Skip to main content
Top
Published in: Journal of Gastrointestinal Surgery 3/2021

01-03-2021 | Liver Surgery | Original Article

Augmented Reality during Open Liver Surgery Using a Markerless Non-rigid Registration System

Authors: Nicolas Golse, Antoine Petit, Maïté Lewin, Eric Vibert, Stéphane Cotin

Published in: Journal of Gastrointestinal Surgery | Issue 3/2021

Login to get access

Abstract

Introduction

Intraoperative navigation during liver resection remains difficult and requires high radiologic skills because liver anatomy is complex and patient-specific. Augmented reality (AR) during open liver surgery could be helpful to guide hepatectomies and optimize resection margins but faces many challenges when large parenchymal deformations take place. We aimed to experiment a new vision-based AR to assess its clinical feasibility and anatomical accuracy.

Patients and Methods

Based on preoperative CT scan 3-D segmentations, we applied a non-rigid registration method, integrating a physics-based elastic model of the liver, computed in real time using an efficient finite element method. To fit the actual deformations, the model was driven by data provided by a single RGB-D camera. Five livers were considered in this experiment. In vivo AR was performed during hepatectomy (n = 4), with manual handling of the livers resulting in large realistic deformations. Ex vivo experiment (n = 1) consisted in repeated CT scans of explanted whole organ carrying internal metallic landmarks, in fixed deformations, and allowed us to analyze our estimated deformations and quantify spatial errors.

Results

In vivo AR tests were successfully achieved in all patients with a fast and agile setup installation (< 10 min) and real-time overlay of the virtual anatomy onto the surgical field displayed on an external screen. In addition, an ex vivo quantification demonstrated a 7.9 mm root mean square error for the registration of internal landmarks.

Conclusion

These first experiments of a markerless AR provided promising results, requiring very little equipment and setup time, yet providing real-time AR with satisfactory 3D accuracy. These results must be confirmed in a larger prospective study to definitively assess the impact of such minimally invasive technology on pathological margins and oncological outcomes.
Literature
1.
go back to reference Torzilli G, Adam R, Viganò L, Imai K, Goransky J, Fontana A, et al. Surgery of Colorectal Liver Metastases: Pushing the Limits. Liver Cancer. 2016;6(1):80–9.CrossRef Torzilli G, Adam R, Viganò L, Imai K, Goransky J, Fontana A, et al. Surgery of Colorectal Liver Metastases: Pushing the Limits. Liver Cancer. 2016;6(1):80–9.CrossRef
2.
go back to reference Majno P, Mentha G, Toso C, Morel P, Peitgen HO, Fasel JHD. Anatomy of the liver: an outline with three levels of complexity--a further step towards tailored territorial liver resections. J Hepatol. Elsevier; 2014;60(3):654–62.CrossRef Majno P, Mentha G, Toso C, Morel P, Peitgen HO, Fasel JHD. Anatomy of the liver: an outline with three levels of complexity--a further step towards tailored territorial liver resections. J Hepatol. Elsevier; 2014;60(3):654–62.CrossRef
3.
go back to reference Truant S, Oberlin O, Sergent G, Lebuffe G, Gambiez L, Ernst O, et al. Remnant Liver Volume to Body Weight Ratio ≥0.5%: A New Cut-Off to Estimate Postoperative Risks after Extended Resection in Noncirrhotic Liver. J Am Coll Surg 2007;204(1):22–33.CrossRef Truant S, Oberlin O, Sergent G, Lebuffe G, Gambiez L, Ernst O, et al. Remnant Liver Volume to Body Weight Ratio ≥0.5%: A New Cut-Off to Estimate Postoperative Risks after Extended Resection in Noncirrhotic Liver. J Am Coll Surg 2007;204(1):22–33.CrossRef
4.
go back to reference Traynor O, Castaing D, Bismuth H. Peroperative ultrasonography in the surgery of hepatic tumours. Br J Surg 1988;75(3):197–202.CrossRef Traynor O, Castaing D, Bismuth H. Peroperative ultrasonography in the surgery of hepatic tumours. Br J Surg 1988;75(3):197–202.CrossRef
5.
go back to reference Viganò L, Torzilli G, Cimino M, Imai K, Vibert E, Donadon M, et al. Drop-out between the two liver resections of two-stage hepatectomy. Patient selection or loss of chance? Eur J Surg Oncol. 2016 Apr 26. Viganò L, Torzilli G, Cimino M, Imai K, Vibert E, Donadon M, et al. Drop-out between the two liver resections of two-stage hepatectomy. Patient selection or loss of chance? Eur J Surg Oncol. 2016 Apr 26.
6.
go back to reference Owen JW, Fowler KJ, Doyle MB, Saad NE, Linehan DC, Chapman WC. Colorectal liver metastases: disappearing lesions in the era of Eovist hepatobiliary magnetic resonance imaging. HPB (Oxford). 2016;18(3):296–303.CrossRef Owen JW, Fowler KJ, Doyle MB, Saad NE, Linehan DC, Chapman WC. Colorectal liver metastases: disappearing lesions in the era of Eovist hepatobiliary magnetic resonance imaging. HPB (Oxford). 2016;18(3):296–303.CrossRef
7.
go back to reference Ntourakis D, Memeo R, Soler L, Marescaux J, Mutter D, Pessaux P. Augmented Reality Guidance for the Resection of Missing Colorectal Liver Metastases: An Initial Experience. World J Surg. 2015 Aug 28. Ntourakis D, Memeo R, Soler L, Marescaux J, Mutter D, Pessaux P. Augmented Reality Guidance for the Resection of Missing Colorectal Liver Metastases: An Initial Experience. World J Surg. 2015 Aug 28.
8.
go back to reference Kenngott HG, Wagner M, Gondan M, Nickel F, Nolden M, Fetzer A, et al. Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surg Endosc. 2014;28(3):933–40.CrossRef Kenngott HG, Wagner M, Gondan M, Nickel F, Nolden M, Fetzer A, et al. Real-time image guidance in laparoscopic liver surgery: first clinical experience with a guidance system based on intraoperative CT imaging. Surg Endosc. 2014;28(3):933–40.CrossRef
9.
go back to reference Ahn SJ, Lee JM, Lee DH, Lee SM, Yoon J-H, Kim YJ, et al. Real-time US-CT/MR fusion imaging for percutaneous radiofrequency ablation of hepatocellular carcinoma. J Hepatol. 2017;66(2):347–54.CrossRef Ahn SJ, Lee JM, Lee DH, Lee SM, Yoon J-H, Kim YJ, et al. Real-time US-CT/MR fusion imaging for percutaneous radiofrequency ablation of hepatocellular carcinoma. J Hepatol. 2017;66(2):347–54.CrossRef
10.
go back to reference Terasawa M, Ishizawa T, Mise Y, Inoue Y, Ito H, Takahashi Y, et al. Applications of fusion-fluorescence imaging using indocyanine green in laparoscopic hepatectomy. Surg Endosc. 2017;31(12):5111–8.CrossRef Terasawa M, Ishizawa T, Mise Y, Inoue Y, Ito H, Takahashi Y, et al. Applications of fusion-fluorescence imaging using indocyanine green in laparoscopic hepatectomy. Surg Endosc. 2017;31(12):5111–8.CrossRef
11.
go back to reference Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, et al. SOFA: A Multi-Model Framework for Interactive Physical Simulation. In: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Berlin, Heidelberg: Springer, Berlin, Heidelberg; 2012. pp. 283–321. (Studies in Mechanobiology, Tissue Engineering and Biomaterials; vol. 11). Faure F, Duriez C, Delingette H, Allard J, Gilles B, Marchesseau S, et al. SOFA: A Multi-Model Framework for Interactive Physical Simulation. In: Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. Berlin, Heidelberg: Springer, Berlin, Heidelberg; 2012. pp. 283–321. (Studies in Mechanobiology, Tissue Engineering and Biomaterials; vol. 11).
12.
go back to reference Petit A, Lippiello V, Fontanelli GA, Siciliano B. Tracking elastic deformable objects with an RGB-D sensor for a pizza chef robot. Robotics and Autonomous Systems. Elsevier B.V; 2016 Nov 16;:1–15. Petit A, Lippiello V, Fontanelli GA, Siciliano B. Tracking elastic deformable objects with an RGB-D sensor for a pizza chef robot. Robotics and Autonomous Systems. Elsevier B.V; 2016 Nov 16;:1–15.
13.
go back to reference Felippa CA, Haugen B. A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Engrg. North-Holland; 2005;194(21–24):2285–335. Felippa CA, Haugen B. A unified formulation of small-strain corotational finite elements: I. Theory. Comput Methods Appl Mech Engrg. North-Holland; 2005;194(21–24):2285–335.
14.
go back to reference Cook RD. Finite element modeling for stress analysis. Wiley; 1994 (5). Cook RD. Finite element modeling for stress analysis. Wiley; 1994 (5).
15.
go back to reference Petit, A., Cotin, S., Lippiello, V., Siciliano, B.: Capturing deformations of interacting non- rigid objects using rgb-d data. Intelligent Robots and Systems (IROS), 2018 IEEE/RSJ In- ternational Conference on (2018) 3, 5 Petit, A., Cotin, S., Lippiello, V., Siciliano, B.: Capturing deformations of interacting non- rigid objects using rgb-d data. Intelligent Robots and Systems (IROS), 2018 IEEE/RSJ In- ternational Conference on (2018) 3, 5
16.
go back to reference Petit, A., Lippiello, V., Siciliano, B.: Real-time tracking of 3d elastic objects with an rgb-d sensor. Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on (2015) 6 Petit, A., Lippiello, V., Siciliano, B.: Real-time tracking of 3d elastic objects with an rgb-d sensor. Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference on (2015) 6
17.
go back to reference Haouchine, N., Dequidt, J., Peterlik, I., Kerrien, E., Berger, M.O., Cotin, S.: Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery. In: Mixed and Augmented Reality (ISMAR), 2013 IEEE International Symposium on, IEEE (2013) 199–208 3, 6 Haouchine, N., Dequidt, J., Peterlik, I., Kerrien, E., Berger, M.O., Cotin, S.: Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery. In: Mixed and Augmented Reality (ISMAR), 2013 IEEE International Symposium on, IEEE (2013) 199–208 3, 6
18.
go back to reference Nishino H, Hatano E, Seo S, Nitta T, Saito T, Nakamura M, et al. Real-time Navigation for Liver Surgery Using Projection Mapping With Indocyanine Green Fluorescence: Development of the Novel Medical Imaging Projection System. Ann Surg. 2017 Feb 8. Nishino H, Hatano E, Seo S, Nitta T, Saito T, Nakamura M, et al. Real-time Navigation for Liver Surgery Using Projection Mapping With Indocyanine Green Fluorescence: Development of the Novel Medical Imaging Projection System. Ann Surg. 2017 Feb 8.
19.
go back to reference Brunet JN, Mendizabal A, Petit A, Golse N, Vibert E, Cotin S. Physics-based Deep Neural Network for Augmented Reality during Liver Surgery. Medical image computing and computer-assisted intervention MICCAI. 2019;16:1–9. Brunet JN, Mendizabal A, Petit A, Golse N, Vibert E, Cotin S. Physics-based Deep Neural Network for Augmented Reality during Liver Surgery. Medical image computing and computer-assisted intervention MICCAI. 2019;16:1–9.
20.
go back to reference Hirai R, Sakata Y, Tanizawa A, Mori S. Real-time tumor tracking using fluoroscopic imaging with deep neural network analysis. Phys Med. 2019;59:22–9.CrossRef Hirai R, Sakata Y, Tanizawa A, Mori S. Real-time tumor tracking using fluoroscopic imaging with deep neural network analysis. Phys Med. 2019;59:22–9.CrossRef
21.
go back to reference Sauer IM, Queisner M, Tang P, Moosburner S, Hoepfner O, Horner R, et al. Mixed Reality in Visceral Surgery: Development of a Suitable Workflow and Evaluation of Intraoperative Use-cases. Ann Surg. Annals of Surgery; 2017;266(5):706–12.CrossRef Sauer IM, Queisner M, Tang P, Moosburner S, Hoepfner O, Horner R, et al. Mixed Reality in Visceral Surgery: Development of a Suitable Workflow and Evaluation of Intraoperative Use-cases. Ann Surg. Annals of Surgery; 2017;266(5):706–12.CrossRef
22.
go back to reference Nicolau S, Soler L, Mutter D, Marescaux J. Augmented reality in laparoscopic surgical oncology. Surg Oncol. Elsevier; 2011;20(3):189–201.CrossRef Nicolau S, Soler L, Mutter D, Marescaux J. Augmented reality in laparoscopic surgical oncology. Surg Oncol. Elsevier; 2011;20(3):189–201.CrossRef
23.
go back to reference Dilley JWR, Hughes-Hallett A, Pratt PJ, Pucher PH, Camara M, Darzi AW, et al. Perfect Registration Leads to Imperfect Performance: A Randomized Trial of Multimodal Intraoperative Image Guidance. Ann Surg. 2019;269(2):236–42.CrossRef Dilley JWR, Hughes-Hallett A, Pratt PJ, Pucher PH, Camara M, Darzi AW, et al. Perfect Registration Leads to Imperfect Performance: A Randomized Trial of Multimodal Intraoperative Image Guidance. Ann Surg. 2019;269(2):236–42.CrossRef
24.
go back to reference Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J. Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbecks Arch Surg. 2015;400(3):381–5.CrossRef Pessaux P, Diana M, Soler L, Piardi T, Mutter D, Marescaux J. Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbecks Arch Surg. 2015;400(3):381–5.CrossRef
25.
go back to reference Buchs NC, Volonté F, Pugin F, Toso C, Fusaglia M, Gavaghan K, et al. Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery. J Surg Res. 2013;184(2):825–31.CrossRef Buchs NC, Volonté F, Pugin F, Toso C, Fusaglia M, Gavaghan K, et al. Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery. J Surg Res. 2013;184(2):825–31.CrossRef
26.
go back to reference Okamoto T, Onda S, Matsumoto M, Gocho T, Futagawa Y, Fujioka S, et al. Utility of augmented reality system in hepatobiliary surgery. J Hepatobiliary Pancreat Sci. 2013;20(2):249–53.CrossRef Okamoto T, Onda S, Matsumoto M, Gocho T, Futagawa Y, Fujioka S, et al. Utility of augmented reality system in hepatobiliary surgery. J Hepatobiliary Pancreat Sci. 2013;20(2):249–53.CrossRef
27.
go back to reference Onda S, Okamoto T, Kanehira M, Fujioka S, Suzuki N, Hattori A, et al. Short rigid scope and stereo-scope designed specifically for open abdominal navigation surgery: clinical application for hepatobiliary and pancreatic surgery. J Hepatobiliary Pancreat Sci. 2013;20(4):448–53.CrossRef Onda S, Okamoto T, Kanehira M, Fujioka S, Suzuki N, Hattori A, et al. Short rigid scope and stereo-scope designed specifically for open abdominal navigation surgery: clinical application for hepatobiliary and pancreatic surgery. J Hepatobiliary Pancreat Sci. 2013;20(4):448–53.CrossRef
28.
go back to reference Tang R, Ma L, Xiang C, Wang X, Li A, Liao H, et al. Augmented reality navigation in open surgery for hilar cholangiocarcinoma resection with hemihepatectomy using video-based in situ three-dimensional anatomical modeling: A case report. Medicine (Baltimore). 2017;96(37):e8083.CrossRef Tang R, Ma L, Xiang C, Wang X, Li A, Liao H, et al. Augmented reality navigation in open surgery for hilar cholangiocarcinoma resection with hemihepatectomy using video-based in situ three-dimensional anatomical modeling: A case report. Medicine (Baltimore). 2017;96(37):e8083.CrossRef
29.
go back to reference Clements LW, Chapman WC, Dawant BM, Galloway RL, Miga MI. Robust surface registration using salient anatomical features for image-guided liver surgery: algorithm and validation. Med Phys. 2008;35(6):2528–40.CrossRef Clements LW, Chapman WC, Dawant BM, Galloway RL, Miga MI. Robust surface registration using salient anatomical features for image-guided liver surgery: algorithm and validation. Med Phys. 2008;35(6):2528–40.CrossRef
30.
go back to reference Clements LW, Collins JA, Weis JA, Simpson AL, Kingham TP, Jarnagin WR, et al. Deformation correction for image guided liver surgery: An intraoperative fidelity assessment. Surgery. 2017;162(3):537–47.CrossRef Clements LW, Collins JA, Weis JA, Simpson AL, Kingham TP, Jarnagin WR, et al. Deformation correction for image guided liver surgery: An intraoperative fidelity assessment. Surgery. 2017;162(3):537–47.CrossRef
31.
go back to reference Rucker DC, Wu Y, Clements LW, Ondrake JE, Pheiffer TS, Simpson AL, et al. A Mechanics-Based Nonrigid Registration Method for Liver Surgery Using Sparse Intraoperative Data. IEEE Trans Med Imaging. 2014;33(1):147–58.CrossRef Rucker DC, Wu Y, Clements LW, Ondrake JE, Pheiffer TS, Simpson AL, et al. A Mechanics-Based Nonrigid Registration Method for Liver Surgery Using Sparse Intraoperative Data. IEEE Trans Med Imaging. 2014;33(1):147–58.CrossRef
32.
go back to reference Adagolodjo Y, Golse N, Vibert E, De Mathelin M, Cotin S, Courtecuisse H. Marker-Based Registration for Large Deformations - Application to Open Liver Surgery. IEEE; 2018. pp. 1–6. Adagolodjo Y, Golse N, Vibert E, De Mathelin M, Cotin S, Courtecuisse H. Marker-Based Registration for Large Deformations - Application to Open Liver Surgery. IEEE; 2018. pp. 1–6.
Metadata
Title
Augmented Reality during Open Liver Surgery Using a Markerless Non-rigid Registration System
Authors
Nicolas Golse
Antoine Petit
Maïté Lewin
Eric Vibert
Stéphane Cotin
Publication date
01-03-2021
Publisher
Springer US
Published in
Journal of Gastrointestinal Surgery / Issue 3/2021
Print ISSN: 1091-255X
Electronic ISSN: 1873-4626
DOI
https://doi.org/10.1007/s11605-020-04519-4

Other articles of this Issue 3/2021

Journal of Gastrointestinal Surgery 3/2021 Go to the issue