Skip to main content
Top
Published in: BioDrugs 1/2011

01-02-2011 | Review Article

New Anti-CD20 Monoclonal Antibodies for the Treatment of B-Cell Lymphoid Malignancies

Authors: Professor Tadeusz Robak, Ewa Robak

Published in: BioDrugs | Issue 1/2011

Login to get access

Abstract

Over the last few years, new generations of anti-CD20 monoclonal antibodies (mAbs) have been developed for potential benefits over the classical, first-generation mAb rituximab. Compared with rituximab, new mAbs have enhanced antitumor activity resulting from increased complement-dependent cytotoxicity (CDC) and/or antibody-dependent cellular cytotoxicity (ADCC) and increased Fc binding affinity for the low-affinity variants of the FcγRIIIa receptor (CD16) on immune effector cells. The second-generation mAbs, which include ofatumumab, veltuzumab, and ocrelizumab, are humanized or fully human to reduce immunogenicity, but with an unmodified Fc region. Ofatumumab is a fully human anti-CD20 IgG1 mAb in clinical development for hematological malignancies and autoimmune diseases. Ofatumumab specifically recognizes an epitope encompassing both the small and large extracellular loops of CD20 molecule, and is more effective than rituximab at CDC induction and killing target cells. Veltuzumab (IMMU-106, hA20) is a humanized anti-CD20 mAb with complementarity-determining regions similar to rituximab. This antibody has enhanced binding avidities and a stronger effect on CDC compared with rituximab. Ocrelizumab is a humanized mAb with the potential for enhanced efficacy in lymphoid malignancies compared with rituximab due to increased binding affinity for the low-affinity variants of the FcγRIIIa receptor. The third-generation mAbs are also humanized mAbs, but in addition they have an engineered Fc to increase their binding affinity for the FcγRIIIa receptor. The third-generation mAbs include AME-133v, PRO131921 and GA-101. AME-133v (LY2469298) is a type I, humanized IgG1 mAb with enhanced affinity for FcγRIIIa receptor and an enhanced ADCC activity compared with rituximab. PRO131921 is a humanized anti-CD20 mAb engineered to have improved binding to FcγRIIIa and better ADCC compared with rituximab. GA-101 (RO5072759) is a fully humanized, type II, IgG1 mAb derived from humanization of the parental B-Ly1 mouse antibody and subsequent glycoengineering using GlycoMab® technology. GA-101 was designed for enhanced ADCC and superior direct cell-killing properties, in comparison with currently available type I antibodies. TRU-015 is a small modular immunopharmaceutical (SMIP) derived from key domains of an anti-CD20 antibody. TRU-015 represents a novel biological compound that retains Fc-mediated effector functions and is smaller than mAbs. In this article we review data on new anti-CD20 mAbs that are potentially useful in the treatment of lymphoid malignancies.
Literature
1.
go back to reference Cragg MS, Walshe CA, Ivanov AO, et al. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun 2005; 8: 140–74PubMedCrossRef Cragg MS, Walshe CA, Ivanov AO, et al. The biology of CD20 and its potential as a target for mAb therapy. Curr Dir Autoimmun 2005; 8: 140–74PubMedCrossRef
2.
go back to reference Einfeld DA, Brown JP, Valentine MA, et al. Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple trans-membrane domains. EMBO J 1988; 7: 711–7PubMed Einfeld DA, Brown JP, Valentine MA, et al. Molecular cloning of the human B cell CD20 receptor predicts a hydrophobic protein with multiple trans-membrane domains. EMBO J 1988; 7: 711–7PubMed
3.
go back to reference Stashenko P, Nadler LM, Hardy R, et al. Expression of cell surface markers after human B lymphocyte activation. Proc Natl Acad Sci U S A 1981; 78: 3848–52PubMedCrossRef Stashenko P, Nadler LM, Hardy R, et al. Expression of cell surface markers after human B lymphocyte activation. Proc Natl Acad Sci U S A 1981; 78: 3848–52PubMedCrossRef
4.
go back to reference Beers SA, Chan CH, French RR, et al. CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol 2010; 47: 107–14PubMedCrossRef Beers SA, Chan CH, French RR, et al. CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol 2010; 47: 107–14PubMedCrossRef
5.
go back to reference Li H, Ayer LM, Lytton J, et al. Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem 2003; 278: 42427–34PubMedCrossRef Li H, Ayer LM, Lytton J, et al. Store-operated cation entry mediated by CD20 in membrane rafts. J Biol Chem 2003; 278: 42427–34PubMedCrossRef
6.
go back to reference Beers SA, French RR, Chan HT, et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood 2010; 115: 5191–201PubMedCrossRef Beers SA, French RR, Chan HT, et al. Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood 2010; 115: 5191–201PubMedCrossRef
7.
go back to reference Giles FJ, Vose JM, Do KA, et al. Circulating CD20 and CD52 in patients with non-Hodgkin's lymphoma or Hodgkin's disease. Br J Haematol 2003; 123: 850–7PubMedCrossRef Giles FJ, Vose JM, Do KA, et al. Circulating CD20 and CD52 in patients with non-Hodgkin's lymphoma or Hodgkin's disease. Br J Haematol 2003; 123: 850–7PubMedCrossRef
8.
go back to reference Manshouri T, Do KA, Wang X, et al. Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood 2003; 101(7): 2507–13PubMedCrossRef Manshouri T, Do KA, Wang X, et al. Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood 2003; 101(7): 2507–13PubMedCrossRef
9.
go back to reference Taylor RP, Lindorfer MA. Immunotherapeutic mechanisms of anti-CD20 monoclonal antibodies. Curr Opin Immunol 2008; 20: 444–9PubMedCrossRef Taylor RP, Lindorfer MA. Immunotherapeutic mechanisms of anti-CD20 monoclonal antibodies. Curr Opin Immunol 2008; 20: 444–9PubMedCrossRef
10.
go back to reference Uchida J, Hamaguchi Y, Oliver JA, et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 2004; 199: 1659–69PubMedCrossRef Uchida J, Hamaguchi Y, Oliver JA, et al. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med 2004; 199: 1659–69PubMedCrossRef
11.
go back to reference Lefebvre ML, Krause SW, Salcedo M, et al. Ex vivo-activated human macrophages kill chronic lymphocytic leukemia cells in the presence of rit-uximab: mechanism of antibody-dependent cellular cytotoxicity and impact of human serum. J Immunother 2006; 29: 388–97PubMedCrossRef Lefebvre ML, Krause SW, Salcedo M, et al. Ex vivo-activated human macrophages kill chronic lymphocytic leukemia cells in the presence of rit-uximab: mechanism of antibody-dependent cellular cytotoxicity and impact of human serum. J Immunother 2006; 29: 388–97PubMedCrossRef
12.
go back to reference Boye J, Elter T, Engert A. An overview of the current clinical use of the anti-CD20 monoclonal antibody rituximab. Ann Oncol 2003; 14: 520–35PubMedCrossRef Boye J, Elter T, Engert A. An overview of the current clinical use of the anti-CD20 monoclonal antibody rituximab. Ann Oncol 2003; 14: 520–35PubMedCrossRef
13.
go back to reference Robak T, Dmoszynska A, Solal-Celigny A, et al. Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 1756–65PubMedCrossRef Robak T, Dmoszynska A, Solal-Celigny A, et al. Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 1756–65PubMedCrossRef
14.
go back to reference Robak T, Jamroziak K, Robak P. Current and emerging treatments for chronic lymphocytic leukaemia. Drugs 2009; 69: 2415–49PubMedCrossRef Robak T, Jamroziak K, Robak P. Current and emerging treatments for chronic lymphocytic leukaemia. Drugs 2009; 69: 2415–49PubMedCrossRef
16.
go back to reference Golay J, Zaffaroni L, Vaccari T, et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 2000; 95: 3900–8PubMed Golay J, Zaffaroni L, Vaccari T, et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement-mediated cell lysis. Blood 2000; 95: 3900–8PubMed
17.
go back to reference Zhou X, Hu W, Qin X. The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. Oncologist 2008; 13: 954–66PubMedCrossRef Zhou X, Hu W, Qin X. The role of complement in the mechanism of action of rituximab for B-cell lymphoma: implications for therapy. Oncologist 2008; 13: 954–66PubMedCrossRef
18.
go back to reference Byrd JC, Kitada S, Flinn IW, et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood 2002; 99: 1038–43PubMedCrossRef Byrd JC, Kitada S, Flinn IW, et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood 2002; 99: 1038–43PubMedCrossRef
19.
go back to reference Pedersen IM, Buhl AM, Klausen P, et al. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood 2002; 99: 1314–9PubMedCrossRef Pedersen IM, Buhl AM, Klausen P, et al. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood 2002; 99: 1314–9PubMedCrossRef
20.
go back to reference Teeling JL, Mackus WJ, Wiegman LJ, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 2006; 177: 362–71PubMed Teeling JL, Mackus WJ, Wiegman LJ, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 2006; 177: 362–71PubMed
21.
go back to reference Wilson WH. Chemotherapy sensitization by rituximab: experimental and clinical evidence. Semin Oncol 2000; 27Suppl. 12: 30–6PubMed Wilson WH. Chemotherapy sensitization by rituximab: experimental and clinical evidence. Semin Oncol 2000; 27Suppl. 12: 30–6PubMed
22.
go back to reference Stolz C, Schuler M. Molecular mechanisms of resistance to rituximab and pharmacologic strategies for its circumvention. Leuk Lymphoma 2009; 50: 873–85PubMedCrossRef Stolz C, Schuler M. Molecular mechanisms of resistance to rituximab and pharmacologic strategies for its circumvention. Leuk Lymphoma 2009; 50: 873–85PubMedCrossRef
23.
go back to reference Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgRIIIa gene. Blood 2002; 99: 754–8PubMedCrossRef Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgRIIIa gene. Blood 2002; 99: 754–8PubMedCrossRef
24.
go back to reference Dall'Ozzo S, Tartas S, Paintaud G, et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 2004; 64: 4664–9PubMedCrossRef Dall'Ozzo S, Tartas S, Paintaud G, et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res 2004; 64: 4664–9PubMedCrossRef
25.
go back to reference Hatjiharissi E, Xu L, Santos DD, et al. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the FcγRIIIa-158 V/V and V/F polymorphism. Blood 2007; 110: 2561–4PubMedCrossRef Hatjiharissi E, Xu L, Santos DD, et al. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the FcγRIIIa-158 V/V and V/F polymorphism. Blood 2007; 110: 2561–4PubMedCrossRef
26.
go back to reference Kim DH, Jung HD, Kim JG, et al. FCGR3A gene polymorphisms may correlate with response to frontline R-CHOP therapy for diffuse large B-cell lymphoma. Blood 2006; 108: 2720–5PubMedCrossRef Kim DH, Jung HD, Kim JG, et al. FCGR3A gene polymorphisms may correlate with response to frontline R-CHOP therapy for diffuse large B-cell lymphoma. Blood 2006; 108: 2720–5PubMedCrossRef
27.
go back to reference Racila E, Link BK, Weng WK, et al. A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin Cancer Res 2008; 14: 6697–703PubMedCrossRef Racila E, Link BK, Weng WK, et al. A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin Cancer Res 2008; 14: 6697–703PubMedCrossRef
28.
go back to reference van Meerten T, van Rijn RS, Hol S, et al. Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity. Clin Cancer Res 2006; 12: 4027–35PubMedCrossRef van Meerten T, van Rijn RS, Hol S, et al. Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity. Clin Cancer Res 2006; 12: 4027–35PubMedCrossRef
29.
go back to reference Golay J, Lazzari M, Facchinetti V, et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood 2001; 98: 3383–9PubMedCrossRef Golay J, Lazzari M, Facchinetti V, et al. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: further regulation by CD55 and CD59. Blood 2001; 98: 3383–9PubMedCrossRef
30.
go back to reference Weitzman J, Betancur M, Boissel L, et al. Variable contribution of monoclonal antibodies to ADCC in patients with chronic lymphocytic leukemia. Leuk Lymphoma 2009; 50: 1361–8PubMedCrossRef Weitzman J, Betancur M, Boissel L, et al. Variable contribution of monoclonal antibodies to ADCC in patients with chronic lymphocytic leukemia. Leuk Lymphoma 2009; 50: 1361–8PubMedCrossRef
31.
go back to reference Henry C, Deschamps M, Rohrlich PS, et al. Identification of an alternative CD20 transcript variant in B-cell malignancies coding for a novel protein associated to rituximab resistance. Blood 2010; 115: 2420–9PubMedCrossRef Henry C, Deschamps M, Rohrlich PS, et al. Identification of an alternative CD20 transcript variant in B-cell malignancies coding for a novel protein associated to rituximab resistance. Blood 2010; 115: 2420–9PubMedCrossRef
32.
go back to reference Maloney DG. Follicular NHL: from antibodies and vaccines to graft-versus-lymphoma effects. In: Hematology. Washington,DC: American Society of Hematology, 2007: 226–32 Maloney DG. Follicular NHL: from antibodies and vaccines to graft-versus-lymphoma effects. In: Hematology. Washington,DC: American Society of Hematology, 2007: 226–32
33.
go back to reference Robak T. Novel drugs for chronic lymphoid leukemias: mechanism of action and therapeutic activity. Curr Med Chem 2009; 16: 2212–34PubMedCrossRef Robak T. Novel drugs for chronic lymphoid leukemias: mechanism of action and therapeutic activity. Curr Med Chem 2009; 16: 2212–34PubMedCrossRef
34.
go back to reference Robak T. Ofatumumab, a human monoclonal antibody for lymphoid malignancies and autoimmune disorders. Curr Opin Mol Ther 2008; 10: 294–309PubMed Robak T. Ofatumumab, a human monoclonal antibody for lymphoid malignancies and autoimmune disorders. Curr Opin Mol Ther 2008; 10: 294–309PubMed
35.
go back to reference Lim SH, Beers SA, French RR, et al. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 2010; 95: 135–43PubMedCrossRef Lim SH, Beers SA, French RR, et al. Anti-CD20 monoclonal antibodies: historical and future perspectives. Haematologica 2010; 95: 135–43PubMedCrossRef
36.
go back to reference Ruuls SR, Lammerts van Bueren JJ, van de Winkel JG, et al. Novel human antibody therapeutics: the age of the Umabs. Biotechnol J 2008; 3: 1157–71PubMedCrossRef Ruuls SR, Lammerts van Bueren JJ, van de Winkel JG, et al. Novel human antibody therapeutics: the age of the Umabs. Biotechnol J 2008; 3: 1157–71PubMedCrossRef
37.
go back to reference Hutas G. Ocrelizumab, a humanized monoclonal antibody against CD20 for inflammatory disorders and B-cell malignancies. Curr Opin Investig Drugs 2008; 9: 1206–15PubMed Hutas G. Ocrelizumab, a humanized monoclonal antibody against CD20 for inflammatory disorders and B-cell malignancies. Curr Opin Investig Drugs 2008; 9: 1206–15PubMed
38.
go back to reference Robak T. GA-101, a third-generation, humanized and glyco-engineered anti-CD20 mAb for the treatment of B-cell lymphoid malignancies. Curr Opin Investig Drugs 2009; 10: 588–96PubMed Robak T. GA-101, a third-generation, humanized and glyco-engineered anti-CD20 mAb for the treatment of B-cell lymphoid malignancies. Curr Opin Investig Drugs 2009; 10: 588–96PubMed
39.
go back to reference van Meerten T, Hagenbeek A. CD20-targeted therapy: the next generation of antibodies. Semin Hematol 2010; 47: 199–210PubMedCrossRef van Meerten T, Hagenbeek A. CD20-targeted therapy: the next generation of antibodies. Semin Hematol 2010; 47: 199–210PubMedCrossRef
40.
go back to reference Beers SA, Chan CH, James S, et al. Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood 2008; 112: 4170–7PubMedCrossRef Beers SA, Chan CH, James S, et al. Type II (tositumomab) anti-CD20 monoclonal antibody out performs type I (rituximab-like) reagents in B-cell depletion regardless of complement activation. Blood 2008; 112: 4170–7PubMedCrossRef
41.
go back to reference Hammadi M, Pers JO, Berthou C, et al. A new approach to comparing anti-CD20 antibodies: importance of the lipid rafts in their lytic efficiency. Onco Targets Ther 2010; 3: 99–109PubMed Hammadi M, Pers JO, Berthou C, et al. A new approach to comparing anti-CD20 antibodies: importance of the lipid rafts in their lytic efficiency. Onco Targets Ther 2010; 3: 99–109PubMed
42.
go back to reference Coiffier B, Lepretre S, Pedersen LM, et al. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1-2 study. Blood 2008; 111: 1094–100PubMedCrossRef Coiffier B, Lepretre S, Pedersen LM, et al. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1-2 study. Blood 2008; 111: 1094–100PubMedCrossRef
43.
go back to reference Coiffier B, Losic N, Rønn BB, et al. Pharmacokinetics and pharmacokinetic/pharmacodynamic associations of ofatumumab, a human monoclonal CD20 antibody, in patients with elapsed or refractory chronic lymphocytic leukaemia: a phase 1-2 study. Br J Haematol 2010; 150: 58–71PubMed Coiffier B, Losic N, Rønn BB, et al. Pharmacokinetics and pharmacokinetic/pharmacodynamic associations of ofatumumab, a human monoclonal CD20 antibody, in patients with elapsed or refractory chronic lymphocytic leukaemia: a phase 1-2 study. Br J Haematol 2010; 150: 58–71PubMed
44.
go back to reference Wierda WG, Kipps TJ, Mayer J, et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 1749–55PubMedCrossRef Wierda WG, Kipps TJ, Mayer J, et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J Clin Oncol 2010; 28: 1749–55PubMedCrossRef
45.
go back to reference Hagenbeek A, Gadeberg O, Johnson P, et al. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase I/II trial. Blood 2008; 111: 5486–95PubMedCrossRef Hagenbeek A, Gadeberg O, Johnson P, et al. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase I/II trial. Blood 2008; 111: 5486–95PubMedCrossRef
46.
go back to reference Hagenbeek A, Fayad L, Delwail V, et al. Evaluation of ofatumumab, a novel human CD20 monoclonal antibody, as single agent therapy in rituximab-refractory follicular lymphoma [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 935 Hagenbeek A, Fayad L, Delwail V, et al. Evaluation of ofatumumab, a novel human CD20 monoclonal antibody, as single agent therapy in rituximab-refractory follicular lymphoma [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 935
47.
go back to reference Salles GA, Morschhauser F, Cartron G, et al. A phase I/II study of RO5072759 (GA101) in patients with relapsed/refractory CD20+ malignant disease [abstract]. Blood (ASH Annual Meeting Abstracts) 2008; 93: 234 Salles GA, Morschhauser F, Cartron G, et al. A phase I/II study of RO5072759 (GA101) in patients with relapsed/refractory CD20+ malignant disease [abstract]. Blood (ASH Annual Meeting Abstracts) 2008; 93: 234
48.
go back to reference Morschhauser F, Cartron G, Lamy T, et al. Phase I study of RO5072759 (GA101) in relapsed/refractory chronic lymphocytic leukemia [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 884 Morschhauser F, Cartron G, Lamy T, et al. Phase I study of RO5072759 (GA101) in relapsed/refractory chronic lymphocytic leukemia [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 884
49.
go back to reference Salles G, Morschhauser F, Lamy T, et al. Phase I study of RO5072759 (GA101) in patients with relapsed/refractory CD20+ non-Hodgkin lymphoma (NHL) [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 1704 Salles G, Morschhauser F, Lamy T, et al. Phase I study of RO5072759 (GA101) in patients with relapsed/refractory CD20+ non-Hodgkin lymphoma (NHL) [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 1704
50.
go back to reference Morschhauser F, Leonard JP, Fayad L, et al. Humanized anti-CD20 antibody, veltuzumab, in refractory/recurrent non-Hodgkin's lymphoma: phase I/II results. J Clin Oncol 2009; 27: 3346–53PubMedCrossRef Morschhauser F, Leonard JP, Fayad L, et al. Humanized anti-CD20 antibody, veltuzumab, in refractory/recurrent non-Hodgkin's lymphoma: phase I/II results. J Clin Oncol 2009; 27: 3346–53PubMedCrossRef
51.
go back to reference Negrea OG, Allen SL, Rai KR, et al. Subcutaneous injections of low doses of humanized anti-CD20 veltuzumab for treatment of indolent B-cell malignancies [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 3757 Negrea OG, Allen SL, Rai KR, et al. Subcutaneous injections of low doses of humanized anti-CD20 veltuzumab for treatment of indolent B-cell malignancies [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 3757
52.
go back to reference Morschhauser F, Marlton P, Vitolo U, et al. Results of a phase I/II study of ocrelizumab, a fully humanized anti-CD20 mAb, in patients with relapsed/refractory follicular lymphoma. Ann Oncol 2010; 21: 1870–6PubMedCrossRef Morschhauser F, Marlton P, Vitolo U, et al. Results of a phase I/II study of ocrelizumab, a fully humanized anti-CD20 mAb, in patients with relapsed/refractory follicular lymphoma. Ann Oncol 2010; 21: 1870–6PubMedCrossRef
53.
go back to reference Friedberg JW, Vose JM, Kahl BS, et al. A phase I study of PRO131921, a novel anti-CD20 monoclonal antibody in patients with relapsed/refractory CD20+ indolent NHL: correlation between clinical responses and AUC pharmacokinetics [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 3742 Friedberg JW, Vose JM, Kahl BS, et al. A phase I study of PRO131921, a novel anti-CD20 monoclonal antibody in patients with relapsed/refractory CD20+ indolent NHL: correlation between clinical responses and AUC pharmacokinetics [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 3742
54.
go back to reference Robak T. Ofatumumab for the treatment of chronic lymphocytic leukemia. Therapy 2009; 6: 577–87CrossRef Robak T. Ofatumumab for the treatment of chronic lymphocytic leukemia. Therapy 2009; 6: 577–87CrossRef
55.
go back to reference Beum PV, Lindorfer MA, Beurskens F, et al. Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis. J Immunol 2008; 181: 822–32PubMed Beum PV, Lindorfer MA, Beurskens F, et al. Complement activation on B lymphocytes opsonized with rituximab or ofatumumab produces substantial changes in membrane structure preceding cell lysis. J Immunol 2008; 181: 822–32PubMed
56.
go back to reference Du J, Yang H, Guo Y, et al. Structure of the Fab fragment of therapeutic antibody ofatumumab provides insights into the recognition mechanism with CD20. Mol Immunol 2009; 46: 2419–23PubMedCrossRef Du J, Yang H, Guo Y, et al. Structure of the Fab fragment of therapeutic antibody ofatumumab provides insights into the recognition mechanism with CD20. Mol Immunol 2009; 46: 2419–23PubMedCrossRef
57.
go back to reference Teeling JL, French RR, Cragg MS, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 2004; 104: 1793–800PubMedCrossRef Teeling JL, French RR, Cragg MS, et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. Blood 2004; 104: 1793–800PubMedCrossRef
58.
go back to reference Cheson BD. Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol 2010; 28: 3525–30PubMedCrossRef Cheson BD. Ofatumumab, a novel anti-CD20 monoclonal antibody for the treatment of B-cell malignancies. J Clin Oncol 2010; 28: 3525–30PubMedCrossRef
59.
go back to reference Taylor RP, Beum PV, Stukenberg TP, et al. Complement (C) activation followed by penetration of the membrane attack complex (MAC) on B cells opsonized with CD20 mabs allows for calcium influx which induces streamers: generalization of streaming to include other mabs and target cells [abstract]. Blood (ASH Annual Meeting Abstracts) 2008; 112: 1577 Taylor RP, Beum PV, Stukenberg TP, et al. Complement (C) activation followed by penetration of the membrane attack complex (MAC) on B cells opsonized with CD20 mabs allows for calcium influx which induces streamers: generalization of streaming to include other mabs and target cells [abstract]. Blood (ASH Annual Meeting Abstracts) 2008; 112: 1577
60.
go back to reference Wierda WG, Kipps TJ, Dürig J, et al. Ofatumumab combined with fludarabine and cyclophosphamide (O-FC) shows high activity in patients with previously untreated chronic lymphocytic leukemia (CLL): results from a randomized, multicenter, international, two-dose, parallel group, phase II trial [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 207 Wierda WG, Kipps TJ, Dürig J, et al. Ofatumumab combined with fludarabine and cyclophosphamide (O-FC) shows high activity in patients with previously untreated chronic lymphocytic leukemia (CLL): results from a randomized, multicenter, international, two-dose, parallel group, phase II trial [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 207
61.
go back to reference Robak T, Osterborg A, Kipps TJ, et al. High response rats and clinical improvements with single-agent ofatumumab in fludarabine: refractory chronic lymphocytic leukemia (CLL) also refractory to alemtuzumab or with bulky lymphadenopathy [abstract 9.7]. Haematologica 2009; 94Suppl. 3: 81 Robak T, Osterborg A, Kipps TJ, et al. High response rats and clinical improvements with single-agent ofatumumab in fludarabine: refractory chronic lymphocytic leukemia (CLL) also refractory to alemtuzumab or with bulky lymphadenopathy [abstract 9.7]. Haematologica 2009; 94Suppl. 3: 81
62.
go back to reference Wierda WG, Ronn BB, Jewell RC, et al. Circulating ofatumumab concentrations correlate with response and progression-free survivalin fludarabine-refractory chronic lymphocytic leukemia [abstract 10.28]. Haematologica 2009; 94Suppl. 3: 92 Wierda WG, Ronn BB, Jewell RC, et al. Circulating ofatumumab concentrations correlate with response and progression-free survivalin fludarabine-refractory chronic lymphocytic leukemia [abstract 10.28]. Haematologica 2009; 94Suppl. 3: 92
63.
go back to reference Milani C, Castillo J. Veltuzumab, an anti-CD20 mAb for the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and immune throm-bocytopenic purpura. Curr Opin Mol Ther 2009; 11: 200–7PubMed Milani C, Castillo J. Veltuzumab, an anti-CD20 mAb for the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and immune throm-bocytopenic purpura. Curr Opin Mol Ther 2009; 11: 200–7PubMed
64.
go back to reference Goldenberg DM, Rossi EA, Stein R, et al. Properties and structure-function relationships of veltuzumab (hA20), a humanized anti-CD20 monoclonal antibody. Blood 2009; 113: 1062–70PubMedCrossRef Goldenberg DM, Rossi EA, Stein R, et al. Properties and structure-function relationships of veltuzumab (hA20), a humanized anti-CD20 monoclonal antibody. Blood 2009; 113: 1062–70PubMedCrossRef
65.
go back to reference Stein R, Qu Z, Chen S, et al. Characterization of a new humanized anti-CD20 monoclonal antibody, IMMU-106, and its use in combination with the humanized anti-CD22 antibody, epratuzumab, for the therapy of non-Hodgkin's lymphoma. Clin Cancer Res 2004; 10: 2868–78PubMedCrossRef Stein R, Qu Z, Chen S, et al. Characterization of a new humanized anti-CD20 monoclonal antibody, IMMU-106, and its use in combination with the humanized anti-CD22 antibody, epratuzumab, for the therapy of non-Hodgkin's lymphoma. Clin Cancer Res 2004; 10: 2868–78PubMedCrossRef
66.
go back to reference Goldenberg DM, Morschhauser F, Wegener WA. Veltuzumab (humanized anti-CD20 monoclonal antibody): characterization, current clinical results, and future prospects. Leuk Lymphoma 2010; 51: 747–55PubMedCrossRef Goldenberg DM, Morschhauser F, Wegener WA. Veltuzumab (humanized anti-CD20 monoclonal antibody): characterization, current clinical results, and future prospects. Leuk Lymphoma 2010; 51: 747–55PubMedCrossRef
67.
go back to reference Kausar F, Mustafa K, Sweis G, et al. Ocrelizumab: a step forward in the evolution of B-cell therapy. Expert Opin Biol Ther 2009; 9: 889–95PubMedCrossRef Kausar F, Mustafa K, Sweis G, et al. Ocrelizumab: a step forward in the evolution of B-cell therapy. Expert Opin Biol Ther 2009; 9: 889–95PubMedCrossRef
68.
go back to reference Genovese MC, Kaine JL, Lowenstein MB, et al., ACTION Study Group. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum 2008; 58: 2652–61PubMedCrossRef Genovese MC, Kaine JL, Lowenstein MB, et al., ACTION Study Group. Ocrelizumab, a humanized anti-CD20 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I/II randomized, blinded, placebo-controlled, dose-ranging study. Arthritis Rheum 2008; 58: 2652–61PubMedCrossRef
69.
go back to reference Robak T. Novel monoclonal antibodies for the treatment of chronic lymphocytic leukemia. Curr Cancer Drug Targets 2008; 8: 156–71PubMedCrossRef Robak T. Novel monoclonal antibodies for the treatment of chronic lymphocytic leukemia. Curr Cancer Drug Targets 2008; 8: 156–71PubMedCrossRef
70.
go back to reference Martin P, Furman RR, Ruan J, et al. Novel and engineered anti-B-cell monoclonal antibodies for non-Hodgkin's lymphoma. Semin Hematol 2008; 45: 126–32PubMedCrossRef Martin P, Furman RR, Ruan J, et al. Novel and engineered anti-B-cell monoclonal antibodies for non-Hodgkin's lymphoma. Semin Hematol 2008; 45: 126–32PubMedCrossRef
71.
go back to reference Campbell BJ, Barrett AMA, Ondek MD, et al. AME-133: A next-generation anti-CD20 engineered for enhanced killer function [abstract]. J Immunother 2004; 27: 52 Campbell BJ, Barrett AMA, Ondek MD, et al. AME-133: A next-generation anti-CD20 engineered for enhanced killer function [abstract]. J Immunother 2004; 27: 52
72.
go back to reference Bowles JA, Wang SY, Link BK et al. Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood 2006; 108: 2648–54PubMedCrossRef Bowles JA, Wang SY, Link BK et al. Anti-CD20 monoclonal antibody with enhanced affinity for CD16 activates NK cells at lower concentrations and more effectively than rituximab. Blood 2006; 108: 2648–54PubMedCrossRef
73.
go back to reference Bello C, Eduardo M. Monoclonal antibodies for B-cell lymphomas: rituximab and beyond. In: Hematology. Washington,DC: American Society of Hematology, 2007: 233–42 Bello C, Eduardo M. Monoclonal antibodies for B-cell lymphomas: rituximab and beyond. In: Hematology. Washington,DC: American Society of Hematology, 2007: 233–42
75.
go back to reference Safety and efficacy study of an anti-CD20 monoclonal antibody (AME-133v) to treat non-Hodgkin's lymphoma [online]. Available from URL: http://ClinicalTrials.gov [Accessed 2009 Jun 3] Safety and efficacy study of an anti-CD20 monoclonal antibody (AME-133v) to treat non-Hodgkin's lymphoma [online]. Available from URL: http://​ClinicalTrials.​gov [Accessed 2009 Jun 3]
76.
go back to reference Umana P, Moessner E, Bruenker P, et al. Novel 3rd generation humanized type II CD20 antibody with glycoengineered Fc and fodified elbow hinge for enhanced ADCC and superior apoptosis induction [abstract]. Blood (ASH Annual Meeting Abstracts) 2006; 108: 22 Umana P, Moessner E, Bruenker P, et al. Novel 3rd generation humanized type II CD20 antibody with glycoengineered Fc and fodified elbow hinge for enhanced ADCC and superior apoptosis induction [abstract]. Blood (ASH Annual Meeting Abstracts) 2006; 108: 22
77.
go back to reference Mössner E, Brünker P, Moser S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 2010; 115: 4393–402PubMedCrossRef Mössner E, Brünker P, Moser S, et al. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 2010; 115: 4393–402PubMedCrossRef
78.
go back to reference Umana P, Ekkehard M, Peter B, et al. GA101, a novel humanized type IICD20 antibody with glycoengineered Fc and enhanced cell death induction, exhibits superior anti-tumor efficacy and superior tissue B cell depletion in vivo [abstract]. Blood (ASH Annual Meeting Abstracts) 2007; 110: 2348 Umana P, Ekkehard M, Peter B, et al. GA101, a novel humanized type IICD20 antibody with glycoengineered Fc and enhanced cell death induction, exhibits superior anti-tumor efficacy and superior tissue B cell depletion in vivo [abstract]. Blood (ASH Annual Meeting Abstracts) 2007; 110: 2348
79.
go back to reference Friess T, Gerdes C, Nopora A, et al. GA101, a novel humanized type II CD20 antibody with glycoengineered Fc and enhanced cell death induction, mediates superior efficacy in a variety of NHL xenograft models in comparison to rituximab [abstract]. Blood (ASH Annual Meeting Abstracts) 2007; 110: 2338 Friess T, Gerdes C, Nopora A, et al. GA101, a novel humanized type II CD20 antibody with glycoengineered Fc and enhanced cell death induction, mediates superior efficacy in a variety of NHL xenograft models in comparison to rituximab [abstract]. Blood (ASH Annual Meeting Abstracts) 2007; 110: 2338
80.
go back to reference Niederfellner GJ, Lammens A, Schwaiger M, et al. Crystal structure analysis reveals that the novel type II anti-CD20 antibody GA101 interacts with a similar epitope as rituximab and ocrelizumab but in a fundamentally different way [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 3726 Niederfellner GJ, Lammens A, Schwaiger M, et al. Crystal structure analysis reveals that the novel type II anti-CD20 antibody GA101 interacts with a similar epitope as rituximab and ocrelizumab but in a fundamentally different way [abstract]. Blood (ASH Annual Meeting Abstracts) 2009; 114: 3726
81.
go back to reference Robak T, Robak P, Smolewski P. TRU-016, a humanized anti-CD37 IgG fusion protein for the potential treatment of B-cell malignancies. Curr Opin Investig Drugs 2009; 10: 1383–90PubMed Robak T, Robak P, Smolewski P. TRU-016, a humanized anti-CD37 IgG fusion protein for the potential treatment of B-cell malignancies. Curr Opin Investig Drugs 2009; 10: 1383–90PubMed
82.
go back to reference Hayden-Ledbetter M, Magaletti D, Mohler K, et al. CD16-mediated antibody dependent cellular cytotoxicity is required for B cell depletion by a small modular ImmunoPharmaceutical specific for CD20 [abstract]. Blood (ASH Annual Meeting Abstracts) 2003; 102: 2388 Hayden-Ledbetter M, Magaletti D, Mohler K, et al. CD16-mediated antibody dependent cellular cytotoxicity is required for B cell depletion by a small modular ImmunoPharmaceutical specific for CD20 [abstract]. Blood (ASH Annual Meeting Abstracts) 2003; 102: 2388
83.
go back to reference Barone D, Burge DJ, Baum P, et al. Prolonged depletion of circulating B cells in cynomolgus monkeys after a single dose of TRU-015, a novel CD20 directed therapeutic. Ann Rheum Dis 2005; 64Suppl. 3: 159–60 Barone D, Burge DJ, Baum P, et al. Prolonged depletion of circulating B cells in cynomolgus monkeys after a single dose of TRU-015, a novel CD20 directed therapeutic. Ann Rheum Dis 2005; 64Suppl. 3: 159–60
84.
go back to reference Burge D, Martin R, Wallace D, et al. Safety and pharmacodynamics of repeat administration of TRU-015, a CD20-directed SMIP(TM) therapeutic, in subjects with rheumatoid arthritis. Arthritis Rheum 2007; 56(9 Suppl.): S168–9 Burge D, Martin R, Wallace D, et al. Safety and pharmacodynamics of repeat administration of TRU-015, a CD20-directed SMIP(TM) therapeutic, in subjects with rheumatoid arthritis. Arthritis Rheum 2007; 56(9 Suppl.): S168–9
85.
go back to reference Barone D. TRU-015, a novel CD20-directed biologic therapy, demonstrates significant anti-tumor activity in human tumor xenograft models [abstract]. Proc Am Soc Clin Oncol 2005; 24: 2549 Barone D. TRU-015, a novel CD20-directed biologic therapy, demonstrates significant anti-tumor activity in human tumor xenograft models [abstract]. Proc Am Soc Clin Oncol 2005; 24: 2549
86.
go back to reference Hayden-Ledbetter MS, Cerveny CG, Espling E, et al. CD20-directed small modular immunopharmaceutical, TRU-015, depletes normal and malignant B cells. Clin Cancer Res 2009; 15: 2739–46PubMedCrossRef Hayden-Ledbetter MS, Cerveny CG, Espling E, et al. CD20-directed small modular immunopharmaceutical, TRU-015, depletes normal and malignant B cells. Clin Cancer Res 2009; 15: 2739–46PubMedCrossRef
87.
go back to reference Rubbert-Roth A. TRU-015, a fusion protein derived from an anti-CD20 antibody, for the treatment of rheumatoid arthritis. Curr Opin Mol Ther 2010; 12: 115–23PubMed Rubbert-Roth A. TRU-015, a fusion protein derived from an anti-CD20 antibody, for the treatment of rheumatoid arthritis. Curr Opin Mol Ther 2010; 12: 115–23PubMed
88.
go back to reference Burge DJ, Bookbinder SA, Kivitz AJ, et al. Pharmacokinetic and pharmaco-dynamic properties of TRU-015, a CD20-directed small modular immunopharmaceutical protein therapeutic, in patients with rheumatoid arthritis: a phase I, open-label, dose-escalation clinical study. Clin Ther 2008; 30: 1806–16PubMedCrossRef Burge DJ, Bookbinder SA, Kivitz AJ, et al. Pharmacokinetic and pharmaco-dynamic properties of TRU-015, a CD20-directed small modular immunopharmaceutical protein therapeutic, in patients with rheumatoid arthritis: a phase I, open-label, dose-escalation clinical study. Clin Ther 2008; 30: 1806–16PubMedCrossRef
Metadata
Title
New Anti-CD20 Monoclonal Antibodies for the Treatment of B-Cell Lymphoid Malignancies
Authors
Professor Tadeusz Robak
Ewa Robak
Publication date
01-02-2011
Publisher
Springer International Publishing
Published in
BioDrugs / Issue 1/2011
Print ISSN: 1173-8804
Electronic ISSN: 1179-190X
DOI
https://doi.org/10.2165/11539590-000000000-00000

Other articles of this Issue 1/2011

BioDrugs 1/2011 Go to the issue