Skip to main content
Top
Published in: CNS Drugs 10/2002

01-10-2002 | Review Article

Basic Pharmacology of Valproate

A Review After 35 Years of Clinical Use for the Treatment of Epilepsy

Author: Dr Wolfgang Löscher

Published in: CNS Drugs | Issue 10/2002

Login to get access

Abstract

Since its first marketing as an antiepileptic drug (AED) 35 years ago in France, valproate has become established worldwide as one of the most widely used AEDs in the treatment of both generalised and partial seizures in adults and children. The broad spectrum of antiepileptic efficacy of valproate is reflected in preclinical in vivo and in vitro models, including a variety of animal models of seizures or epilepsy.
There is no single mechanism of action of valproate that can completely account for the numerous effects of the drug on neuronal tissue and its broad clinical activity in epilepsy and other brain diseases. In view of the diverse molecular and cellular events that underlie different seizure types, the combination of several neurochemical and neurophysiological mechanisms in a single drug molecule might explain the broad antiepileptic efficacy of valproate. Furthermore, by acting on diverse regional targets thought to be involved in the generation and propagation of seizures, valproate may antagonise epileptic activity at several steps of its organisation.
There is now ample experimental evidence that valproate increases turnover of γ-aminobutyric acid (GABA) and thereby potentiates GABAergic functions in some specific brain regions thought to be involved in the control of seizure generation and propagation. Furthermore, the effect of valproate on neuronal excitation mediated by the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors might be important for its anticonvulsant effects. Acting to alter the balance of inhibition and excitation through multiple mechanisms is clearly an advantage for valproate and probably contributes to its broad spectrum of clinical effects.
Although the GABAergic potentiation and glutamate/NMDA inhibition could be a likely explanation for the anticonvulsant action on focal and generalised convulsive seizures, they do not explain the effect of valproate on nonconvulsive seizures, such as absences. In this respect, the reduction of γ-hydroxybutyrate (GHB) release reported for valproate could be of interest, because GHB has been suggested to play a critical role in the modulation of absence seizures.
Although it is often proposed that blockade of voltage-dependent sodium currents is an important mechanism of antiepileptic action of valproate, the exact role played by this mechanism of action at therapeutically relevant concentrations in the mammalian brain is not clearly elucidated.
By the experimental observations summarised in this review, most clinical effects of valproate can be explained, although much remains to be learned at a number of different levels about the mechanisms of action of valproate. In view of the advances in molecular neurobiology and neuroscience, future studies will undoubtedly further our understanding of the mechanisms of action of valproate.
Literature
1.
go back to reference Löscher W, editor. Valproate. Basel: Birkhäuser, 1999 Löscher W, editor. Valproate. Basel: Birkhäuser, 1999
2.
go back to reference Löscher W. Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol 1999; 58: 31–59PubMedCrossRef Löscher W. Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Prog Neurobiol 1999; 58: 31–59PubMedCrossRef
3.
go back to reference Burton BS. On the propyl derivatives and decomposition products of ethylacetoacetate. Am Chem J 1882; 3: 385–95 Burton BS. On the propyl derivatives and decomposition products of ethylacetoacetate. Am Chem J 1882; 3: 385–95
4.
go back to reference Meunier H, Carraz G, Meunier Y, et al. Propriétés pharmacodynamiques de l’acide n-dipropylacétique. 1er mémoire: propriétés antiépileptiques. Thérapie 1963; 18: 435–8 Meunier H, Carraz G, Meunier Y, et al. Propriétés pharmacodynamiques de l’acide n-dipropylacétique. 1er mémoire: propriétés antiépileptiques. Thérapie 1963; 18: 435–8
5.
go back to reference Löscher W. The discovery of valproate. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 1–3CrossRef Löscher W. The discovery of valproate. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 1–3CrossRef
6.
go back to reference Carraz G, Fau R, Chateau R, et al. Communication à propos des premiers essais cliniques sur l’activité anti-épileptique de l’acide n-dipropylacétiques (sel de Na). Ann Med Psychol (Paris) 1964; 122: 577–85 Carraz G, Fau R, Chateau R, et al. Communication à propos des premiers essais cliniques sur l’activité anti-épileptique de l’acide n-dipropylacétiques (sel de Na). Ann Med Psychol (Paris) 1964; 122: 577–85
7.
go back to reference Mattson RH, Cramer JA, Collins JF. A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults: The Department of Veterans Affairs Epilepsy Cooperative Study No. 264 Group. N Engl J Med 1992; 327: 765–1CrossRef Mattson RH, Cramer JA, Collins JF. A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults: The Department of Veterans Affairs Epilepsy Cooperative Study No. 264 Group. N Engl J Med 1992; 327: 765–1CrossRef
8.
go back to reference Richens A, Davidson DL, Cartlidge NE, et al. A multicentre comparative trial of sodium valproate and carbamazepine in adult onset epilepsy: the Adult EPITEG Collaborative Group. J Neurol Neurosurg Psychiatry 1994; 57: 682–7PubMedCrossRef Richens A, Davidson DL, Cartlidge NE, et al. A multicentre comparative trial of sodium valproate and carbamazepine in adult onset epilepsy: the Adult EPITEG Collaborative Group. J Neurol Neurosurg Psychiatry 1994; 57: 682–7PubMedCrossRef
9.
go back to reference Verity CM, Hosking G, Easter DJ. A multicentre comparative trial of sodium valproate and carbamazepine in paediatric epilepsy: the Paediatric EPITEG Collaborative Group. Dev Med Child Neurol 1995; 37: 97–108PubMedCrossRef Verity CM, Hosking G, Easter DJ. A multicentre comparative trial of sodium valproate and carbamazepine in paediatric epilepsy: the Paediatric EPITEG Collaborative Group. Dev Med Child Neurol 1995; 37: 97–108PubMedCrossRef
10.
go back to reference Heller AJ, Chesterman P, Elwes RD, et al. Phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed adult epilepsy: a randomised comparative monotherapy trial. J Neurol Neurosurg Psychiatry 1995; 58: 44–50PubMedCrossRef Heller AJ, Chesterman P, Elwes RD, et al. Phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed adult epilepsy: a randomised comparative monotherapy trial. J Neurol Neurosurg Psychiatry 1995; 58: 44–50PubMedCrossRef
11.
go back to reference de Silva M, Macardle B, Mcgowan M, et al. Randomised comparative monotherapy trial of phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed childhood epilepsy. Lancet 1996; 347: 709–13PubMedCrossRef de Silva M, Macardle B, Mcgowan M, et al. Randomised comparative monotherapy trial of phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed childhood epilepsy. Lancet 1996; 347: 709–13PubMedCrossRef
12.
go back to reference Brodie MJ, Mumford JP. Double-blind substitution of vigabatrin and valproate in carbamazepine-resistant partial epilepsy: 012 Study Group. Epilepsy Res 1999; 34: 199–205PubMedCrossRef Brodie MJ, Mumford JP. Double-blind substitution of vigabatrin and valproate in carbamazepine-resistant partial epilepsy: 012 Study Group. Epilepsy Res 1999; 34: 199–205PubMedCrossRef
13.
go back to reference Christe W, Kramer G, Vigonius U, et al. A double-blind controlled clinical trial: oxcarbazepine versus sodium valproate in adults with newly diagnosed epilepsy. Epilepsy Res 1997; 26: 451–60PubMedCrossRef Christe W, Kramer G, Vigonius U, et al. A double-blind controlled clinical trial: oxcarbazepine versus sodium valproate in adults with newly diagnosed epilepsy. Epilepsy Res 1997; 26: 451–60PubMedCrossRef
14.
go back to reference Fountain NB, Dreifuss FE. The future of valproate. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 265–76CrossRef Fountain NB, Dreifuss FE. The future of valproate. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 265–76CrossRef
15.
go back to reference Davis R, Peters DH, Mctavish D. Valproic acid: a reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1994; 47: 332–72PubMedCrossRef Davis R, Peters DH, Mctavish D. Valproic acid: a reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1994; 47: 332–72PubMedCrossRef
16.
go back to reference Sarisjulis N, Dulac O. Valproate in the treatment of epilepsies in children. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 131–52CrossRef Sarisjulis N, Dulac O. Valproate in the treatment of epilepsies in children. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 131–52CrossRef
17.
go back to reference Schmidt D, Bourgeois B. A risk-benefit assessment of therapies for Lennox-Gastaut syndrome. Drug Saf 2000; 22: 467–77PubMedCrossRef Schmidt D, Bourgeois B. A risk-benefit assessment of therapies for Lennox-Gastaut syndrome. Drug Saf 2000; 22: 467–77PubMedCrossRef
18.
go back to reference Vassella F, Rudeberg A, Da Silva V, et al. Double-blind study on the anti-convulsive effect of phenobarbital and valproate in the Lennox syndrome [in German]. Schweiz Med Wochenschr 1978; 108: 713–6PubMed Vassella F, Rudeberg A, Da Silva V, et al. Double-blind study on the anti-convulsive effect of phenobarbital and valproate in the Lennox syndrome [in German]. Schweiz Med Wochenschr 1978; 108: 713–6PubMed
19.
go back to reference Dyken PR, DuRant RH, Minden DB, et al. Short term effects of valproate on infantile spasms. Pediatr Neurol 1985; 1: 34–7PubMedCrossRef Dyken PR, DuRant RH, Minden DB, et al. Short term effects of valproate on infantile spasms. Pediatr Neurol 1985; 1: 34–7PubMedCrossRef
20.
go back to reference Schmidt D. Adverse effects and interactions with other drugs. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 223–64CrossRef Schmidt D. Adverse effects and interactions with other drugs. In: Löscher W, editor. Valproate. Basel: Birkhäuser, 1999: 223–64CrossRef
21.
go back to reference Cotariu D, Zaidman JL, Evans S. Neurophysiological and biochemical changes evoked by valproic acid in the central nervous system. Progr Neurobiol 1990; 34: 343–54CrossRef Cotariu D, Zaidman JL, Evans S. Neurophysiological and biochemical changes evoked by valproic acid in the central nervous system. Progr Neurobiol 1990; 34: 343–54CrossRef
22.
23.
go back to reference Perucca E. Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 2002; 16(10): 695–714PubMedCrossRef Perucca E. Pharmacological and therapeutic properties of valproate: a summary after 35 years of clinical experience. CNS Drugs 2002; 16(10): 695–714PubMedCrossRef
25.
26.
go back to reference Proposal for revised clinical and electroencephalographic classification of epileptic seizures: the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1981; 22: 489–501 Proposal for revised clinical and electroencephalographic classification of epileptic seizures: the Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1981; 22: 489–501
27.
go back to reference Annegers JF, Rocca WA, Hauser WA. Causes of epilepsy: contributions of the Rochester Epidemiology Project. Mayo Clin Proc 1996; 71: 570–5PubMedCrossRef Annegers JF, Rocca WA, Hauser WA. Causes of epilepsy: contributions of the Rochester Epidemiology Project. Mayo Clin Proc 1996; 71: 570–5PubMedCrossRef
28.
go back to reference Löscher W. Animal models of epilepsy and epileptic seizures. In: Eadie MJ, Vajda F, editors. Antiepileptic drugs: handbook of experimental pharmacology. Berlin: Springer, 1999: 19–62 Löscher W. Animal models of epilepsy and epileptic seizures. In: Eadie MJ, Vajda F, editors. Antiepileptic drugs: handbook of experimental pharmacology. Berlin: Springer, 1999: 19–62
29.
30.
go back to reference Löscher W, Rogawski MA. Epilepsy. In: Lodge D, Danysz W, Parsons CG, editors. Ionotropic glutamate receptors as therapeutic targets. Johnson City (TN): Graham Publ., 2002: 91–132 Löscher W, Rogawski MA. Epilepsy. In: Lodge D, Danysz W, Parsons CG, editors. Ionotropic glutamate receptors as therapeutic targets. Johnson City (TN): Graham Publ., 2002: 91–132
31.
go back to reference Löscher W. Valproic acid. In: Frey H-H, Janz D, editors. Anti-epileptic drugs. Berlin: Springer Verlag, 1985: 507–36 Löscher W. Valproic acid. In: Frey H-H, Janz D, editors. Anti-epileptic drugs. Berlin: Springer Verlag, 1985: 507–36
32.
go back to reference Hönack D, Löscher W. Intravenous valproate: onset and duration of anticonvulsant activity against a series of electroconvulsions in comparison with diazepam and phenytoin. Epilepsy Res 1992; 13: 215–21PubMedCrossRef Hönack D, Löscher W. Intravenous valproate: onset and duration of anticonvulsant activity against a series of electroconvulsions in comparison with diazepam and phenytoin. Epilepsy Res 1992; 13: 215–21PubMedCrossRef
33.
go back to reference Löscher W, Fisher JE, Nau H, et al. Marked increase in anticonvulsant activity but decrease in wet-dog shake behaviour during short-term treatment of amygdala-kindled rats with valproic acid. Eur J Pharmacol 1988; 150: 221–32PubMedCrossRef Löscher W, Fisher JE, Nau H, et al. Marked increase in anticonvulsant activity but decrease in wet-dog shake behaviour during short-term treatment of amygdala-kindled rats with valproic acid. Eur J Pharmacol 1988; 150: 221–32PubMedCrossRef
34.
go back to reference Löscher W, Fisher JE, Nau H, et al. Valproic acid in amygdalakindled rats: alterations in anticonvulsant efficacy, adverse effects and drug and metabolite levels in various brain regions during chronic treatment. J Pharmacol Exp Ther 1989; 250: 1067–78PubMed Löscher W, Fisher JE, Nau H, et al. Valproic acid in amygdalakindled rats: alterations in anticonvulsant efficacy, adverse effects and drug and metabolite levels in various brain regions during chronic treatment. J Pharmacol Exp Ther 1989; 250: 1067–78PubMed
35.
go back to reference Löscher W, Hönack D. Comparison of anticonvulsant efficacy of valproate during prolonged treatment with one and three daily doses or continuous (“controlled release”) administration in a model of generalized seizures in rats. Epilepsia 1995; 36: 929–37PubMedCrossRef Löscher W, Hönack D. Comparison of anticonvulsant efficacy of valproate during prolonged treatment with one and three daily doses or continuous (“controlled release”) administration in a model of generalized seizures in rats. Epilepsia 1995; 36: 929–37PubMedCrossRef
36.
go back to reference Altrup U, Gerlach G, Reith H, et al. Effects of valproate in a model nervous system (buccal ganglia of Helix pomatia). I: antiepileptic actions. Epilepsia 1992; 33: 743–52 Altrup U, Gerlach G, Reith H, et al. Effects of valproate in a model nervous system (buccal ganglia of Helix pomatia). I: antiepileptic actions. Epilepsia 1992; 33: 743–52
37.
go back to reference Wamil AW, Löscher W, Mclean MJ. Trans-2-en-valproic acid limits action potential firing frequency in mouse central neurons in cell culture. J Pharmacol Exp Ther 1997; 280: 1349–56PubMed Wamil AW, Löscher W, Mclean MJ. Trans-2-en-valproic acid limits action potential firing frequency in mouse central neurons in cell culture. J Pharmacol Exp Ther 1997; 280: 1349–56PubMed
38.
go back to reference Silver JM, Shin C, McNamara JO. Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilepsy. Ann Neurol 1991; 29: 356–63PubMedCrossRef Silver JM, Shin C, McNamara JO. Antiepileptogenic effects of conventional anticonvulsants in the kindling model of epilepsy. Ann Neurol 1991; 29: 356–63PubMedCrossRef
39.
go back to reference Bolanos AR, Sarkisian M, Yang Y, et al. Comparison of valproate and phenobarbital treatment after status epilepticus in rats. Neurology 1998; 51: 41–8PubMedCrossRef Bolanos AR, Sarkisian M, Yang Y, et al. Comparison of valproate and phenobarbital treatment after status epilepticus in rats. Neurology 1998; 51: 41–8PubMedCrossRef
40.
go back to reference Temkin NR, Dikmen SS, Anderson GD, et al. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg 1999; 91: 593–600PubMedCrossRef Temkin NR, Dikmen SS, Anderson GD, et al. Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg 1999; 91: 593–600PubMedCrossRef
41.
go back to reference Hashimoto R, Hough C, Nakazawa T, et al. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem 2002; 80: 589–97PubMedCrossRef Hashimoto R, Hough C, Nakazawa T, et al. Lithium protection against glutamate excitotoxicity in rat cerebral cortical neurons: involvement of NMDA receptor inhibition possibly by decreasing NR2B tyrosine phosphorylation. J Neurochem 2002; 80: 589–97PubMedCrossRef
42.
go back to reference Li R, El-Mallahk RS. A novel evidence of different mechanisms of lithium and valproate neuroprotective action on human SY5Y neuroblastoma cells: caspase-3 dependency. Neurosci Lett 2000; 294: 147–50PubMedCrossRef Li R, El-Mallahk RS. A novel evidence of different mechanisms of lithium and valproate neuroprotective action on human SY5Y neuroblastoma cells: caspase-3 dependency. Neurosci Lett 2000; 294: 147–50PubMedCrossRef
43.
go back to reference Mora A, Gonzalez-Polo RA, Fuentes JM, et al. Different mechanisms of protection against apoptosis by valproate and Li+. Eur J Biochem 1999; 266: 886–91PubMedCrossRef Mora A, Gonzalez-Polo RA, Fuentes JM, et al. Different mechanisms of protection against apoptosis by valproate and Li+. Eur J Biochem 1999; 266: 886–91PubMedCrossRef
44.
go back to reference Thurston JH, Hauhart RE. Valproate doubles the anoxic survival time of normal developing mice: possible relevance to valproate-induced decreases in cerebral levels of glutamate and aspartate, and increases in taurine. Life Sci 1989; 45: 59–62PubMedCrossRef Thurston JH, Hauhart RE. Valproate doubles the anoxic survival time of normal developing mice: possible relevance to valproate-induced decreases in cerebral levels of glutamate and aspartate, and increases in taurine. Life Sci 1989; 45: 59–62PubMedCrossRef
45.
go back to reference Manji HK, Moore GJ, Rajkowska G, et al. Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry 2000; 5: 578–93PubMedCrossRef Manji HK, Moore GJ, Rajkowska G, et al. Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry 2000; 5: 578–93PubMedCrossRef
46.
go back to reference Perucca E, Gram L, Avanzini G, et al. Antiepileptic drugs as a cause of worsening seizures. Epilepsia 1998; 39: 5–17PubMedCrossRef Perucca E, Gram L, Avanzini G, et al. Antiepileptic drugs as a cause of worsening seizures. Epilepsia 1998; 39: 5–17PubMedCrossRef
47.
go back to reference Balfour JA, Bryson HM. Valproic acid: a review of its pharmacology and therapeutic potential in indications other than epilepsy. CNS Drugs 1994; 2: 144–73CrossRef Balfour JA, Bryson HM. Valproic acid: a review of its pharmacology and therapeutic potential in indications other than epilepsy. CNS Drugs 1994; 2: 144–73CrossRef
48.
go back to reference Vajda FJ, Donnan GA, Phillips J, et al. Human brain, plasma, and cerebrospinal fluid concentration of sodium valproate after 72 hours of therapy. Neurology 1981; 31: 486–7PubMedCrossRef Vajda FJ, Donnan GA, Phillips J, et al. Human brain, plasma, and cerebrospinal fluid concentration of sodium valproate after 72 hours of therapy. Neurology 1981; 31: 486–7PubMedCrossRef
49.
go back to reference Nau H, Löscher W. Valproic acid and metabolites: pharmacological and toxicological studies. Epilepsia 1984; 25(1): 14–22CrossRef Nau H, Löscher W. Valproic acid and metabolites: pharmacological and toxicological studies. Epilepsia 1984; 25(1): 14–22CrossRef
50.
go back to reference Semmes RL, Shen DD. Comparative pharmacodynamics and brain distribution of E-delta2-valproate and valproate in rats. Epilepsia 1991; 32: 232–41PubMedCrossRef Semmes RL, Shen DD. Comparative pharmacodynamics and brain distribution of E-delta2-valproate and valproate in rats. Epilepsia 1991; 32: 232–41PubMedCrossRef
51.
go back to reference Löscher W. Pharmacological, toxicological and neurochemical effects of delta2(E)-valproate in animals. Pharm Weekbl 1992; 14: 139–43CrossRef Löscher W. Pharmacological, toxicological and neurochemical effects of delta2(E)-valproate in animals. Pharm Weekbl 1992; 14: 139–43CrossRef
52.
go back to reference Deckers CL, Czuczwar SJ, Hekster YA, et al. Selection of anti-epileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia 2000; 41: 1364–74PubMedCrossRef Deckers CL, Czuczwar SJ, Hekster YA, et al. Selection of anti-epileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia 2000; 41: 1364–74PubMedCrossRef
53.
go back to reference Brodie MJ, Yuen AWC. Lamotrigine substitution study: evidence for synergism with sodium valproate? Epilepsy Res 1997; 26: 423–32PubMedCrossRef Brodie MJ, Yuen AWC. Lamotrigine substitution study: evidence for synergism with sodium valproate? Epilepsy Res 1997; 26: 423–32PubMedCrossRef
54.
go back to reference Guberman AH, Besag FM, Brodie MJ, et al. Lamotrigine-associated ash: risk/benefit considerations in adults and children. Epilepsia 1999; 40: 985–1PubMedCrossRef Guberman AH, Besag FM, Brodie MJ, et al. Lamotrigine-associated ash: risk/benefit considerations in adults and children. Epilepsia 1999; 40: 985–1PubMedCrossRef
55.
go back to reference Faught E, Morris G, Jacobson M, et al. Adding lamotrigine to valproate: incidence of rash and other adverse effects. The Postmarketing Antiepileptic Drug Survey (PADS) Group. Epilepsia 1999; 40: 1135–40 Faught E, Morris G, Jacobson M, et al. Adding lamotrigine to valproate: incidence of rash and other adverse effects. The Postmarketing Antiepileptic Drug Survey (PADS) Group. Epilepsia 1999; 40: 1135–40
56.
go back to reference Voskuyl RA, Ter Keurs HE, Meinardi H. Actions and interactions of dipropylacetate and penicillin on evoked potentials of excised prepiriform cortex of guinea pig. Epilepsia 1975; 16: 583–92PubMedCrossRef Voskuyl RA, Ter Keurs HE, Meinardi H. Actions and interactions of dipropylacetate and penicillin on evoked potentials of excised prepiriform cortex of guinea pig. Epilepsia 1975; 16: 583–92PubMedCrossRef
57.
go back to reference Piredda S, Yonekawa W, Whittingham TS, et al. Effects of antiepileptic drugs on pentylenetetrazole-induced epileptiform activity in the in vitro hippocampus. Epilepsia 1986; 27: 341–6PubMedCrossRef Piredda S, Yonekawa W, Whittingham TS, et al. Effects of antiepileptic drugs on pentylenetetrazole-induced epileptiform activity in the in vitro hippocampus. Epilepsia 1986; 27: 341–6PubMedCrossRef
58.
go back to reference Tian LM, Alkadhi KA. Valproic acid inhibits the depolarizing rectification in neurons of rat amygdala. Neuropharmacology 1994; 33: 1131–8PubMedCrossRef Tian LM, Alkadhi KA. Valproic acid inhibits the depolarizing rectification in neurons of rat amygdala. Neuropharmacology 1994; 33: 1131–8PubMedCrossRef
59.
go back to reference Bruckner C, Stenkamp K, Meierkord H, et al. Epileptiform discharges induced by combined application of bicuculline and 4-aminopyridine are resistant to standard anticonvulsants in slices of rats. Neurosci Lett 1999; 268: 163–5PubMedCrossRef Bruckner C, Stenkamp K, Meierkord H, et al. Epileptiform discharges induced by combined application of bicuculline and 4-aminopyridine are resistant to standard anticonvulsants in slices of rats. Neurosci Lett 1999; 268: 163–5PubMedCrossRef
60.
go back to reference Bruckner C, Heinemann U. Effects of standard anticonvulsant drugs on different patterns of epileptiform discharges induced by 4-aminopyridine in combined entorhinal cortex-hippocampal slices. Brain Res 2000; 859: 15–20PubMedCrossRef Bruckner C, Heinemann U. Effects of standard anticonvulsant drugs on different patterns of epileptiform discharges induced by 4-aminopyridine in combined entorhinal cortex-hippocampal slices. Brain Res 2000; 859: 15–20PubMedCrossRef
61.
go back to reference Fueta Y, Avoli M. Pattern- and age-dependency of the antiepileptic effects induced by valproic acid in the rat hippocampus. Can J Physiol Pharmacol 1991; 69: 1301–4PubMedCrossRef Fueta Y, Avoli M. Pattern- and age-dependency of the antiepileptic effects induced by valproic acid in the rat hippocampus. Can J Physiol Pharmacol 1991; 69: 1301–4PubMedCrossRef
62.
go back to reference Fueta Y, Siniscalchi A, Tancredi V, et al. Extracellular magnesium and anticonvulsant effects of valproate in young rat hippocampus. Epilepsia 1995; 36: 404–9PubMedCrossRef Fueta Y, Siniscalchi A, Tancredi V, et al. Extracellular magnesium and anticonvulsant effects of valproate in young rat hippocampus. Epilepsia 1995; 36: 404–9PubMedCrossRef
63.
go back to reference Dreier JP, Heinemann U. Late low magnesium-induced epileptiform activity in rat entorhinal cortex slides becomes insensitive to the anticonvulsant valproic acid. Neurosci Lett 1990; 119: 68–70PubMedCrossRef Dreier JP, Heinemann U. Late low magnesium-induced epileptiform activity in rat entorhinal cortex slides becomes insensitive to the anticonvulsant valproic acid. Neurosci Lett 1990; 119: 68–70PubMedCrossRef
64.
go back to reference Zhang CL, Dreier JP, Heinemann U. Paroxysmal epileptiform discharges in temporal lobe slices after prolonged exposure to low magnesium are resistant to clinically used anticonvulsants. Epilepsy Res 1995; 20: 105–11PubMedCrossRef Zhang CL, Dreier JP, Heinemann U. Paroxysmal epileptiform discharges in temporal lobe slices after prolonged exposure to low magnesium are resistant to clinically used anticonvulsants. Epilepsy Res 1995; 20: 105–11PubMedCrossRef
65.
go back to reference Sokolova S, Schmitz D, Zhang CL, et al. Comparison of effects of valproate and trans-2-en-valproate on different forms of epileptiform activity in rat hippocampal and temporal cortex slices. Epilepsia 1998; 39: 251–8PubMedCrossRef Sokolova S, Schmitz D, Zhang CL, et al. Comparison of effects of valproate and trans-2-en-valproate on different forms of epileptiform activity in rat hippocampal and temporal cortex slices. Epilepsia 1998; 39: 251–8PubMedCrossRef
66.
go back to reference Zhang YF, Gibbs III JW, Coulter DA. Anticonvulsant drug effects on spontaneous thalamocortical rhythms in vitro: valproic acid, clonazepam, and alpha-methyl-alpha-phenylsuccinimide. Epilepsy Res 1996; 23: 37–53PubMedCrossRef Zhang YF, Gibbs III JW, Coulter DA. Anticonvulsant drug effects on spontaneous thalamocortical rhythms in vitro: valproic acid, clonazepam, and alpha-methyl-alpha-phenylsuccinimide. Epilepsy Res 1996; 23: 37–53PubMedCrossRef
67.
go back to reference Macdonald RL. Cellular actions of antiepileptic drugs. In: Eadie MJ, Vajda FJE, editors. Antiepileptic drugs: pharmacology and therapeutics. Berlin: Springer, 1999: 123–50 Macdonald RL. Cellular actions of antiepileptic drugs. In: Eadie MJ, Vajda FJE, editors. Antiepileptic drugs: pharmacology and therapeutics. Berlin: Springer, 1999: 123–50
68.
go back to reference Sypert GW, Reynolds AF. Single pyramidal-tract fiber analysis of neocortical propagated seizures with reference to inactivation responses. Exp Neurol 1974; 45: 228–40PubMedCrossRef Sypert GW, Reynolds AF. Single pyramidal-tract fiber analysis of neocortical propagated seizures with reference to inactivation responses. Exp Neurol 1974; 45: 228–40PubMedCrossRef
69.
go back to reference Rogawski MA, Porter RJ. Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 1990; 42: 223–86PubMed Rogawski MA, Porter RJ. Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev 1990; 42: 223–86PubMed
70.
go back to reference Mutani R, Doriguzzi T, Fariello R, et al. Azione antiepilettica del sale di sodio dell’acido N-dipropilacetico: studio sperimentale sul gatto. Riv Patol Nerv Ment 1968; 89: 24–33PubMed Mutani R, Doriguzzi T, Fariello R, et al. Azione antiepilettica del sale di sodio dell’acido N-dipropilacetico: studio sperimentale sul gatto. Riv Patol Nerv Ment 1968; 89: 24–33PubMed
71.
go back to reference Salt TE, Tulloch IF, Walter DS. Anti-epileptic properties of sodium valproate in rat amygdaloid kindling. Br J Pharmacol 1980; 68(1): 134P Salt TE, Tulloch IF, Walter DS. Anti-epileptic properties of sodium valproate in rat amygdaloid kindling. Br J Pharmacol 1980; 68(1): 134P
72.
go back to reference Ito T, Hori M, Yoshida K, et al. Effect of anticonvulsants on thalamic afterdischarge in rats and cats. Jpn J Pharmacol 1977; 27: 823–31PubMedCrossRef Ito T, Hori M, Yoshida K, et al. Effect of anticonvulsants on thalamic afterdischarge in rats and cats. Jpn J Pharmacol 1977; 27: 823–31PubMedCrossRef
73.
go back to reference Mutani R, Fariello R. Effetti dell’acido n-dipropilacetico (Depakine) sull’attività del focus epilettogeno da cobalto. Riv Patol Nerv Ment 1969; 90: 40–9 Mutani R, Fariello R. Effetti dell’acido n-dipropilacetico (Depakine) sull’attività del focus epilettogeno da cobalto. Riv Patol Nerv Ment 1969; 90: 40–9
74.
go back to reference Fariello R, Mutani R. Modificazioni dell’attività del focus epilettogeno cortico-monotorio da alluminia indotte dal sale di sodio n-dipropylacetico (DPA). Acta Neurol (Napoli) 1970; 25: 116–22 Fariello R, Mutani R. Modificazioni dell’attività del focus epilettogeno cortico-monotorio da alluminia indotte dal sale di sodio n-dipropylacetico (DPA). Acta Neurol (Napoli) 1970; 25: 116–22
75.
go back to reference van Duijn H, Beckmann MK. Dipropylacetic acid (Depakine) in experimental epilepsy in the alert cat. Epilepsia 1975; 16: 83–90PubMedCrossRef van Duijn H, Beckmann MK. Dipropylacetic acid (Depakine) in experimental epilepsy in the alert cat. Epilepsia 1975; 16: 83–90PubMedCrossRef
76.
go back to reference Maresova D, Mares P. Influence of valproate and carbamazepine on symmetrical cortical penicillin foci in the rat. Physiol Bohemoslov 1985; 34: 562–6PubMed Maresova D, Mares P. Influence of valproate and carbamazepine on symmetrical cortical penicillin foci in the rat. Physiol Bohemoslov 1985; 34: 562–6PubMed
77.
go back to reference Löscher W, Hönack D. Effects of the competitive NMDA receptor antagonist, CGP 37849, on anticonvulsant activity and adverse effects of valproate in amygdala-kindled rats. Eur J Pharmacol 1993; 234: 237–45PubMedCrossRef Löscher W, Hönack D. Effects of the competitive NMDA receptor antagonist, CGP 37849, on anticonvulsant activity and adverse effects of valproate in amygdala-kindled rats. Eur J Pharmacol 1993; 234: 237–45PubMedCrossRef
78.
go back to reference Mares P, Maresova D, Pohl M, et al. Effect of anticonvulsant drugs on thalamo-cortical and hippocampo-cortical self-sustained after-discharges in the rat. Physiol Bohemoslov 1984; 33: 179–87PubMedCrossRef Mares P, Maresova D, Pohl M, et al. Effect of anticonvulsant drugs on thalamo-cortical and hippocampo-cortical self-sustained after-discharges in the rat. Physiol Bohemoslov 1984; 33: 179–87PubMedCrossRef
79.
go back to reference Marescaux C, Micheletti G, Vergnes M, et al. A model of chronic spontaneous petit mal-like seizures in the rat: comparison with pentylenetetrazol-induced seizures. Epilepsia 1984; 25: 326–31PubMedCrossRef Marescaux C, Micheletti G, Vergnes M, et al. A model of chronic spontaneous petit mal-like seizures in the rat: comparison with pentylenetetrazol-induced seizures. Epilepsia 1984; 25: 326–31PubMedCrossRef
80.
go back to reference Löscher W, Nau H, Marescaux C, et al. Comparative evaluation of anticonvulsant and toxic potencies of valproic acid and 2-en-valproic acid in different animal models of epilepsy. Eur J Pharmacol 1984; 99: 211–8PubMedCrossRef Löscher W, Nau H, Marescaux C, et al. Comparative evaluation of anticonvulsant and toxic potencies of valproic acid and 2-en-valproic acid in different animal models of epilepsy. Eur J Pharmacol 1984; 99: 211–8PubMedCrossRef
81.
go back to reference Macdonald RL, Bergey GK. Valproic acid augments GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Brain Res 1979; 170: 558–62PubMedCrossRef Macdonald RL, Bergey GK. Valproic acid augments GABA-mediated postsynaptic inhibition in cultured mammalian neurons. Brain Res 1979; 170: 558–62PubMedCrossRef
82.
go back to reference Olpe HR, Steinmann MW, Pozza MF, et al. Valproate enhances GABA-A mediated inhibition of locus coeruleus neurons in vitro. Naunyn Schmiedeberg’s Arch Pharmacol 1988; 338: 655–7CrossRef Olpe HR, Steinmann MW, Pozza MF, et al. Valproate enhances GABA-A mediated inhibition of locus coeruleus neurons in vitro. Naunyn Schmiedeberg’s Arch Pharmacol 1988; 338: 655–7CrossRef
83.
go back to reference Baldino F, Geller HM. Effect of sodium valproate on hypothalamic neurons in vivo and in vitro. Brain Res 1981; 219: 231–7PubMedCrossRef Baldino F, Geller HM. Effect of sodium valproate on hypothalamic neurons in vivo and in vitro. Brain Res 1981; 219: 231–7PubMedCrossRef
84.
go back to reference Zeise ML, Kasparaow S, Zieglgansberger W. Valproate suppresses N-methyl-D-aspartate evoked, transient depolarizations in the rat neocortex in vitro. Brain Res 1991;544: 345–8PubMedCrossRef Zeise ML, Kasparaow S, Zieglgansberger W. Valproate suppresses N-methyl-D-aspartate evoked, transient depolarizations in the rat neocortex in vitro. Brain Res 1991;544: 345–8PubMedCrossRef
85.
go back to reference Czuczwar SJ, Frey H-H, Löscher W. Antagonism of N-methyl-D,L-aspartic acid-induced convulsions by antiepileptic drugs and other agents. Eur J Pharmacol 1985; 108: 273–80PubMedCrossRef Czuczwar SJ, Frey H-H, Löscher W. Antagonism of N-methyl-D,L-aspartic acid-induced convulsions by antiepileptic drugs and other agents. Eur J Pharmacol 1985; 108: 273–80PubMedCrossRef
86.
go back to reference Musshoff U, Madeja M, Düsing R, et al. Valproate affects glutamate but not GABA receptors [abstract]. Eur J Neurosci 1996; Suppl. 9: 205 Musshoff U, Madeja M, Düsing R, et al. Valproate affects glutamate but not GABA receptors [abstract]. Eur J Neurosci 1996; Suppl. 9: 205
87.
go back to reference Chapman A, Keane PE, Meldrum BS, et al. Mechanism of anticonvulsant action of valproate. Progr Neurobiol 1982; 19: 315–59CrossRef Chapman A, Keane PE, Meldrum BS, et al. Mechanism of anticonvulsant action of valproate. Progr Neurobiol 1982; 19: 315–59CrossRef
88.
go back to reference Kerwin RW, Taberner PV. The mechanism of action of sodium valproate. Gen Pharmacol 1981; 12: 71–5PubMedCrossRef Kerwin RW, Taberner PV. The mechanism of action of sodium valproate. Gen Pharmacol 1981; 12: 71–5PubMedCrossRef
89.
go back to reference Farrant M, Webster RA. Neuronal activity, amino acid concentration and amino acid release in the substantia nigra of the rat after sodium valproate. Brain Res 1989; 504: 49–56PubMedCrossRef Farrant M, Webster RA. Neuronal activity, amino acid concentration and amino acid release in the substantia nigra of the rat after sodium valproate. Brain Res 1989; 504: 49–56PubMedCrossRef
90.
go back to reference Rohlfs A, Rundfeldt C, Koch R, et al. A comparison of the effects of valproate and its major active metabolite E-2-envalproate on single unit activity of substantia nigra pars reticulata neurons in rats. J Pharmacol Exp Ther 1996; 277: 1305–14PubMed Rohlfs A, Rundfeldt C, Koch R, et al. A comparison of the effects of valproate and its major active metabolite E-2-envalproate on single unit activity of substantia nigra pars reticulata neurons in rats. J Pharmacol Exp Ther 1996; 277: 1305–14PubMed
91.
go back to reference Löscher W. Valproate enhances GABA turnover in the substantia nigra. Brain Res 1989; 501: 198–203PubMedCrossRef Löscher W. Valproate enhances GABA turnover in the substantia nigra. Brain Res 1989; 501: 198–203PubMedCrossRef
92.
go back to reference Löscher W, Ebert U. Basic mechanisms of seizure propagation: targets for rational drug design and rational polypharmacy. Epilepsy Res 1996; Suppl. 11: 17–44 Löscher W, Ebert U. Basic mechanisms of seizure propagation: targets for rational drug design and rational polypharmacy. Epilepsy Res 1996; Suppl. 11: 17–44
93.
go back to reference Gale K. Progression and generalization of seizure discharge: anatomical and neurochemical substrates. Epilepsia 1988; 29Suppl. 2: S15–34PubMedCrossRef Gale K. Progression and generalization of seizure discharge: anatomical and neurochemical substrates. Epilepsia 1988; 29Suppl. 2: S15–34PubMedCrossRef
94.
go back to reference McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 237: 1001–11PubMed McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 237: 1001–11PubMed
95.
go back to reference Van den Berg RJ, Kok P, Voskuyl RA. Valproate and sodium currents in cultured hippocampal neurons. Exp Brain Res 1993; 93: 279–87PubMed Van den Berg RJ, Kok P, Voskuyl RA. Valproate and sodium currents in cultured hippocampal neurons. Exp Brain Res 1993; 93: 279–87PubMed
96.
go back to reference Albus H, Williamson R. Electrophysiologic analysis of the actions of valproate on pyramidal neurons in the rat hippocampal slice. Epilepsia 1998; 39: 124–39PubMedCrossRef Albus H, Williamson R. Electrophysiologic analysis of the actions of valproate on pyramidal neurons in the rat hippocampal slice. Epilepsia 1998; 39: 124–39PubMedCrossRef
97.
go back to reference Willow M, Kuenzel EA, Catterall WA. Inhibition of voltagesensitive sodium channels in neuroblastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol Pharmacol 1984; 25: 228–34PubMed Willow M, Kuenzel EA, Catterall WA. Inhibition of voltagesensitive sodium channels in neuroblastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydantoin and carbamazepine. Mol Pharmacol 1984; 25: 228–34PubMed
98.
go back to reference Francis J, Burnham WM. [3H]Phenytoin identifies a novel anticonvulsant-binding domain on voltage-dependent sodium channels. Mol Pharmacol 1992; 42: 1097–103PubMed Francis J, Burnham WM. [3H]Phenytoin identifies a novel anticonvulsant-binding domain on voltage-dependent sodium channels. Mol Pharmacol 1992; 42: 1097–103PubMed
99.
go back to reference Zona C, Avoli M. Effects induced by the antiepileptic drug valproic acid upon the ionic currents recorded in rat neocortical neurons in cell culture. Exp Brain Res 1990; 81: 313–7PubMedCrossRef Zona C, Avoli M. Effects induced by the antiepileptic drug valproic acid upon the ionic currents recorded in rat neocortical neurons in cell culture. Exp Brain Res 1990; 81: 313–7PubMedCrossRef
100.
go back to reference Vreugdenhil M, Vanveelen CWM, Vanrijen PC, et al. Effect of valproic acid on sodium currents in cortical neurons from patients with pharmaco-resistant temporal lobe epilepsy. Epilepsy Res 1998; 32: 309–20PubMedCrossRef Vreugdenhil M, Vanveelen CWM, Vanrijen PC, et al. Effect of valproic acid on sodium currents in cortical neurons from patients with pharmaco-resistant temporal lobe epilepsy. Epilepsy Res 1998; 32: 309–20PubMedCrossRef
101.
go back to reference Vreugdenhil M, Wadman WJ. Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia 1999; 40: 1512–22PubMedCrossRef Vreugdenhil M, Wadman WJ. Modulation of sodium currents in rat CA1 neurons by carbamazepine and valproate after kindling epileptogenesis. Epilepsia 1999; 40: 1512–22PubMedCrossRef
102.
go back to reference Vreugdenhil M, Bruehl C, Voskuyl RA, et al. Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc Natl Acad Sci U S A 1996; 93: 12559–63PubMedCrossRef Vreugdenhil M, Bruehl C, Voskuyl RA, et al. Polyunsaturated fatty acids modulate sodium and calcium currents in CA1 neurons. Proc Natl Acad Sci U S A 1996; 93: 12559–63PubMedCrossRef
103.
go back to reference Taverna S, Mantegazza M, Franceschetti S, et al. Valproate selectively reduces the persistent fraction of Na+ current in neocortical neurons. Epilepsy Res 1998; 32: 304–8PubMedCrossRef Taverna S, Mantegazza M, Franceschetti S, et al. Valproate selectively reduces the persistent fraction of Na+ current in neocortical neurons. Epilepsy Res 1998; 32: 304–8PubMedCrossRef
104.
go back to reference Fariello RG, Varasi M, Smith MC. Valproic acid: mechanisms of action. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 581–604 Fariello RG, Varasi M, Smith MC. Valproic acid: mechanisms of action. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 581–604
105.
go back to reference Morre M, Keane PE, Vernières JC, et al. Valproate: recent findings and perspectives. Epilepsia 1984; 25Suppl. 1: S5–9PubMedCrossRef Morre M, Keane PE, Vernières JC, et al. Valproate: recent findings and perspectives. Epilepsia 1984; 25Suppl. 1: S5–9PubMedCrossRef
106.
go back to reference Franceschetti S, Hannon B, Heinemann U. The action of valproate on spontaneous epileptiform activity in the absence of synaptic transmission and on evoked changes in [Ca2+]0 and [K+]0 in the hippocampal slice. Brain Res 1986; 386: 1–11PubMedCrossRef Franceschetti S, Hannon B, Heinemann U. The action of valproate on spontaneous epileptiform activity in the absence of synaptic transmission and on evoked changes in [Ca2+]0 and [K+]0 in the hippocampal slice. Brain Res 1986; 386: 1–11PubMedCrossRef
107.
go back to reference Roderfeld H-J, Altrup U, Düsing R, et al. Effects of the antiepileptic drug valproate on cloned voltage-dependent potassium channels [abstract]. Pflügers Arch 1994; 426 Suppl.: R32 Roderfeld H-J, Altrup U, Düsing R, et al. Effects of the antiepileptic drug valproate on cloned voltage-dependent potassium channels [abstract]. Pflügers Arch 1994; 426 Suppl.: R32
108.
go back to reference Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989; 25: 582–93PubMedCrossRef Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989; 25: 582–93PubMedCrossRef
109.
go back to reference Kelly KM, Gross RA, Macdonald RL. Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci Lett 1990; 116: 1–2CrossRef Kelly KM, Gross RA, Macdonald RL. Valproic acid selectively reduces the low-threshold (T) calcium current in rat nodose neurons. Neurosci Lett 1990; 116: 1–2CrossRef
110.
go back to reference Crowder JM, Bradford HF. Common anticonvulsants inhibit Ca2+ uptake and amino acid neurotransmitter release in vitro. Epilepsia 1987; 28: 378–82PubMedCrossRef Crowder JM, Bradford HF. Common anticonvulsants inhibit Ca2+ uptake and amino acid neurotransmitter release in vitro. Epilepsia 1987; 28: 378–82PubMedCrossRef
111.
go back to reference Perlman BJ, Goldstein DB. Membrane-disordering potency and anticonvulsant action of valproic acid and other short-chain fatty acids. Mol Pharmacol 1984; 26: 83–9PubMed Perlman BJ, Goldstein DB. Membrane-disordering potency and anticonvulsant action of valproic acid and other short-chain fatty acids. Mol Pharmacol 1984; 26: 83–9PubMed
112.
go back to reference Rumbach L, Mutet C, Cremel G, et al. Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance and transmembrane protein movement studies. Mol Pharmacol 1986; 30: 270–3PubMed Rumbach L, Mutet C, Cremel G, et al. Effects of sodium valproate on mitochondrial membranes: electron paramagnetic resonance and transmembrane protein movement studies. Mol Pharmacol 1986; 30: 270–3PubMed
113.
go back to reference Godin Y, Heiner L, Mark J, et al. Effects of di-n-propylacetate, an anticonvulsive compound, on GABA metabolism. J Neurochem 1969; 16: 869–73PubMedCrossRef Godin Y, Heiner L, Mark J, et al. Effects of di-n-propylacetate, an anticonvulsive compound, on GABA metabolism. J Neurochem 1969; 16: 869–73PubMedCrossRef
114.
go back to reference Simler S, Ciesielski L, Maitre M, et al. Effect of sodium n-dipropylacetate on audiogenic seizures and brain γ-aminobutyric acid level. Biochem Pharmacol 1973; 22: 1701–8PubMedCrossRef Simler S, Ciesielski L, Maitre M, et al. Effect of sodium n-dipropylacetate on audiogenic seizures and brain γ-aminobutyric acid level. Biochem Pharmacol 1973; 22: 1701–8PubMedCrossRef
115.
go back to reference Schechter PJ, Tranier Y, Grove J. Effect of n-dipropylacetate on amino acid concentrations in mouse brain: correlations with anti-convulsant activity. J Neurochem 1978;31: 1325–7PubMedCrossRef Schechter PJ, Tranier Y, Grove J. Effect of n-dipropylacetate on amino acid concentrations in mouse brain: correlations with anti-convulsant activity. J Neurochem 1978;31: 1325–7PubMedCrossRef
116.
go back to reference Martin DL, Olsen RW, Martin DL, et al., editors. GABA in the nervous system: the view at fifty years. Philadelphia (PA): Lippincott Williams & Wilkins, 2000 Martin DL, Olsen RW, Martin DL, et al., editors. GABA in the nervous system: the view at fifty years. Philadelphia (PA): Lippincott Williams & Wilkins, 2000
117.
go back to reference Löscher W. GABA and the epilepsies: experimental and clinical considerations. In: Bowery NG, Nisticò G, editors. GABA: basic research and clinical applications. Rome: Pythagora Press, 1989: 260–300 Löscher W. GABA and the epilepsies: experimental and clinical considerations. In: Bowery NG, Nisticò G, editors. GABA: basic research and clinical applications. Rome: Pythagora Press, 1989: 260–300
118.
go back to reference Avoli M. Epilepsy. In: Martin DL, Olsen W, editors. GABA in the nervous system: the view at fifty years. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 293–316 Avoli M. Epilepsy. In: Martin DL, Olsen W, editors. GABA in the nervous system: the view at fifty years. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 293–316
119.
go back to reference Simler S, Randrianarisoa H, Lehman A, et al. Effects du di-n-propylacétate sur les crises audiogènes de la souris. J Physiol (Paris) 1968; 60: 547 Simler S, Randrianarisoa H, Lehman A, et al. Effects du di-n-propylacétate sur les crises audiogènes de la souris. J Physiol (Paris) 1968; 60: 547
120.
go back to reference Sieghart W. Unraveling the function of GABA(A) receptor subtypes. Trends Pharmacol Sci 2000; 21: 411–3PubMedCrossRef Sieghart W. Unraveling the function of GABA(A) receptor subtypes. Trends Pharmacol Sci 2000; 21: 411–3PubMedCrossRef
121.
go back to reference Möhler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther 2002; 300: 2–8PubMedCrossRef Möhler H, Fritschy JM, Rudolph U. A new benzodiazepine pharmacology. J Pharmacol Exp Ther 2002; 300: 2–8PubMedCrossRef
122.
go back to reference Rudolph U, Crestani F, Möhler H. GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 2001; 22: 188–94PubMedCrossRef Rudolph U, Crestani F, Möhler H. GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 2001; 22: 188–94PubMedCrossRef
123.
go back to reference Iadarola MJ, Gale K. Dissociation between drug-induced increases in nerve terminal and non-nerve terminal pools of GABA in vivo. Eur J Pharmacol 1979; 59: 125–9PubMedCrossRef Iadarola MJ, Gale K. Dissociation between drug-induced increases in nerve terminal and non-nerve terminal pools of GABA in vivo. Eur J Pharmacol 1979; 59: 125–9PubMedCrossRef
124.
go back to reference Löscher W, Vetter M. In vivo effects of aminooxyacetic acid and valproic acid on nerve terminal (synaptosomal) GABA levels in discrete brain areas of the rat: correlation to pharmacological activities. Biochem Pharmacol 1985; 34: 1747–56PubMedCrossRef Löscher W, Vetter M. In vivo effects of aminooxyacetic acid and valproic acid on nerve terminal (synaptosomal) GABA levels in discrete brain areas of the rat: correlation to pharmacological activities. Biochem Pharmacol 1985; 34: 1747–56PubMedCrossRef
125.
go back to reference Iadarola MJ, Gale K. Cellular compartments of GABA in brain and their relationship to anticonvulsant activity. Mol Cell Biochem 1981; 39: 305–30PubMedCrossRef Iadarola MJ, Gale K. Cellular compartments of GABA in brain and their relationship to anticonvulsant activity. Mol Cell Biochem 1981; 39: 305–30PubMedCrossRef
126.
go back to reference Löscher W. GABA in plasma, CSF and brain of dogs during acute and chronic treatment with γ-acetylenic GABA and valproic acid. In: Okada Y, Roberts E, editors. Problems in GABA research: from brain to bacteria. Amsterdam: Exerpta Medica, 1982: 102–9 Löscher W. GABA in plasma, CSF and brain of dogs during acute and chronic treatment with γ-acetylenic GABA and valproic acid. In: Okada Y, Roberts E, editors. Problems in GABA research: from brain to bacteria. Amsterdam: Exerpta Medica, 1982: 102–9
127.
go back to reference Petroff OA, Rothman DL, Behar KL, et al. Effects of valproate and other antiepileptic drugs on brain glutamate, glutamine, and GABA in patients with refractory complex partial seizures. Seizure 1999; 8: 120–7PubMedCrossRef Petroff OA, Rothman DL, Behar KL, et al. Effects of valproate and other antiepileptic drugs on brain glutamate, glutamine, and GABA in patients with refractory complex partial seizures. Seizure 1999; 8: 120–7PubMedCrossRef
128.
go back to reference Petroff OA, Rothman DL. Measuring human brain GABA in vivo: effects of GABA-transaminase inhibition with vigabatrin. Mol Neurobiol 1998; 16: 97–121PubMedCrossRef Petroff OA, Rothman DL. Measuring human brain GABA in vivo: effects of GABA-transaminase inhibition with vigabatrin. Mol Neurobiol 1998; 16: 97–121PubMedCrossRef
129.
go back to reference Löscher W. Valproate induced changes in GABA metabolism at the subcellular level. Biochem Pharmacol 1981; 30: 1364–6PubMedCrossRef Löscher W. Valproate induced changes in GABA metabolism at the subcellular level. Biochem Pharmacol 1981; 30: 1364–6PubMedCrossRef
130.
go back to reference Phillips NI, Fowler LJ. The effects of sodium valproate on γ-aminobutyrate metabolism and behavior in naive and ethanolamine-O-sulphate pretreated rats and mice. Biochem Pharmacol 1982; 31: 2257–61PubMedCrossRef Phillips NI, Fowler LJ. The effects of sodium valproate on γ-aminobutyrate metabolism and behavior in naive and ethanolamine-O-sulphate pretreated rats and mice. Biochem Pharmacol 1982; 31: 2257–61PubMedCrossRef
131.
go back to reference Löscher W. Effect of inhibitors of GABA aminotransferase on the metabolism of GABA in brain tissue and synaptosomal fractions. J Neurochem 1981; 36: 1521–7PubMedCrossRef Löscher W. Effect of inhibitors of GABA aminotransferase on the metabolism of GABA in brain tissue and synaptosomal fractions. J Neurochem 1981; 36: 1521–7PubMedCrossRef
132.
go back to reference Löscher W. In vivo administration of valproate reduces the nerve terminal (synaptosomal) activity of GABA aminotransferase in discrete brain areas of rats. Neurosci Lett 1993; 160: 177–80PubMedCrossRef Löscher W. In vivo administration of valproate reduces the nerve terminal (synaptosomal) activity of GABA aminotransferase in discrete brain areas of rats. Neurosci Lett 1993; 160: 177–80PubMedCrossRef
133.
go back to reference Larsson OM, Gram L, Schousboe I, et al. Differential effects of gamma-vinyl GABA and valproate on GABA-transaminase from cultured neurons and astrocytes. Neuropharmacology 1986; 25: 617–25PubMedCrossRef Larsson OM, Gram L, Schousboe I, et al. Differential effects of gamma-vinyl GABA and valproate on GABA-transaminase from cultured neurons and astrocytes. Neuropharmacology 1986; 25: 617–25PubMedCrossRef
134.
go back to reference Taberner PV, Charington CB, Unwin JW. Effects of GAD and GABA-T inhibitors on GABA metabolism in vivo. Brain Res Bull 1980; 5 Suppl. 2: 621–5CrossRef Taberner PV, Charington CB, Unwin JW. Effects of GAD and GABA-T inhibitors on GABA metabolism in vivo. Brain Res Bull 1980; 5 Suppl. 2: 621–5CrossRef
135.
go back to reference Nau H, Löscher W. Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and GABA metabolism in the mouse. J Pharmacol Exp Ther 1982; 220: 654–9PubMed Nau H, Löscher W. Valproic acid: brain and plasma levels of the drug and its metabolites, anticonvulsant effects and GABA metabolism in the mouse. J Pharmacol Exp Ther 1982; 220: 654–9PubMed
136.
go back to reference Wikinski SI, Acosta GB, Rubio MC. Valproic acid differs in its in vitro effect on glutamic acid decarboxylase activity in neonatal and adult rat brain. Gen Pharmacol 1996; 27: 635–8PubMedCrossRef Wikinski SI, Acosta GB, Rubio MC. Valproic acid differs in its in vitro effect on glutamic acid decarboxylase activity in neonatal and adult rat brain. Gen Pharmacol 1996; 27: 635–8PubMedCrossRef
137.
go back to reference Bolanos JP, Medina JM. Evidence of stimulation of the gamma-aminobutyric acid shunt by valproate and E-delta-2-valproate in neonatal rat brain. Mol Pharmacol 1993; 43: 487–90PubMed Bolanos JP, Medina JM. Evidence of stimulation of the gamma-aminobutyric acid shunt by valproate and E-delta-2-valproate in neonatal rat brain. Mol Pharmacol 1993; 43: 487–90PubMed
138.
go back to reference Löscher W, Frey H-H. Zum Wirkungsmechanismus von valproinsäure. Arzneimittel Forschung 1977; 27: 1081–2PubMed Löscher W, Frey H-H. Zum Wirkungsmechanismus von valproinsäure. Arzneimittel Forschung 1977; 27: 1081–2PubMed
139.
go back to reference Luder AS, Parks JK, Frerman F, et al. Inactivation of beef brain α-ketoglutarate dehydrogenase complex by valproic acid and valproic acid metabolites. J Clin Invest 1990; 86: 1574–81PubMedCrossRef Luder AS, Parks JK, Frerman F, et al. Inactivation of beef brain α-ketoglutarate dehydrogenase complex by valproic acid and valproic acid metabolites. J Clin Invest 1990; 86: 1574–81PubMedCrossRef
140.
go back to reference Gram L, Larsson OM, Johnsen AH, et al. Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 1988; 2: 87–95PubMedCrossRef Gram L, Larsson OM, Johnsen AH, et al. Effects of valproate, vigabatrin and aminooxyacetic acid on release of endogenous and exogenous GABA from cultured neurons. Epilepsy Res 1988; 2: 87–95PubMedCrossRef
141.
go back to reference Ekwuru MO, Cunningham JR. Phaclofen increases GABA release from valproate treated rats. Br J Pharmacol 1990; 99 Suppl.: 251P Ekwuru MO, Cunningham JR. Phaclofen increases GABA release from valproate treated rats. Br J Pharmacol 1990; 99 Suppl.: 251P
142.
go back to reference Ueda Y, Willmore LJ. Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis. Exp Brain Res 2000; 133: 334–9PubMedCrossRef Ueda Y, Willmore LJ. Molecular regulation of glutamate and GABA transporter proteins by valproic acid in rat hippocampus during epileptogenesis. Exp Brain Res 2000; 133: 334–9PubMedCrossRef
143.
go back to reference Biggs CS, Pearce BR, Fowler LJ, et al. The effect of sodium valproate on extracellular GABA and other amino acids in the rat ventral hippocampus: an in vivo microdialysis study. Brain Res 1992; 594: 138–42PubMedCrossRef Biggs CS, Pearce BR, Fowler LJ, et al. The effect of sodium valproate on extracellular GABA and other amino acids in the rat ventral hippocampus: an in vivo microdialysis study. Brain Res 1992; 594: 138–42PubMedCrossRef
144.
go back to reference Rowley HL, Marsden CA, Martin KF. Differential effects of phenytoin and sodium valproate on seizure-induced changes in gamma-aminobutyric acid and glutamate release in vivo. Eur J Pharmacol 1995; 294: 541–6PubMedCrossRef Rowley HL, Marsden CA, Martin KF. Differential effects of phenytoin and sodium valproate on seizure-induced changes in gamma-aminobutyric acid and glutamate release in vivo. Eur J Pharmacol 1995; 294: 541–6PubMedCrossRef
145.
go back to reference Wolf R, Tscherne U, Emrich HM. Suppression of preoptic GABA release caused by push-pull-perfusion with sodium valproate. Naunyn Schmiedeberg’s Arch Pharmacol 1988; 338: 658–63CrossRef Wolf R, Tscherne U, Emrich HM. Suppression of preoptic GABA release caused by push-pull-perfusion with sodium valproate. Naunyn Schmiedeberg’s Arch Pharmacol 1988; 338: 658–63CrossRef
146.
go back to reference Timmermann W, Westerink BHC. Brain microdialysis of GABA and glutamate: what does it signify? Synapse 1997; 27: 242–61CrossRef Timmermann W, Westerink BHC. Brain microdialysis of GABA and glutamate: what does it signify? Synapse 1997; 27: 242–61CrossRef
147.
go back to reference Ticku MK, Davis WC. Effect of valproic acid on [3H]diazepam and [3H]dihydroxypicrotoxinin binding sites at the benzodiazepine-GABA receptor ionophore complex. Brain Res 1981; 223: 218–22PubMedCrossRef Ticku MK, Davis WC. Effect of valproic acid on [3H]diazepam and [3H]dihydroxypicrotoxinin binding sites at the benzodiazepine-GABA receptor ionophore complex. Brain Res 1981; 223: 218–22PubMedCrossRef
148.
go back to reference Miller LG, Greenblatt DJ, Barnhill JG, et al. “GABA shift” in vivo: enhancement of benzodiazepine binding in vivo by modulation of endogenous GABA. Eur J Pharmacol 1988; 148: 123–30PubMedCrossRef Miller LG, Greenblatt DJ, Barnhill JG, et al. “GABA shift” in vivo: enhancement of benzodiazepine binding in vivo by modulation of endogenous GABA. Eur J Pharmacol 1988; 148: 123–30PubMedCrossRef
149.
go back to reference Koe BK, Kondratas E, Russo LL. [3H]Ro 15-1788 binding to benzodiazepine receptors in mouse brain in vivo: marked enhancement by GABA agonists and other CNS drugs. Eur J Pharmacol 1987; 142: 373–84PubMedCrossRef Koe BK, Kondratas E, Russo LL. [3H]Ro 15-1788 binding to benzodiazepine receptors in mouse brain in vivo: marked enhancement by GABA agonists and other CNS drugs. Eur J Pharmacol 1987; 142: 373–84PubMedCrossRef
150.
go back to reference Nutt DJ, Cowen PJ, Little HJ. Unusual interactions of benzodiazepine receptor antagonists. Nature 1982; 295: 436–8PubMedCrossRef Nutt DJ, Cowen PJ, Little HJ. Unusual interactions of benzodiazepine receptor antagonists. Nature 1982; 295: 436–8PubMedCrossRef
151.
go back to reference Gent JP, Bentley M, Feely M, et al. Benzodiazepine cross-tolerance in mice extends to sodium valproate. Eur J Pharmacol 1986; 128: 9–15PubMedCrossRef Gent JP, Bentley M, Feely M, et al. Benzodiazepine cross-tolerance in mice extends to sodium valproate. Eur J Pharmacol 1986; 128: 9–15PubMedCrossRef
152.
go back to reference Liljequist S, Engel JA. Reversal of anticonflict action of valproate by various GABA and benzodiazepine antagonists. Life Sci 1984; 34: 2525–31PubMedCrossRef Liljequist S, Engel JA. Reversal of anticonflict action of valproate by various GABA and benzodiazepine antagonists. Life Sci 1984; 34: 2525–31PubMedCrossRef
153.
go back to reference Morag M, Myslobodsky M. Benzodiazepine antagonists abolish electrophysiological effects of sodium valproate in the rat. Life Sci 1982; 30: 1671–7PubMedCrossRef Morag M, Myslobodsky M. Benzodiazepine antagonists abolish electrophysiological effects of sodium valproate in the rat. Life Sci 1982; 30: 1671–7PubMedCrossRef
154.
go back to reference Myslobodsky M, Feldon J, Lerner T. Anticonflict action of sodium valproate: interaction with convulsant benzodiazepine (Ro 5-3663) and imidazodiazepine (Ro 15-1788). Life Sci 1983; 33: 317–21PubMedCrossRef Myslobodsky M, Feldon J, Lerner T. Anticonflict action of sodium valproate: interaction with convulsant benzodiazepine (Ro 5-3663) and imidazodiazepine (Ro 15-1788). Life Sci 1983; 33: 317–21PubMedCrossRef
155.
go back to reference Shephard RA, Stevenson D, Jenkinson S. Effects of valproate on hyponeophagia in rats: competitive antagonism with picrotoxin and non-competitive antagonism with RO 15-1788. Psychopharmacology (Berl) 1985; 86: 313–7CrossRef Shephard RA, Stevenson D, Jenkinson S. Effects of valproate on hyponeophagia in rats: competitive antagonism with picrotoxin and non-competitive antagonism with RO 15-1788. Psychopharmacology (Berl) 1985; 86: 313–7CrossRef
156.
go back to reference Shephard RA, Hamilton MS. Chlordiazepoxide and valproate enhancement of saline drinking by nondeprived rats: effects of bicuculline, picrotoxin and Rol5-1788. Pharmacol Biochem Behav 1989; 33: 285–90PubMedCrossRef Shephard RA, Hamilton MS. Chlordiazepoxide and valproate enhancement of saline drinking by nondeprived rats: effects of bicuculline, picrotoxin and Rol5-1788. Pharmacol Biochem Behav 1989; 33: 285–90PubMedCrossRef
157.
go back to reference Ong J, Kerr DI. Recent advances in GABAB receptors: from pharmacology to molecular biology. Acta Pharmacol Sin 2000; 21: 111–23PubMed Ong J, Kerr DI. Recent advances in GABAB receptors: from pharmacology to molecular biology. Acta Pharmacol Sin 2000; 21: 111–23PubMed
158.
go back to reference Caddick SJ, Hosford DA. The role of GABAB mechanisms in animal models of absence seizures. Mol Neurobiol 1996; 13: 23–32PubMedCrossRef Caddick SJ, Hosford DA. The role of GABAB mechanisms in animal models of absence seizures. Mol Neurobiol 1996; 13: 23–32PubMedCrossRef
159.
go back to reference Czuczwar SJ, Patsalos PN. The new generation of GABA enhancers: potential in the treatment of epilepsy. CNS Drugs 2001; 15: 339–50PubMedCrossRef Czuczwar SJ, Patsalos PN. The new generation of GABA enhancers: potential in the treatment of epilepsy. CNS Drugs 2001; 15: 339–50PubMedCrossRef
160.
go back to reference Lloyd KG, Thuret F, Pilc A. Upregulation of gamma-amino-butyric (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J Pharmacol Exp Ther 1985; 235: 191–9PubMed Lloyd KG, Thuret F, Pilc A. Upregulation of gamma-amino-butyric (GABA) B binding sites in rat frontal cortex: a common action of repeated administration of different classes of antidepressants and electroshock. J Pharmacol Exp Ther 1985; 235: 191–9PubMed
161.
go back to reference Motohashi N. GABA receptor alterations after chronic lithium administration: comparison with carbamazepine and sodium valproate. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 571–9PubMedCrossRef Motohashi N. GABA receptor alterations after chronic lithium administration: comparison with carbamazepine and sodium valproate. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 571–9PubMedCrossRef
162.
go back to reference DeFeudis FV. Gamma-aminobutyric acid-ergic analgesia: implications for gamma-aminobutyric acid-ergic therapy for drug addiction. Drug Alcohol Depend 1984; 14: 101–11PubMedCrossRef DeFeudis FV. Gamma-aminobutyric acid-ergic analgesia: implications for gamma-aminobutyric acid-ergic therapy for drug addiction. Drug Alcohol Depend 1984; 14: 101–11PubMedCrossRef
163.
go back to reference Whittle SR, Turner AJ. Effects of the anticonvulsant sodium valproate on γ-aminobutyrate and aldehyde metabolism in ox brain. J Neurochem 1978; 31: 1453–9PubMedCrossRef Whittle SR, Turner AJ. Effects of the anticonvulsant sodium valproate on γ-aminobutyrate and aldehyde metabolism in ox brain. J Neurochem 1978; 31: 1453–9PubMedCrossRef
164.
go back to reference Vayer P, Cash CD, Maitre M. Is the anticonvulsant mechanism of valproate linked to its interaction with the cerebral γ-hydroxybutyrate system? Trends Pharmacol Sci 1988; 9: 127–9PubMedCrossRef Vayer P, Cash CD, Maitre M. Is the anticonvulsant mechanism of valproate linked to its interaction with the cerebral γ-hydroxybutyrate system? Trends Pharmacol Sci 1988; 9: 127–9PubMedCrossRef
165.
go back to reference Whittle SR, Turner SJ. Effects of anticonvulsants on the formation of γ-hydroxybutyrate from γ-aminobutyrate in rat brain. J Neurochem 1982; 38: 848–51PubMedCrossRef Whittle SR, Turner SJ. Effects of anticonvulsants on the formation of γ-hydroxybutyrate from γ-aminobutyrate in rat brain. J Neurochem 1982; 38: 848–51PubMedCrossRef
166.
go back to reference Snead OI. γ-Hydroxybutyrate model of generalized absence seizures: further characterization and comparison with other absence models. Epilepsia 1988; 29: 361–77PubMedCrossRef Snead OI. γ-Hydroxybutyrate model of generalized absence seizures: further characterization and comparison with other absence models. Epilepsia 1988; 29: 361–77PubMedCrossRef
167.
go back to reference Snead OCI, Bearden LJ, Pegram V. Effect of acute and chronic anticonvulsant administration on endogenous γ-hydroxybutyrate in rat brain. Neuropharmacology 1980; 19: 47–52PubMedCrossRef Snead OCI, Bearden LJ, Pegram V. Effect of acute and chronic anticonvulsant administration on endogenous γ-hydroxybutyrate in rat brain. Neuropharmacology 1980; 19: 47–52PubMedCrossRef
168.
go back to reference Dixon JF, Hokin LE. The antibipolar drug valproate mimics lithium in stimulating glutamate release and inositol 1,4,5-trisphosphate accumulation in brain cortex slices but not accumulation of inositol monophosphates and bisphosphates. Proc Natl Acad Sci U S A 1997; 94: 4757–60PubMedCrossRef Dixon JF, Hokin LE. The antibipolar drug valproate mimics lithium in stimulating glutamate release and inositol 1,4,5-trisphosphate accumulation in brain cortex slices but not accumulation of inositol monophosphates and bisphosphates. Proc Natl Acad Sci U S A 1997; 94: 4757–60PubMedCrossRef
169.
go back to reference Nilsson M, Hansson E, Ronnback L. Interactions between valproate, glutamate, aspartate, and GABA with respect to uptake in astroglial primary cultures. Neurochem Res 1992; 17: 327–32PubMedCrossRef Nilsson M, Hansson E, Ronnback L. Interactions between valproate, glutamate, aspartate, and GABA with respect to uptake in astroglial primary cultures. Neurochem Res 1992; 17: 327–32PubMedCrossRef
170.
go back to reference Biggs CS, Pearce BR, Fowler LJ, et al. Regional effects of sodium valproate on extracellular concentrations of 5-hydroxytryptamine, dopamine, and their metabolites in the rat brain: an in vivo microdialysis study. J Neurochem 1992; 59: 1702–8PubMedCrossRef Biggs CS, Pearce BR, Fowler LJ, et al. Regional effects of sodium valproate on extracellular concentrations of 5-hydroxytryptamine, dopamine, and their metabolites in the rat brain: an in vivo microdialysis study. J Neurochem 1992; 59: 1702–8PubMedCrossRef
171.
go back to reference Horton RW, Anlezark GM, Sawaya MCB, et al. Monoamine and GABA metabolism and the anticonvulsant action of di-n-propylacetate and ethanolamine-O-sulphate. Eur J Pharmacol 1977; 41: 387–97PubMedCrossRef Horton RW, Anlezark GM, Sawaya MCB, et al. Monoamine and GABA metabolism and the anticonvulsant action of di-n-propylacetate and ethanolamine-O-sulphate. Eur J Pharmacol 1977; 41: 387–97PubMedCrossRef
172.
go back to reference Ichikawa J, Meltzer HY. Valproate and carbamazepine increase prefrontal dopamine release by 5-HT1A receptor activation. Eur J Pharmacol 1999; 380: R1–3PubMedCrossRef Ichikawa J, Meltzer HY. Valproate and carbamazepine increase prefrontal dopamine release by 5-HT1A receptor activation. Eur J Pharmacol 1999; 380: R1–3PubMedCrossRef
173.
go back to reference Dreifuss FE. Valproic acid: toxicity. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4thed. New York: Raven, 1995: 641–8 Dreifuss FE. Valproic acid: toxicity. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4thed. New York: Raven, 1995: 641–8
174.
go back to reference Jones EA, Basile AS. Does ammonia contribute to increased GABA-ergic neurotransmission in liver failure? Metab Brain Dis 1998; 13: 351–60PubMedCrossRef Jones EA, Basile AS. Does ammonia contribute to increased GABA-ergic neurotransmission in liver failure? Metab Brain Dis 1998; 13: 351–60PubMedCrossRef
175.
go back to reference Nathanson JA. Cyclic nucleotides and nervous system function. Physiol Rev 1977; 57: 157–256PubMed Nathanson JA. Cyclic nucleotides and nervous system function. Physiol Rev 1977; 57: 157–256PubMed
176.
go back to reference Lust WD, Kupferberg HJ, Yonekawa WD, et al. Changes in brain metabolites induced by convulsants or electroshock: effects of anticonvulsant agents. Mol Pharmacol 1978; 14: 347–56PubMed Lust WD, Kupferberg HJ, Yonekawa WD, et al. Changes in brain metabolites induced by convulsants or electroshock: effects of anticonvulsant agents. Mol Pharmacol 1978; 14: 347–56PubMed
177.
go back to reference McCandless DW, Feussner GK, Lust WD, et al. Metabolite levels in brain following experimental seizures: the effects of isoniazid and sodium valproate in cerebellar and cerebral cortical layers. J Neurochem 1979; 32: 755–60PubMedCrossRef McCandless DW, Feussner GK, Lust WD, et al. Metabolite levels in brain following experimental seizures: the effects of isoniazid and sodium valproate in cerebellar and cerebral cortical layers. J Neurochem 1979; 32: 755–60PubMedCrossRef
178.
go back to reference Frey H-H, Löscher W. Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology 1978; 17: 637–42PubMedCrossRef Frey H-H, Löscher W. Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology 1978; 17: 637–42PubMedCrossRef
179.
go back to reference Shen DD. Valproate: absorption, distribution, and excretion. In: Löscher W editor. Valproate. Basle: Birkhäuser, 1999: 77–90CrossRef Shen DD. Valproate: absorption, distribution, and excretion. In: Löscher W editor. Valproate. Basle: Birkhäuser, 1999: 77–90CrossRef
180.
go back to reference Huai-Yun H, Secrest DT, Mark KS, et al. Expression of multi-drug resistance-associated protein (MRP) in brain micro-vessel endothelial cells. Biochem Biophys Res Commun 1998; 243: 816–20PubMedCrossRef Huai-Yun H, Secrest DT, Mark KS, et al. Expression of multi-drug resistance-associated protein (MRP) in brain micro-vessel endothelial cells. Biochem Biophys Res Commun 1998; 243: 816–20PubMedCrossRef
181.
go back to reference Cutrer FM, Limmroth V, Moskowitz MA. Possible mechanisms of valproate in migraine prophylaxis. Cephalalgia 1997; 17: 93-100PubMedCrossRef Cutrer FM, Limmroth V, Moskowitz MA. Possible mechanisms of valproate in migraine prophylaxis. Cephalalgia 1997; 17: 93-100PubMedCrossRef
Metadata
Title
Basic Pharmacology of Valproate
A Review After 35 Years of Clinical Use for the Treatment of Epilepsy
Author
Dr Wolfgang Löscher
Publication date
01-10-2002
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 10/2002
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200216100-00003

Other articles of this Issue 10/2002

CNS Drugs 10/2002 Go to the issue