Skip to main content
Top
Published in: Clinical Pharmacokinetics 11/2011

01-11-2011 | Review Article

Penetration of Anti-Infective Agents into Pulmonary Epithelial Lining Fluid

Focus on Antifungal, Antitubercular and Miscellaneous Anti-Infective Agents

Authors: Professor Keith A. Rodvold, Liz Yoo, Jomy M. George

Published in: Clinical Pharmacokinetics | Issue 11/2011

Login to get access

Abstract

Epithelial lining fluid (ELF) is often considered to be the site of extracellular pulmonary infections. During the past 25 years, a limited number of studies have evaluated the intrapulmonary penetration of antifungal, antitubercular, antiparasitic and antiviral agents. For antifungal agents, differences in drug concentrations in ELF or bronchoalveolar lavage (BAL) fluid were observed among various formulations or routes of administration, and between agents within the same class. Aerosolized doses of deoxycholate amphotericin B, liposomal amphotericin B and amphotericin B lipid complex resulted in higher concentrations in ELF or BAL fluid than after intravenous administration. The mean concentrations in ELF following intravenous administration of both anidulafungin and micafungin ranged between 0.04 and 1.38 µg/mL, and the ELF to plasma concentration ratios (based on the area under the concentration-time curve for total drug concentrations) were between 0.18 and 0.22 during the first 3 days of therapy. Among the azole agents, intravenous administration of voriconazole resulted in the highest mean ELF concentrations (range 10. 1–48.3 µg/mL) and ratio of penetration (7.1). The range of mean ELF concentrations of itraconazole and posaconazole following oral administration was 0.2–1.9 &#x00B5;g/mL, and the ELF to plasma concentration ratios were <1. A series of studies have evaluated the intrapulmonary penetration of first- and second-line oral antitubercular agents in healthy adult subjects and patients with AIDS. The ELF to plasma concentration ratio was >1 for isoniazid, ethambutol, pyrazinamide and ethionamide. For rifampicin (rifampin) and rifapentine, the ELF to plasma concentration ratio ranged between 0.2 and 0.32, but in alveolar macrophages the concentration of rifampicin was much higher (145–738 µg/mL compared with 3.3–7.5 µg/mL in ELF). No intrapulmonary studies have been conducted for rifabutin. Sex, AIDS status or smoking history had no significant effects on the magnitude of ELF concentrations of antitubercular agents. Subjects who were slow acetylators had higher plasma and ELF concentrations of isoniazid than those who were fast acetylators. Penetration of dapsone into ELF was very good, with the range of mean ELF to plasma concentration ratios being 0.65–2.91 at individual sampling times over 48 hours. Once-daily dosing of aerosolized pentamidine resulted in higher concentrations in BAL fluid than after intravenous administration. The mean BAL concentrations at 15–32 days after once- or twice-monthly administration of aerosolized pentamidine 300 and 600 mg ranged from 6.5 to 28.4 ng/mL. No differences in pentamidine BAL concentrations were observed in symptomatic patients who developed Pneumocystis jirovecii pneumonia compared with patients who did not. Zanamivir concentrations in ELF were similar in magnitude (range 141–326 ng/mL) following administration by continuous intravenous infusion (3mg/hour), oral inhalation (10 mg every 12 hours) and intravenous bolus (200 mg every 12 hours). Data from case reports have suggested that concentrations of nelfinavir and saquinavir in ELF are undetectable, whereas tipranavir and lopinavir had measureable ELF concentrations (2.20µmol/L and 14.4µg/mL, respectively) when these protease inhibitors were co-administrated with ritonavir. While the clinical significance of ELF or BAL concentrations remains unknown for this group of anti-infective agents, the knowledge of drug penetration into the extracellular space of the lung should assist in re-evaluating and designing specific dosing regimens for use against potential pathogens.
Literature
1.
go back to reference Nishi SP, Valentine VG, Duncan S. Emerging bacterial, fungal, and viral respiratory infections in transplantation. Infect Dis Clin North Am 2010; 24: 541–55PubMedCrossRef Nishi SP, Valentine VG, Duncan S. Emerging bacterial, fungal, and viral respiratory infections in transplantation. Infect Dis Clin North Am 2010; 24: 541–55PubMedCrossRef
2.
go back to reference Tang JW, Shetty N, Lam TT, et al. Emerging, novel, and known influenza virus infections in humans. Infect Dis Clin North Am 2010; 24: 603–17PubMedCrossRef Tang JW, Shetty N, Lam TT, et al. Emerging, novel, and known influenza virus infections in humans. Infect Dis Clin North Am 2010; 24: 603–17PubMedCrossRef
3.
go back to reference Mori T, Leung CC. Tuberculosis in the global aging population. Infect Dis Clin North Am 2010; 24: 751–68PubMedCrossRef Mori T, Leung CC. Tuberculosis in the global aging population. Infect Dis Clin North Am 2010; 24: 751–68PubMedCrossRef
4.
go back to reference Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet 2011; 50(10): 637–64PubMedCrossRef Rodvold KA, George JM, Yoo L. Penetration of anti-infective agents into epithelial lining fluid: focus on antibacterial agents. Clin Pharmacokinet 2011; 50(10): 637–64PubMedCrossRef
5.
go back to reference Rennard SI, Basset G, Lecossier D, et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol 1986; 60: 532–8PubMed Rennard SI, Basset G, Lecossier D, et al. Estimation of volume of epithelial lining fluid recovered by lavage using urea as marker of dilution. J Appl Physiol 1986; 60: 532–8PubMed
6.
go back to reference Monforte V, Roman A, Gavaldá J, et al. Nebulized amphotericin B concentration and distribution in the respiratory tract of lung-transplanted patients. Transplantation 2003; 75: 1571–4PubMedCrossRef Monforte V, Roman A, Gavaldá J, et al. Nebulized amphotericin B concentration and distribution in the respiratory tract of lung-transplanted patients. Transplantation 2003; 75: 1571–4PubMedCrossRef
7.
go back to reference Weiler S, Falkensammer G, Hammerer-Lercher A, et al. Pulmonary epithelial lining fluid concentrations after use of systemic amphotericin B lipid formulations. Antimicrob Agents Chemother 2009; 53: 4934–7PubMedCrossRef Weiler S, Falkensammer G, Hammerer-Lercher A, et al. Pulmonary epithelial lining fluid concentrations after use of systemic amphotericin B lipid formulations. Antimicrob Agents Chemother 2009; 53: 4934–7PubMedCrossRef
8.
go back to reference Husain S, Capitano B, Corcoran T, et al. Intrapulmonary disposition of amphotericin B after aerosolized delivery of amphotericin B lipid complex (Abelcet; ABLCA) in lung transplant recipients. Transplantation 2010; 90: 1215–9PubMedCrossRef Husain S, Capitano B, Corcoran T, et al. Intrapulmonary disposition of amphotericin B after aerosolized delivery of amphotericin B lipid complex (Abelcet; ABLCA) in lung transplant recipients. Transplantation 2010; 90: 1215–9PubMedCrossRef
9.
go back to reference Monforte V, Ussetti P, López R, et al. Nebulized liposomal amphotericin B prophylaxis for Aspergillus infection in lung transplantation: pharmacokinetics and safety. J Heart Lung Transplant 2009; 28: 170–5PubMedCrossRef Monforte V, Ussetti P, López R, et al. Nebulized liposomal amphotericin B prophylaxis for Aspergillus infection in lung transplantation: pharmacokinetics and safety. J Heart Lung Transplant 2009; 28: 170–5PubMedCrossRef
10.
go back to reference Crandon JL, Banevicius MA, Fang AF, et al. Bronchopulmonary disposition of intravenous voriconazole and anidulafungin given in combination to healthy adults. Antimicrob Agents Chemother 2009; 53: 5102–7PubMedCrossRef Crandon JL, Banevicius MA, Fang AF, et al. Bronchopulmonary disposition of intravenous voriconazole and anidulafungin given in combination to healthy adults. Antimicrob Agents Chemother 2009; 53: 5102–7PubMedCrossRef
11.
go back to reference Nicasio AM, Tessier PR, Nicolau DP, et al. Bronchopulmonary disposition of micafungin in healthy adult volunteers. Antimicrob Agents Chemother 2009; 53: 1218–20PubMedCrossRef Nicasio AM, Tessier PR, Nicolau DP, et al. Bronchopulmonary disposition of micafungin in healthy adult volunteers. Antimicrob Agents Chemother 2009; 53: 1218–20PubMedCrossRef
12.
go back to reference Walsh TJ, Goutelle S, Jelliffe RW, et al. Intrapulmonary pharmacokinetics and pharmacodynamics of micafungin in adult lung transplant patients. Antimicrob Agents Chemother 2010; 54: 3451–9PubMedCrossRef Walsh TJ, Goutelle S, Jelliffe RW, et al. Intrapulmonary pharmacokinetics and pharmacodynamics of micafungin in adult lung transplant patients. Antimicrob Agents Chemother 2010; 54: 3451–9PubMedCrossRef
13.
go back to reference Conte Jr JE, Golden JA, Kipps J, et al. Intrapulmonary pharmacokinetics and pharmacodynamics of itraconazole and 14-hydroxyitraconazole at steady state. Antimicrob Agents Chemother 2004; 48: 3823–7PubMedCrossRef Conte Jr JE, Golden JA, Kipps J, et al. Intrapulmonary pharmacokinetics and pharmacodynamics of itraconazole and 14-hydroxyitraconazole at steady state. Antimicrob Agents Chemother 2004; 48: 3823–7PubMedCrossRef
14.
go back to reference Conte Jr JE, Golden JA, Krishna G, et al. Intrapulmonary pharmacokinetics and pharmacodynamics of posaconazole at steady state in healthy subjects. Antimicrob Agents Chemother 2009; 53: 703–7PubMedCrossRef Conte Jr JE, Golden JA, Krishna G, et al. Intrapulmonary pharmacokinetics and pharmacodynamics of posaconazole at steady state in healthy subjects. Antimicrob Agents Chemother 2009; 53: 703–7PubMedCrossRef
15.
go back to reference Conte Jr JE, DeVoe C, Little E, et al. Steady-state intrapulmonary pharmacokinetics and pharmacodynamics of posaconazole in lung transplant recipients. Antimicrob Agents Chemother 2010; 54: 3609–13PubMedCrossRef Conte Jr JE, DeVoe C, Little E, et al. Steady-state intrapulmonary pharmacokinetics and pharmacodynamics of posaconazole in lung transplant recipients. Antimicrob Agents Chemother 2010; 54: 3609–13PubMedCrossRef
16.
go back to reference Groll AH, Lyman CA, Petraitis V, et al. Compartmentalized intrapulmonary pharmacokinetics of amphotericin B and its lipid formulations. Antimicrob Agents Chemother 2006; 50: 3418–23PubMedCrossRef Groll AH, Lyman CA, Petraitis V, et al. Compartmentalized intrapulmonary pharmacokinetics of amphotericin B and its lipid formulations. Antimicrob Agents Chemother 2006; 50: 3418–23PubMedCrossRef
17.
go back to reference Burkhardt O, Ellis S, Burhenne H, et al. High caspofungin levels in alveolar cells of a lung transplant patient with suspected pulmonary aspergillosis [letter]. Int J Antimicrob Agents 2009; 34: 491–2PubMedCrossRef Burkhardt O, Ellis S, Burhenne H, et al. High caspofungin levels in alveolar cells of a lung transplant patient with suspected pulmonary aspergillosis [letter]. Int J Antimicrob Agents 2009; 34: 491–2PubMedCrossRef
18.
go back to reference Capitano B, Potoski BA, Husain S, et al. Intrapulmonary penetration of voriconazole in patients receiving an oral prophylactic regimen. Antimicrob Agents Chemother 2006; 50: 1878–80PubMedCrossRef Capitano B, Potoski BA, Husain S, et al. Intrapulmonary penetration of voriconazole in patients receiving an oral prophylactic regimen. Antimicrob Agents Chemother 2006; 50: 1878–80PubMedCrossRef
19.
go back to reference Pasipanodya J, Gumbo T. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother 2011; 55: 24–34PubMedCrossRef Pasipanodya J, Gumbo T. An oracle: antituberculosis pharmacokinetics-pharmacodynamics, clinical correlation, and clinical trial simulations to predict the future. Antimicrob Agents Chemother 2011; 55: 24–34PubMedCrossRef
20.
go back to reference Gumbo T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother 2010; 54: 1484–91PubMedCrossRef Gumbo T. New susceptibility breakpoints for first-line antituberculosis drugs based on antimicrobial pharmacokinetic/pharmacodynamic science and population pharmacokinetic variability. Antimicrob Agents Chemother 2010; 54: 1484–91PubMedCrossRef
21.
go back to reference Conte Jr JE, Golden JA, McQuitty M, et al. Effects of gender, AIDS, and acetylator status on intrapulmonary concentrations of isoniazid. Antimicrob Agents Chemother 2002; 46: 2358–64PubMedCrossRef Conte Jr JE, Golden JA, McQuitty M, et al. Effects of gender, AIDS, and acetylator status on intrapulmonary concentrations of isoniazid. Antimicrob Agents Chemother 2002; 46: 2358–64PubMedCrossRef
22.
go back to reference Katiyar SK, Bihari S, Prakash S. Low-dose inhaled versus standard dose oral form of anti-tubercular drugs: concentrations in bronchial epithelial lining fluid, alveolar macrophage and serum. J Postgrad Med 2008; 54: 245–6PubMedCrossRef Katiyar SK, Bihari S, Prakash S. Low-dose inhaled versus standard dose oral form of anti-tubercular drugs: concentrations in bronchial epithelial lining fluid, alveolar macrophage and serum. J Postgrad Med 2008; 54: 245–6PubMedCrossRef
23.
go back to reference Conte Jr JE, Golden JA, Kipps J, et al. Effects of AIDS and gender on steady-state plasma and intrapulmonary ethambutol concentrations. Antimicrob Agents Chemother 2001; 45: 2891–6PubMedCrossRef Conte Jr JE, Golden JA, Kipps J, et al. Effects of AIDS and gender on steady-state plasma and intrapulmonary ethambutol concentrations. Antimicrob Agents Chemother 2001; 45: 2891–6PubMedCrossRef
24.
go back to reference Conte Jr JE, Golden JA, Duncan S, et al. Intrapulmonary concentrations of pyrazinamide. Antimicrob Agents Chemother 1999; 43: 1329–33PubMed Conte Jr JE, Golden JA, Duncan S, et al. Intrapulmonary concentrations of pyrazinamide. Antimicrob Agents Chemother 1999; 43: 1329–33PubMed
25.
go back to reference Ziglam HM, Baldwin DR, Daniels I, et al. Rifampicin concentrations in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum following a single 600 mg oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 2002; 50: 1011–5PubMedCrossRef Ziglam HM, Baldwin DR, Daniels I, et al. Rifampicin concentrations in bronchial mucosa, epithelial lining fluid, alveolar macrophages and serum following a single 600 mg oral dose in patients undergoing fibre-optic bronchoscopy. J Antimicrob Chemother 2002; 50: 1011–5PubMedCrossRef
26.
go back to reference Conte Jr JE, Golden JA, Kipps JE, et al. Effect of sex and AIDS status on the plasma and intrapulmonary pharmacokinetics of rifampicin. Clin Pharmacokinet 2004; 43: 395–404PubMedCrossRef Conte Jr JE, Golden JA, Kipps JE, et al. Effect of sex and AIDS status on the plasma and intrapulmonary pharmacokinetics of rifampicin. Clin Pharmacokinet 2004; 43: 395–404PubMedCrossRef
27.
go back to reference Conte Jr JE, Golden JA, McQuitty M, et al. Single-dose intrapulmonary pharmacokinetics of rifapentine in normal subjects. Antimicrob Agents Chemother 2000; 44: 985–90PubMedCrossRef Conte Jr JE, Golden JA, McQuitty M, et al. Single-dose intrapulmonary pharmacokinetics of rifapentine in normal subjects. Antimicrob Agents Chemother 2000; 44: 985–90PubMedCrossRef
28.
go back to reference Conte Jr JE, Golden JA, McQuitty M, et al. Effects of AIDS and gender on steady-state plasma and intrapulmonary ethionamide concentrations. Antimicrob Agents Chemother 2000; 44: 1337–41PubMedCrossRef Conte Jr JE, Golden JA, McQuitty M, et al. Effects of AIDS and gender on steady-state plasma and intrapulmonary ethionamide concentrations. Antimicrob Agents Chemother 2000; 44: 1337–41PubMedCrossRef
29.
go back to reference Gumbo T, Dona CS, Meek C, et al. Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother 2009; 53: 3197–204PubMedCrossRef Gumbo T, Dona CS, Meek C, et al. Pharmacokinetics-pharmacodynamics of pyrazinamide in a novel in vitro model of tuberculosis for sterilizing effect: a paradigm for faster assessment of new antituberculosis drugs. Antimicrob Agents Chemother 2009; 53: 3197–204PubMedCrossRef
30.
go back to reference Goutelle S, Bourguignon L, Maire PH, et al. Population modeling and Monte Carlo simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of rifampin in lungs. Antimicrob Agents Chemother 2009; 53: 2974–81PubMedCrossRef Goutelle S, Bourguignon L, Maire PH, et al. Population modeling and Monte Carlo simulation study of the pharmacokinetics and antituberculosis pharmacodynamics of rifampin in lungs. Antimicrob Agents Chemother 2009; 53: 2974–81PubMedCrossRef
31.
go back to reference Cruciani M, Gatti G, Magnoli C, et al. Penetration of dapsone into pulmonary lining fluid of human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother 1997; 41: 1077–81PubMed Cruciani M, Gatti G, Magnoli C, et al. Penetration of dapsone into pulmonary lining fluid of human immunodeficiency virus type 1-infected patients. Antimicrob Agents Chemother 1997; 41: 1077–81PubMed
32.
go back to reference Conte Jr JE, Golden JA. Concentrations of aerosolized pentamidine in bronchoalveolar lavage, systemic absorption, and excretion. Antimicrob Agents Chemother 1988; 32: 1490–3PubMedCrossRef Conte Jr JE, Golden JA. Concentrations of aerosolized pentamidine in bronchoalveolar lavage, systemic absorption, and excretion. Antimicrob Agents Chemother 1988; 32: 1490–3PubMedCrossRef
33.
go back to reference Conte Jr JE, Golden JA. Intrapulmonary and systemic pharmacokinetics of aerosolized pentamidine used for prophylaxis of Pneumocystis carinii pneumonia in patients infected with the human immunodeficiency virus. J Clin Pharmacol 1995; 35: 1166–73PubMed Conte Jr JE, Golden JA. Intrapulmonary and systemic pharmacokinetics of aerosolized pentamidine used for prophylaxis of Pneumocystis carinii pneumonia in patients infected with the human immunodeficiency virus. J Clin Pharmacol 1995; 35: 1166–73PubMed
34.
go back to reference O’Riordan TG, Baughman RP, Dohn MN, et al. Lobar pentamidine levels and Pneumocystis carinii pneumonia following aerosolized pentamidine. Chest 1994; 105: 53–6PubMedCrossRef O’Riordan TG, Baughman RP, Dohn MN, et al. Lobar pentamidine levels and Pneumocystis carinii pneumonia following aerosolized pentamidine. Chest 1994; 105: 53–6PubMedCrossRef
35.
go back to reference Shelton MJ, Lovern M, Ng-Cashin J, et al. Zanamivir pharmacokinetics and pulmonary penetration into epithelial lining fluid following intravenous or oral inhaled administration to healthy adult subjects. Antimicrob Agents Chemother. Epub 2011 Sep 6 Shelton MJ, Lovern M, Ng-Cashin J, et al. Zanamivir pharmacokinetics and pulmonary penetration into epithelial lining fluid following intravenous or oral inhaled administration to healthy adult subjects. Antimicrob Agents Chemother. Epub 2011 Sep 6
36.
go back to reference Atzori C, Villani P, Regazzi M, et al. Detection of HIV protease inhibitors in alveolar epithelial lining fluid: relevance for modulation of Pneumocystis infection in the course of HAART. J Eukaryot Microbiol 2006; 53 Suppl. 1: S140–1PubMedCrossRef Atzori C, Villani P, Regazzi M, et al. Detection of HIV protease inhibitors in alveolar epithelial lining fluid: relevance for modulation of Pneumocystis infection in the course of HAART. J Eukaryot Microbiol 2006; 53 Suppl. 1: S140–1PubMedCrossRef
37.
go back to reference Atzori C, Villani P, Regazzi M, et al. Detection of intrapulmonary concentration of lopinavir in an HIV-infected patient. AIDS 2003; 17: 1710–1PubMedCrossRef Atzori C, Villani P, Regazzi M, et al. Detection of intrapulmonary concentration of lopinavir in an HIV-infected patient. AIDS 2003; 17: 1710–1PubMedCrossRef
38.
go back to reference Rodvold KA, Nicolau DP, Lodise TP, et al. Identifying exposure target for treatment of staphylococcal pneumonia with ceftopibrole. Antimicrob Agents Chemother 2009; 53: 3294–301PubMedCrossRef Rodvold KA, Nicolau DP, Lodise TP, et al. Identifying exposure target for treatment of staphylococcal pneumonia with ceftopibrole. Antimicrob Agents Chemother 2009; 53: 3294–301PubMedCrossRef
Metadata
Title
Penetration of Anti-Infective Agents into Pulmonary Epithelial Lining Fluid
Focus on Antifungal, Antitubercular and Miscellaneous Anti-Infective Agents
Authors
Professor Keith A. Rodvold
Liz Yoo
Jomy M. George
Publication date
01-11-2011
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 11/2011
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/11592900-000000000-00000

Other articles of this Issue 11/2011

Clinical Pharmacokinetics 11/2011 Go to the issue