatigue. Muscle Nerve 25:438–444PubMedCrossRef
go back to reference Lansing RW, Im BS, Thwing JI, Legedza AT, Banzett RB (2000) The perception of respiratory work and effort can be independent of the perception of air hunger. Am J Respir Crit Care Med 162:1690–1696PubMedCrossRef Lansing RW, Im BS, Thwing JI, Legedza AT, Banzett RB (2000) The perception of respiratory work and effort can be independent of the perception of air hunger. Am J Respir Crit Care Med 162:1690–1696PubMedCrossRef
go back to reference Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY (2002) Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol 92:1487–1493PubMed Lepers R, Maffiuletti NA, Rochette L, Brugniaux J, Millet GY (2002) Neuromuscular fatigue during a long-duration cycling exercise. J Appl Physiol 92:1487–1493PubMed
go back to reference Mador MJ, Magalang UJ, Rodis A, Kufel TJ (1993) Diaphragmatic fatigue after exercise in healthy human subjects. Am Rev Respir Dis 148:1571–1575PubMedCrossRef Mador MJ, Magalang UJ, Rodis A, Kufel TJ (1993) Diaphragmatic fatigue after exercise in healthy human subjects. Am Rev Respir Dis 148:1571–1575PubMedCrossRef
go back to reference Mador M, Kufel TJ, Pineda LA (2000a) Quadriceps and diaphragmatic function after exhaustive cycle exercise in the healthy elderly. Am J Respir Crit Care Med 162:1760–1766CrossRef Mador M, Kufel TJ, Pineda LA (2000a) Quadriceps and diaphragmatic function after exhaustive cycle exercise in the healthy elderly. Am J Respir Crit Care Med 162:1760–1766CrossRef
go back to reference Mador MJ, Kufel TJ, Pineda LA, Sharma GK (2000b) Diaphragmatic fatigue and high-intensity exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 161:118–123PubMedCrossRef Mador MJ, Kufel TJ, Pineda LA, Sharma GK (2000b) Diaphragmatic fatigue and high-intensity exercise in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 161:118–123PubMedCrossRef
go back to reference Mador MJ, Kufel TJ, Pineda LA, Steinwald A, Aggarwal A, Upadhyay AM, Khan MA (2001) Effect of pulmonary rehabilitation on quadriceps fatiguability during exercise. Am J Respir Crit Care Med 163:930–935PubMedCrossRef Mador MJ, Kufel TJ, Pineda LA, Steinwald A, Aggarwal A, Upadhyay AM, Khan MA (2001) Effect of pulmonary rehabilitation on quadriceps fatiguability during exercise. Am J Respir Crit Care Med 163:930–935PubMedCrossRef
go back to reference Marcora SM, Bosio A, de Morree HM (2008) Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. Am J Physiol-Reg 294:R874–R883 Marcora SM, Bosio A, de Morree HM (2008) Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. Am J Physiol-Reg 294:R874–R883
go back to reference Martin V, Kerherve H, Messonnier LA, Banfi JC, Geyssant A, Bonnefoy R, Feasson L, Millet GY (2010) Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J Appl Physiol 108:1224–1233PubMedCrossRef Martin V, Kerherve H, Messonnier LA, Banfi JC, Geyssant A, Bonnefoy R, Feasson L, Millet GY (2010) Central and peripheral contributions to neuromuscular fatigue induced by a 24-h treadmill run. J Appl Physiol 108:1224–1233PubMedCrossRef
go back to reference Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J (2005) General considerations for lung function testing. Eur Respir J 26:153–161PubMedCrossRef Miller MR, Crapo R, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, Enright P, van der Grinten CP, Gustafsson P, Jensen R, Johnson DC, MacIntyre N, McKay R, Navajas D, Pedersen OF, Pellegrino R, Viegi G, Wanger J (2005) General considerations for lung function testing. Eur Respir J 26:153–161PubMedCrossRef
go back to reference Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, Gergele L, Feasson L, Martin V (2011) Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS One 6:e17059PubMedCentralPubMedCrossRef Millet GY, Tomazin K, Verges S, Vincent C, Bonnefoy R, Boisson RC, Gergele L, Feasson L, Martin V (2011) Neuromuscular consequences of an extreme mountain ultra-marathon. PLoS One 6:e17059PubMedCentralPubMedCrossRef
go back to reference Nummela AT, Heath KA, Paavolainen LM, Lambert MI, St Clair Gibson A, Rusko HK, Noakes TD (2008) Fatigue during a 5-km running time trial. Int J Sports Med 29:738–745PubMedCrossRef Nummela AT, Heath KA, Paavolainen LM, Lambert MI, St Clair Gibson A, Rusko HK, Noakes TD (2008) Fatigue during a 5-km running time trial. Int J Sports Med 29:738–745PubMedCrossRef
go back to reference Polkey MI, Kyroussis D, Keilty SE, Hamnegard CH, Mills GH, Green M, Moxham J (1995) Exhaustive treadmill exercise does not reduce twitch transdiaphragmatic pressure in patients with COPD. Am J Respir Crit Care Med 152:959–964PubMedCrossRef Polkey MI, Kyroussis D, Keilty SE, Hamnegard CH, Mills GH, Green M, Moxham J (1995) Exhaustive treadmill exercise does not reduce twitch transdiaphragmatic pressure in patients with COPD. Am J Respir Crit Care Med 152:959–964PubMedCrossRef
go back to reference Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC (1993) Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl 16:5–40PubMedCrossRef Quanjer PH, Tammeling GJ, Cotes JE, Pedersen OF, Peslin R, Yernault JC (1993) Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl 16:5–40PubMedCrossRef
go back to reference Racinais S, Girard O, Micallef JP, Perrey S (2007) Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol 97:596–603PubMedCrossRef Racinais S, Girard O, Micallef JP, Perrey S (2007) Failed excitability of spinal motoneurons induced by prolonged running exercise. J Neurophysiol 97:596–603PubMedCrossRef
go back to reference Ross EZ, Goodall S, Stevens A, Harris I (2010) Time course of neuromuscular changes during running in well-trained subjects. Med Sci Sports Exerc 42:1184–1190PubMed Ross EZ, Goodall S, Stevens A, Harris I (2010) Time course of neuromuscular changes during running in well-trained subjects. Med Sci Sports Exerc 42:1184–1190PubMed
go back to reference Saey D, Michaud A, Couillard A, Cote CH, Mador MJ, LeBlanc P, Jobin J, Maltais F (2005) Contractile fatigue, muscle morphometry, and blood lactate in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171:1109–1115PubMedCrossRef Saey D, Michaud A, Couillard A, Cote CH, Mador MJ, LeBlanc P, Jobin J, Maltais F (2005) Contractile fatigue, muscle morphometry, and blood lactate in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 171:1109–1115PubMedCrossRef
go back to reference Sargeant AJ (2007) Structural and functional determinants of human muscle power. Exp Physiol 92:323–331PubMedCrossRef Sargeant AJ (2007) Structural and functional determinants of human muscle power. Exp Physiol 92:323–331PubMedCrossRef
go back to reference Saugy J, Place N, Millet GY, Degache F, Schena F, Millet GP (2013) Alterations of neuromuscular function after the World’s most challenging mountain Ultra-Marathon. PLoS One 8:e65596PubMedCentralPubMedCrossRef Saugy J, Place N, Millet GY, Degache F, Schena F, Millet GP (2013) Alterations of neuromuscular function after the World’s most challenging mountain Ultra-Marathon. PLoS One 8:e65596PubMedCentralPubMedCrossRef
go back to reference Scheer FA, Hu K, Evoniuk H, Kelly EE, Malhotra A, Hilton MF, Shea SA (2010) Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci USA 107:20541–20546PubMedCentralPubMedCrossRef Scheer FA, Hu K, Evoniuk H, Kelly EE, Malhotra A, Hilton MF, Shea SA (2010) Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci USA 107:20541–20546PubMedCentralPubMedCrossRef
go back to reference Similowski T, Straus C, Attali V, Duguet A, Derenne JP (1998) Cervical magnetic stimulation as a method to discriminate between diaphragm and rib cage muscle fatigue. J Appl Physiol 84:1692–1700PubMed Similowski T, Straus C, Attali V, Duguet A, Derenne JP (1998) Cervical magnetic stimulation as a method to discriminate between diaphragm and rib cage muscle fatigue. J Appl Physiol 84:1692–1700PubMed
go back to reference Skof B, Strojnik V (2006a) Neuro-muscular fatigue and recovery dynamics following anaerobic interval workload. Int J Sports Med 27:220–225PubMedCrossRef Skof B, Strojnik V (2006a) Neuro-muscular fatigue and recovery dynamics following anaerobic interval workload. Int J Sports Med 27:220–225PubMedCrossRef
go back to reference Skof B, Strojnik V (2006b) Neuromuscular fatigue and recovery dynamics following prolonged continuous run at anaerobic threshold. Br J Sports Med 40:219–222PubMedCentralPubMedCrossRef Skof B, Strojnik V (2006b) Neuromuscular fatigue and recovery dynamics following prolonged continuous run at anaerobic threshold. Br J Sports Med 40:219–222PubMedCentralPubMedCrossRef
go back to reference Smith IC, Newham DJ (2007) Fatigue and functional performance of human biceps muscle following concentric or eccentric contractions. J Appl Physiol 102:207–213PubMedCrossRef Smith IC, Newham DJ (2007) Fatigue and functional performance of human biceps muscle following concentric or eccentric contractions. J Appl Physiol 102:207–213PubMedCrossRef
go back to reference Taylor BJ, How SC, Romer LM (2006) Exercise-induced abdominal muscle fatigue in healthy humans. J Appl Physiol 100:1554–1562PubMedCrossRef Taylor BJ, How SC, Romer LM (2006) Exercise-induced abdominal muscle fatigue in healthy humans. J Appl Physiol 100:1554–1562PubMedCrossRef
go back to reference Verges S, Notter D, Spengler CM (2006a) Influence of diaphragm and rib cage muscle fatigue on breathing during endurance exercise. Respir Physiol Neurobiol 154:431–442PubMedCrossRef Verges S, Notter D, Spengler CM (2006a) Influence of diaphragm and rib cage muscle fatigue on breathing during endurance exercise. Respir Physiol Neurobiol 154:431–442PubMedCrossRef
go back to reference Verges S, Schulz C, Perret C, Spengler CM (2006b) Impaired abdominal muscle contractility after high-intensity exhaustive exercise assessed by magnetic stimulation. Muscle Nerve 34:423–430PubMedCrossRef Verges S, Schulz C, Perret C, Spengler CM (2006b) Impaired abdominal muscle contractility after high-intensity exhaustive exercise assessed by magnetic stimulation. Muscle Nerve 34:423–430PubMedCrossRef
go back to reference Verges S, Lenherr O, Haner AC, Schulz C, Spengler CM (2007) Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. Am J Physiol Regul Integr Comp Physiol 292:R1246–R1253PubMedCrossRef Verges S, Lenherr O, Haner AC, Schulz C, Spengler CM (2007) Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. Am J Physiol Regul Integr Comp Physiol 292:R1246–R1253PubMedCrossRef
go back to reference Vogiatzis I, Athanasopoulos D, Habazettl H, Kuebler WM, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2009) Intercostal muscle blood flow limitation in athletes during maximal exercise. J Physiol 587:3665–3677PubMedCentralPubMedCrossRef Vogiatzis I, Athanasopoulos D, Habazettl H, Kuebler WM, Wagner H, Roussos C, Wagner PD, Zakynthinos S (2009) Intercostal muscle blood flow limitation in athletes during maximal exercise. J Physiol 587:3665–3677PubMedCentralPubMedCrossRef
go back to reference Walker DJ, Walterspacher S, Schlager D, Ertl T, Roecker K, Windisch W, Kabitz HJ (2011) Characteristics of diaphragmatic fatigue during exhaustive exercise until task failure. Respir Physiol Neurobiol 176:14–20PubMedCrossRef Walker DJ, Walterspacher S, Schlager D, Ertl T, Roecker K, Windisch W, Kabitz HJ (2011) Characteristics of diaphragmatic fatigue during exhaustive exercise until task failure. Respir Physiol Neurobiol 176:14–20PubMedCrossRef
go back to reference Wilson SH, Cooke NT, Edwards RH, Spiro SG (1984) Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax 39:535–538PubMedCentralPubMedCrossRef Wilson SH, Cooke NT, Edwards RH, Spiro SG (1984) Predicted normal values for maximal respiratory pressures in caucasian adults and children. Thorax 39:535–538PubMedCentralPubMedCrossRef
go back to reference Wuthrich TU, Notter DA, Spengler CM (2013) Effect of inspiratory muscle fatigue on exercise performance taking into account the fatigue-induced excess respiratory drive. Exp Physiol 98:1705–1717PubMedCrossRef Wuthrich TU, Notter DA, Spengler CM (2013) Effect of inspiratory muscle fatigue on exercise performance taking into account the fatigue-induced excess respiratory drive. Exp Physiol 98:1705–1717PubMedCrossRef
Metadata
Title
Locomotor and diaphragm muscle fatigue in endurance athletes performing time-trials of different durations
Authors
Thomas U. Wüthrich
Elisabeth C. Eberle
Christina M. Spengler
Publication date
01-08-2014
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Applied Physiology / Issue 8/2014
Print ISSN: 1439-6319
Electronic ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-014-2889-7

Other articles of this Issue 8/2014

European Journal of Applied Physiology 8/2014 Go to the issue