Skip to main content
Top
Published in: Molecular Cancer 1/2015

Open Access 01-12-2015 | Research

Lipid starvation and hypoxia synergistically activate ICAM1 and multiple genes in an Sp1-dependent manner to promote the growth of ovarian cancer

Authors: Shiro Koizume, Shin Ito, Yoshiyasu Nakamura, Mitsuyo Yoshihara, Mitsuko Furuya, Roppei Yamada, Etsuko Miyagi, Fumiki Hirahara, Yasuo Takano, Yohei Miyagi

Published in: Molecular Cancer | Issue 1/2015

Login to get access

Abstract

Background

Elucidation of the molecular mechanisms by which cancer cells overcome hypoxia is potentially important for targeted therapy. Complexation of hypoxia-inducible factors (HIFs) with aryl hydrocarbon receptor nuclear translocators can enhance gene expression and initiate cellular responses to hypoxia. However, multiple molecular mechanisms may be required for cancer cells to adapt to diverse microenvironments. We previously demonstrated that a physical interaction between the ubiquitously expressed transcription factor Sp1 and HIF2 is a major cause of FVII gene activation in poor prognostic ovarian clear cell carcinoma (CCC) cells under hypoxia. Furthermore, it was found that FVII activation is synergistically enhanced when serum-starved cells are cultured under hypoxic conditions. In this study, we investigated whether HIFs and transcription factor Sp1 cooperate to activate multiple genes in CCC cells under conditions of serum starvation and hypoxia (SSH) and then contribute to malignant phenotypes.

Methods

To identify genes activated under hypoxic conditions in an Sp1-dependent manner, we first performed cDNA microarray analyses. We further investigated the molecular mechanisms of synergistic gene activations including the associated serum factors by various experiments such as real-time RT-PCR, western blotting and chromatin immunoprecipitation. The study was further extended to animal experiments to investigate how it contributes to CCC progression in vivo.

Results

ICAM1 is one such gene dramatically induced by SSH and is highly induced by SSH and its synergistic activation involves both the mTOR and autonomously activated TNFα-NFκB axes. We identified long chain fatty acids (LCFA) as a major class of lipids that is associated with albumin, a serum factor responsible for synergistic gene activation under SSH. Furthermore, we found that ICAM1 can be induced in vivo to promote tumor growth.

Conclusion

Sp1 and HIFs collaborate to activate genes required for the adaptation of CCC cells to severe microenvironments, such as LCFA starvation and hypoxia. This study highlights the importance of transcriptional regulation under lipid starvation and hypoxia in the promotion of CCC tumor growth.
Appendix
Available only for authorised users
Literature
3.
go back to reference Koumenis C, Wouters BG. “Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol Cancer Res. 2006;4:423–36.CrossRefPubMed Koumenis C, Wouters BG. “Translating” tumor hypoxia: unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol Cancer Res. 2006;4:423–36.CrossRefPubMed
4.
go back to reference Brown JM, Wilson WR. Exploiting tumor hypoxia in cancer treatment. Nat Rev Cancer. 2004;4:437–47.CrossRefPubMed Brown JM, Wilson WR. Exploiting tumor hypoxia in cancer treatment. Nat Rev Cancer. 2004;4:437–47.CrossRefPubMed
5.
go back to reference Wouters BG, Koritzinsky M. Hypoxia signaling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8:851–64.CrossRefPubMed Wouters BG, Koritzinsky M. Hypoxia signaling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008;8:851–64.CrossRefPubMed
6.
go back to reference Corradetti MN, Guan K-L. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene. 2006;25:6347–60.CrossRefPubMed Corradetti MN, Guan K-L. Upstream of the mammalian target of rapamycin: do all roads pass through mTOR? Oncogene. 2006;25:6347–60.CrossRefPubMed
8.
go back to reference Koizume S, Jin M-S, Miyagi E, Hirahara F, Nakamura Y, Piao J-H, et al. Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Res. 2006;66:9453–60.CrossRefPubMed Koizume S, Jin M-S, Miyagi E, Hirahara F, Nakamura Y, Piao J-H, et al. Activation of cancer cell migration and invasion by ectopic synthesis of coagulation factor VII. Cancer Res. 2006;66:9453–60.CrossRefPubMed
9.
go back to reference Yokota N, Koizume S, Miyagi E, Hirahara F, Nakamura Y, Kikuchi K, et al. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells. Br J Cancer. 2009;101:2023–9.CrossRefPubMedCentralPubMed Yokota N, Koizume S, Miyagi E, Hirahara F, Nakamura Y, Kikuchi K, et al. Self-production of tissue factor-coagulation factor VII complex by ovarian cancer cells. Br J Cancer. 2009;101:2023–9.CrossRefPubMedCentralPubMed
10.
go back to reference Koizume S, Miyagi Y. Ectopic Synthesis of Coagulation factor VII in Breast Cancer Cells: Mechanisms, Functional Correlates, and Potential for a New Therapeutic Target. In: Gunduz E, Gunduz M, Rijeka, editors. Breast Cancer - Current and Alternative Therapeutic Modalities. Croatia: InTech; 2011. p. 197–212. Koizume S, Miyagi Y. Ectopic Synthesis of Coagulation factor VII in Breast Cancer Cells: Mechanisms, Functional Correlates, and Potential for a New Therapeutic Target. In: Gunduz E, Gunduz M, Rijeka, editors. Breast Cancer - Current and Alternative Therapeutic Modalities. Croatia: InTech; 2011. p. 197–212.
11.
go back to reference Wierstra I. Sp1: emerging roles-beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun. 2008;372:1–13.CrossRefPubMed Wierstra I. Sp1: emerging roles-beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun. 2008;372:1–13.CrossRefPubMed
12.
go back to reference Koizume S, Ito S, Miyagi E, Hirahara F, Nakamura Y, Sakuma Y, et al. HIF2α-Sp1 interaction mediates a deacetylation-dependent FVII-gene activation under hypoxic conditions in ovarian cancer cells. Nucleic Acids Res. 2012;40:5389–401.CrossRefPubMedCentralPubMed Koizume S, Ito S, Miyagi E, Hirahara F, Nakamura Y, Sakuma Y, et al. HIF2α-Sp1 interaction mediates a deacetylation-dependent FVII-gene activation under hypoxic conditions in ovarian cancer cells. Nucleic Acids Res. 2012;40:5389–401.CrossRefPubMedCentralPubMed
13.
go back to reference Yap TA, Carden CP, Kaye SB. Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer. 9:167-181. Yap TA, Carden CP, Kaye SB. Beyond chemotherapy: targeted therapies in ovarian cancer. Nat Rev Cancer. 9:167-181.
15.
go back to reference Pages G, Pouysségur J. Transcriptional regulation of the vascular endothelial growth factor gene-a concert of activating factors. Cardiovasc Res. 2005;65:564–73.CrossRefPubMed Pages G, Pouysségur J. Transcriptional regulation of the vascular endothelial growth factor gene-a concert of activating factors. Cardiovasc Res. 2005;65:564–73.CrossRefPubMed
16.
go back to reference Takahashi S, Matsuura N, Kurokawa T, Takahashi Y, Miura T. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line. Biochem J. 2002;367:641–52.CrossRefPubMedCentralPubMed Takahashi S, Matsuura N, Kurokawa T, Takahashi Y, Miura T. Co-operation of the transcription factor hepatocyte nuclear factor-4 with Sp1 or Sp3 leads to transcriptional activation of the human haem oxygenase-1 gene promoter in a hepatoma cell line. Biochem J. 2002;367:641–52.CrossRefPubMedCentralPubMed
17.
go back to reference Collel A, Green DR, Ricci J-E. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 2009;16:1573–81.CrossRef Collel A, Green DR, Ricci J-E. Novel roles for GAPDH in cell death and carcinogenesis. Cell Death Differ. 2009;16:1573–81.CrossRef
18.
go back to reference Nishi H, Nakada T, Hokamura M, Osakabe Y, Itokazu O, Huang LE, et al. Hypoxia-inducible factor-1 transactivates transforming growth factor-β3 in troblast. Endocrinology. 2004;145:4113–8.CrossRefPubMed Nishi H, Nakada T, Hokamura M, Osakabe Y, Itokazu O, Huang LE, et al. Hypoxia-inducible factor-1 transactivates transforming growth factor-β3 in troblast. Endocrinology. 2004;145:4113–8.CrossRefPubMed
19.
go back to reference Farina AR, Cappabianca L, Mackay AR, Tiberio A, Tacconelli A, Tessitore A. Transcriptional regulation of intercellular adhesion molecule 1 by phorbol ester in human neuroblastoma cell line SK-N-SH involves Jun- and Fos-containing activator protein 1 site binding complex(es). Cell Growth Differ. 1997;8:789–800.PubMed Farina AR, Cappabianca L, Mackay AR, Tiberio A, Tacconelli A, Tessitore A. Transcriptional regulation of intercellular adhesion molecule 1 by phorbol ester in human neuroblastoma cell line SK-N-SH involves Jun- and Fos-containing activator protein 1 site binding complex(es). Cell Growth Differ. 1997;8:789–800.PubMed
20.
go back to reference Gehrau RC, D’Astolfo DS, Prieto C, Bocco JL, Koritschoner NP. Genomic organization and functional analysis of the gene encoding the Krüppel-like transcription factor KLF6. Biochim Biophys Acta. 2005;1730:137–46.CrossRefPubMed Gehrau RC, D’Astolfo DS, Prieto C, Bocco JL, Koritschoner NP. Genomic organization and functional analysis of the gene encoding the Krüppel-like transcription factor KLF6. Biochim Biophys Acta. 2005;1730:137–46.CrossRefPubMed
21.
go back to reference Angel P, Hattori K, Smeal T, Karin M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell. 1988;55:875–85.CrossRefPubMed Angel P, Hattori K, Smeal T, Karin M. The jun proto-oncogene is positively autoregulated by its product, Jun/AP-1. Cell. 1988;55:875–85.CrossRefPubMed
22.
go back to reference Faber PW, van Rooij HCJ, Schipper HJ, Brinkmann AO, Trapman J. Two different, overlapping pathways of transcription initiation are active on the TATA-less human receptor promoter. The role of Sp1. J Biol Chem. 1993;268:9296–301.PubMed Faber PW, van Rooij HCJ, Schipper HJ, Brinkmann AO, Trapman J. Two different, overlapping pathways of transcription initiation are active on the TATA-less human receptor promoter. The role of Sp1. J Biol Chem. 1993;268:9296–301.PubMed
23.
go back to reference Zhu W, Chen J, Cong X, Hu S, Chen X. Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells. 2006;24:416–25.CrossRefPubMed Zhu W, Chen J, Cong X, Hu S, Chen X. Hypoxia and serum deprivation-induced apoptosis in mesenchymal stem cells. Stem Cells. 2006;24:416–25.CrossRefPubMed
24.
go back to reference Schröder C, Witzel I, Müller V, Krenkel S, Wirtz RM, Janicke F, et al. Prognostic value of intercellular adhesion molecule (ICAM)-1 expression in breast cancer. J Cancer Res Clin Oncol. 2011;137:1193–201.CrossRefPubMed Schröder C, Witzel I, Müller V, Krenkel S, Wirtz RM, Janicke F, et al. Prognostic value of intercellular adhesion molecule (ICAM)-1 expression in breast cancer. J Cancer Res Clin Oncol. 2011;137:1193–201.CrossRefPubMed
25.
go back to reference Ahmed M, Kundu GC. Osteopontin selectively regulates p70S6K/mTOR phosphorylation leading to NF-κB dependent AP-1-mediated ICAM-1 expression in breast cancer cells. Mol Cancer. 2010;9:101.CrossRefPubMedCentralPubMed Ahmed M, Kundu GC. Osteopontin selectively regulates p70S6K/mTOR phosphorylation leading to NF-κB dependent AP-1-mediated ICAM-1 expression in breast cancer cells. Mol Cancer. 2010;9:101.CrossRefPubMedCentralPubMed
26.
go back to reference Winning S, Splettstoesser F, Fandrey J, Frede S. Acute hypoxia induces HIF-independent monocyte adhesion to endothelial cells through increased intercellular adhesion molecule-1 expression: the role of hypoxic inhibition of prolyl hydroxylase activity for the induction of NF-kB. J Immunol. 2010;185:1786–93.CrossRefPubMed Winning S, Splettstoesser F, Fandrey J, Frede S. Acute hypoxia induces HIF-independent monocyte adhesion to endothelial cells through increased intercellular adhesion molecule-1 expression: the role of hypoxic inhibition of prolyl hydroxylase activity for the induction of NF-kB. J Immunol. 2010;185:1786–93.CrossRefPubMed
27.
go back to reference Kesanakurti D, Chetty C, Rajasekhar Maddirela D, Gujrati M, Rao JS. Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma. Oncogene. 2013;32:5144–55.CrossRefPubMed Kesanakurti D, Chetty C, Rajasekhar Maddirela D, Gujrati M, Rao JS. Essential role of cooperative NF-κB and Stat3 recruitment to ICAM-1 intronic consensus elements in the regulation of radiation-induced invasion and migration in glioma. Oncogene. 2013;32:5144–55.CrossRefPubMed
28.
go back to reference Minhajuddin M, Bijli KM, Fazal F, Sassano A, Nakayama KI, Hay NPlatanias LC, et al. Protein kinase C-δ and phosphatidylinositol 3-kinase/Akt activate mammalian target of rapamycin to modulate NF-κB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endotherial cells. J Biol Chem. 2009;284:4052–61.CrossRefPubMedCentralPubMed Minhajuddin M, Bijli KM, Fazal F, Sassano A, Nakayama KI, Hay NPlatanias LC, et al. Protein kinase C-δ and phosphatidylinositol 3-kinase/Akt activate mammalian target of rapamycin to modulate NF-κB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endotherial cells. J Biol Chem. 2009;284:4052–61.CrossRefPubMedCentralPubMed
30.
go back to reference de Groote ML, Kazemier HG, Huisman C, van der Gun BT, Faas MM, Rots MG. Upregulation of endogenous ICAM-1 reduces ovarian cancer cell growth in the absence of immune cells. Int J Cancer. 2014;134:280–90.CrossRefPubMed de Groote ML, Kazemier HG, Huisman C, van der Gun BT, Faas MM, Rots MG. Upregulation of endogenous ICAM-1 reduces ovarian cancer cell growth in the absence of immune cells. Int J Cancer. 2014;134:280–90.CrossRefPubMed
31.
go back to reference Curry S. Plasma Albumin as a Fatty Acid Carrier. In: van den Vusse G, editor. Lipobiology. Amsterdam, Netherlands: Elsevier B V; 2004. p. 29–46. Curry S. Plasma Albumin as a Fatty Acid Carrier. In: van den Vusse G, editor. Lipobiology. Amsterdam, Netherlands: Elsevier B V; 2004. p. 29–46.
32.
go back to reference Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng. 1999;12:439–46.CrossRefPubMed Sugio S, Kashima A, Mochizuki S, Noda M, Kobayashi K. Crystal structure of human serum albumin at 2.5 Å resolution. Protein Eng. 1999;12:439–46.CrossRefPubMed
33.
go back to reference Glaser C, Demmelmair H, Koletzko B. High-throughput analysis of total plasma fatty acid composition with direct in situ transesterification. PLoS One. 2010;5:e12045.CrossRefPubMedCentralPubMed Glaser C, Demmelmair H, Koletzko B. High-throughput analysis of total plasma fatty acid composition with direct in situ transesterification. PLoS One. 2010;5:e12045.CrossRefPubMedCentralPubMed
34.
go back to reference Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Med. 2011;17:1498–503.CrossRefPubMedCentralPubMed Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nature Med. 2011;17:1498–503.CrossRefPubMedCentralPubMed
36.
go back to reference Arnold JM, Cummings M, Purdie D, Chenevix-Trench G. Reduced expression of intercellular adhesion molecule-1 in ovarian adenocarcinomas. Br J Cancer. 2001;85:1351–8.CrossRefPubMedCentralPubMed Arnold JM, Cummings M, Purdie D, Chenevix-Trench G. Reduced expression of intercellular adhesion molecule-1 in ovarian adenocarcinomas. Br J Cancer. 2001;85:1351–8.CrossRefPubMedCentralPubMed
38.
go back to reference Young RM, Ackerman D, Quinn ZL, Mancuso A, Gruber M, Liu L, et al. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev. 2013;27:1115–31.CrossRefPubMedCentralPubMed Young RM, Ackerman D, Quinn ZL, Mancuso A, Gruber M, Liu L, et al. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev. 2013;27:1115–31.CrossRefPubMedCentralPubMed
40.
go back to reference van Bilsen M. Transcriptional Regulation of Cellular Fatty Acid Homeostasis. In: van den Vusse G, editor. Lipobiology. Amsterdam, Netherlands: Elsevier B V; 2004. p. 319–36. van Bilsen M. Transcriptional Regulation of Cellular Fatty Acid Homeostasis. In: van den Vusse G, editor. Lipobiology. Amsterdam, Netherlands: Elsevier B V; 2004. p. 319–36.
41.
go back to reference Pazdrak K, Young TW, Stafford S, Olszewska-Pazdrak B, Straub C, Strarosta V, et al. Cross-talk between ICAM-1 and granulocyte-macrophage colony-stimulating factor receptor signaling modulates eosinophil survival and activation. J Immunol. 2008;180:4182–90.CrossRefPubMed Pazdrak K, Young TW, Stafford S, Olszewska-Pazdrak B, Straub C, Strarosta V, et al. Cross-talk between ICAM-1 and granulocyte-macrophage colony-stimulating factor receptor signaling modulates eosinophil survival and activation. J Immunol. 2008;180:4182–90.CrossRefPubMed
42.
go back to reference Usami Y, Ishida K, Sato S, Kishino M, Kiryu M, Ogawa Y, et al. Toyosawa S:Intercellular adhesion molecule-1 (ICAM-1) expression correlates with oral cancer progression and induces macrophage/cancer cell adhesion. Int J Cancer. 2013;133:568–78.CrossRefPubMed Usami Y, Ishida K, Sato S, Kishino M, Kiryu M, Ogawa Y, et al. Toyosawa S:Intercellular adhesion molecule-1 (ICAM-1) expression correlates with oral cancer progression and induces macrophage/cancer cell adhesion. Int J Cancer. 2013;133:568–78.CrossRefPubMed
43.
go back to reference Minchinton AI, Kyle AH. Drug Penetration and Therapeutic Resistance. In: Siemann DW, editor. Tumor Microenvironment. Oxford, UK: Wiley-Blackwell; 2011. p. 329–52. Minchinton AI, Kyle AH. Drug Penetration and Therapeutic Resistance. In: Siemann DW, editor. Tumor Microenvironment. Oxford, UK: Wiley-Blackwell; 2011. p. 329–52.
44.
go back to reference Veitonmäki N, Hansson M, Zhan F, Sundburg A, Löfstedt T, Ljungars A, et al. A human ICAM-1 antibody isolated by a function-first approach has potent macrophage-dependent antimyeloma activity in vivo. Cancer Cell. 2013;23:502–15.CrossRefPubMed Veitonmäki N, Hansson M, Zhan F, Sundburg A, Löfstedt T, Ljungars A, et al. A human ICAM-1 antibody isolated by a function-first approach has potent macrophage-dependent antimyeloma activity in vivo. Cancer Cell. 2013;23:502–15.CrossRefPubMed
45.
go back to reference Koizume S, Yokota N, Miyagi E, Hirahara F, Nakamura Y, Sakuma Y, et al. Hepatocyte nuclear factor-4-independent synthesis of coagulation factor VII in breast cancer cells and its inhibition by targeting selective histone acetyltransferases. Mol Cancer Res. 2009;7:1928–36.CrossRefPubMedCentralPubMed Koizume S, Yokota N, Miyagi E, Hirahara F, Nakamura Y, Sakuma Y, et al. Hepatocyte nuclear factor-4-independent synthesis of coagulation factor VII in breast cancer cells and its inhibition by targeting selective histone acetyltransferases. Mol Cancer Res. 2009;7:1928–36.CrossRefPubMedCentralPubMed
46.
go back to reference Koizume S, Yokota N, Miyagi E, Hirahara F, Tsuchiya E, Miyagi Y. Heterogeneity in binding and gene-expression regulation by HIF-2α. Biochem Biophys Res Commun. 2008;371:251–5.CrossRefPubMed Koizume S, Yokota N, Miyagi E, Hirahara F, Tsuchiya E, Miyagi Y. Heterogeneity in binding and gene-expression regulation by HIF-2α. Biochem Biophys Res Commun. 2008;371:251–5.CrossRefPubMed
Metadata
Title
Lipid starvation and hypoxia synergistically activate ICAM1 and multiple genes in an Sp1-dependent manner to promote the growth of ovarian cancer
Authors
Shiro Koizume
Shin Ito
Yoshiyasu Nakamura
Mitsuyo Yoshihara
Mitsuko Furuya
Roppei Yamada
Etsuko Miyagi
Fumiki Hirahara
Yasuo Takano
Yohei Miyagi
Publication date
01-12-2015
Publisher
BioMed Central
Published in
Molecular Cancer / Issue 1/2015
Electronic ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-015-0351-z

Other articles of this Issue 1/2015

Molecular Cancer 1/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine