Skip to main content
Top
Published in: Drugs 3/2000

01-09-2000 | Leading Article

Potential of Substance P Antagonists as Antiemetics

Authors: Dr Pierre Diemunsch, Laurent Grélot

Published in: Drugs | Issue 3/2000

Login to get access

Abstract

The introduction of serotonin 5-HT3 receptor antagonists into clinical practice allowed for a dramatic improvement in the management of nausea and vomiting. Despite this, postoperative and chemotherapy-induced emesis remains a significant, unresolved issue in many patients even when a combination of antiemetic drugs is used. Numerous neurotransmitters have been implicated in triggering emesis; however, the tachykinin substance P, by virtue of its localisation within both the gastrointestinal vagal afferent nerve fibres and brainstem emetic circuitry, and its ability to induce vomiting when administered intravenously, is thought to play a key role in emetic responses. Because substance P is the most likely endogenous ligand for the neurokinin-1 (NK1) receptor, the development of nonpeptide NK1 receptor antagonists led scientists to evaluate these compounds as antiemetics. The five NK1 receptor inhibitors that have been studied initially in humans are: vofopitant (GR-205171), CP-122721, ezlopitant (CJ-11974), MK-869 (L-754030) and its prodrug L-758298. Except for monotherapy in acute cisplatin-induced emesis, this new class of drugs has proven to be highly effective in the control of both chemotherapy-induced nausea and vomiting, and postoperative nausea and vomiting. No major adverse event was reported in the preliminary trials. Further investigation is mandatory in order to assess the optimal treatment regimen and to make sure the wide spectrum activity of the NK1 receptor inhibitors does not cause significant adverse effects in the context of the treatment of nausea and vomiting.
Literature
1.
go back to reference Bianchi AL, Grélot L. An overwiew of emesis. In: Bianchi AL, Grélot L, Miller AD, et al., editors. New vistas on mechanisms and control of emesis. Vol. 223. London: Colloque INSERM/John Libbey Eurotext Ltd, 1992: 3–9 Bianchi AL, Grélot L. An overwiew of emesis. In: Bianchi AL, Grélot L, Miller AD, et al., editors. New vistas on mechanisms and control of emesis. Vol. 223. London: Colloque INSERM/John Libbey Eurotext Ltd, 1992: 3–9
2.
go back to reference Grélot L, Miller AD. Vomiting: its in and outs. NIPS 1994; 9: 142–6 Grélot L, Miller AD. Vomiting: its in and outs. NIPS 1994; 9: 142–6
3.
go back to reference Lucot JB. 5-HT1Areceptor agonists as anti-emetic. In: Reynolds DJM, Andrew PLR, Davis CJ, editors. Serotonin and the scientific basis of anti-emetic therapy. Oxford: Oxford Clinical Communications, 1995: 222–7 Lucot JB. 5-HT1Areceptor agonists as anti-emetic. In: Reynolds DJM, Andrew PLR, Davis CJ, editors. Serotonin and the scientific basis of anti-emetic therapy. Oxford: Oxford Clinical Communications, 1995: 222–7
4.
go back to reference Rudd JA, Naylor RJ. Opioid receptor involvement in emesis and anti-emesis. In: Reynolds DJM, Andrew PLR, Davis CJ, editors. Serotonin and the scientific basis of anti-emetic therapy. Oxford: Oxford Clinical Communications, 1995: 209–19 Rudd JA, Naylor RJ. Opioid receptor involvement in emesis and anti-emesis. In: Reynolds DJM, Andrew PLR, Davis CJ, editors. Serotonin and the scientific basis of anti-emetic therapy. Oxford: Oxford Clinical Communications, 1995: 209–19
5.
go back to reference Carpenter DO, Briggs DB, Strominger N. Peptide induced emesis in dogs. Behav Brain Res 1984; 11: 277–81PubMedCrossRef Carpenter DO, Briggs DB, Strominger N. Peptide induced emesis in dogs. Behav Brain Res 1984; 11: 277–81PubMedCrossRef
6.
go back to reference Andrews PLR, Bhandari P. Resinferatoxin, an ultrapotent capsaicin analogue, has anti-emetic properties in the ferret. Neuropharmacol 1993; 32: 799–806CrossRef Andrews PLR, Bhandari P. Resinferatoxin, an ultrapotent capsaicin analogue, has anti-emetic properties in the ferret. Neuropharmacol 1993; 32: 799–806CrossRef
8.
go back to reference Henry JL. Discussion of nomenclature for TKs and tachykin receptor: substance P and neurokinins. New York: Springer-Verlag, 1987 Henry JL. Discussion of nomenclature for TKs and tachykin receptor: substance P and neurokinins. New York: Springer-Verlag, 1987
9.
go back to reference McLean S, Ganong A, Seymour PA, et al. Pharmacology of CP-99,994: a non-peptide antagonist of the tachykinin NK-1 receptor. J Pharmacol Exp Ther 1993; 267: 472–9PubMed McLean S, Ganong A, Seymour PA, et al. Pharmacology of CP-99,994: a non-peptide antagonist of the tachykinin NK-1 receptor. J Pharmacol Exp Ther 1993; 267: 472–9PubMed
10.
go back to reference Quartara L, Maggi CA. The tachykinin NK1 receptor. Part 1: ligands and mechanisms of cellular activation. Neuropeptides 1997; 31: 537–63 Quartara L, Maggi CA. The tachykinin NK1 receptor. Part 1: ligands and mechanisms of cellular activation. Neuropeptides 1997; 31: 537–63
11.
12.
go back to reference Rupniak NMJ, Boyce S, Williams AR, et al. Antinociceptive activity of NK1 receptor antagonists: nonspecific effects of racemic RP 67, 580. Br J Pharmacol 1993; 110: 1607–13PubMedCrossRef Rupniak NMJ, Boyce S, Williams AR, et al. Antinociceptive activity of NK1 receptor antagonists: nonspecific effects of racemic RP 67, 580. Br J Pharmacol 1993; 110: 1607–13PubMedCrossRef
13.
go back to reference McLean S, Ganong A, Seymour PA, et al. Characterization of CP-122,721, a nonpeptide antagonist of the neurokinin NK1 receptor. J Pharmacol Exp Ther 1996; 277: 900–8PubMed McLean S, Ganong A, Seymour PA, et al. Characterization of CP-122,721, a nonpeptide antagonist of the neurokinin NK1 receptor. J Pharmacol Exp Ther 1996; 277: 900–8PubMed
14.
go back to reference Gardner CJ, Armour DR, Beattie DT, et al. A novel antagonist with high affinity for the tachykinin NK1 receptor, and potent broad-spectrum anti-emetic activity. Regul Pept 1996; 65: 45–53PubMedCrossRef Gardner CJ, Armour DR, Beattie DT, et al. A novel antagonist with high affinity for the tachykinin NK1 receptor, and potent broad-spectrum anti-emetic activity. Regul Pept 1996; 65: 45–53PubMedCrossRef
15.
go back to reference Hale JJ, Mills SG, MacCoss M, et al. Structural optimization affording 2-(R)-(l-(R)-(3,5-Bis(trifluoromethyl)phenylethoxy)-3(S)-(4fluoro)phenyl-4-(3-oxo-1,2,4-triazol-5-yl) methylmorpholine a potent orally active, long-acting morpholine acetal human NK-1 receptor antagonist. J Med Chem 1998; 41:4607–14PubMedCrossRef Hale JJ, Mills SG, MacCoss M, et al. Structural optimization affording 2-(R)-(l-(R)-(3,5-Bis(trifluoromethyl)phenylethoxy)-3(S)-(4fluoro)phenyl-4-(3-oxo-1,2,4-triazol-5-yl) methylmorpholine a potent orally active, long-acting morpholine acetal human NK-1 receptor antagonist. J Med Chem 1998; 41:4607–14PubMedCrossRef
16.
go back to reference Bountra C, Bunce KT, Dale T, et al. Anti-emetic profile of a non-peptide, neurokinin NK1 receptor anatagonist, CP-99,994, in ferrets. Eur J Pharmacol 1993; 249: R3–4PubMedCrossRef Bountra C, Bunce KT, Dale T, et al. Anti-emetic profile of a non-peptide, neurokinin NK1 receptor anatagonist, CP-99,994, in ferrets. Eur J Pharmacol 1993; 249: R3–4PubMedCrossRef
17.
go back to reference Chen Y, Saito H, Matsuki N. Ethanol-induced emesis in the house musk shrew, Suncus murinus. Life Sci 1997; 60: 253–61PubMedCrossRef Chen Y, Saito H, Matsuki N. Ethanol-induced emesis in the house musk shrew, Suncus murinus. Life Sci 1997; 60: 253–61PubMedCrossRef
18.
go back to reference Lucot JB, Obach RS, McLean S, et al. The effect of CP-99994 on the responses of provocative motion in the cat. Br J Pharmacol 1997; 120: 116–20PubMedCrossRef Lucot JB, Obach RS, McLean S, et al. The effect of CP-99994 on the responses of provocative motion in the cat. Br J Pharmacol 1997; 120: 116–20PubMedCrossRef
19.
go back to reference Rudd JA, Jordan CC, Naylor RJ. The action of the NK1 receptor antagonist, CP-99,994 in antagonizing the acute and delayed emesis induced by cisplatin in ferret. Br J Pharmacol 1996; 119:931–6PubMedCrossRef Rudd JA, Jordan CC, Naylor RJ. The action of the NK1 receptor antagonist, CP-99,994 in antagonizing the acute and delayed emesis induced by cisplatin in ferret. Br J Pharmacol 1996; 119:931–6PubMedCrossRef
20.
go back to reference Rupniak NM, Tattersall FD, Williams AR, et al. In vitro and in vivo predictors of the anti-emetic activity of tachykinin NK1 receptor antagonists. Eur J Pharmacol 1997; 326: 201–9PubMedCrossRef Rupniak NM, Tattersall FD, Williams AR, et al. In vitro and in vivo predictors of the anti-emetic activity of tachykinin NK1 receptor antagonists. Eur J Pharmacol 1997; 326: 201–9PubMedCrossRef
21.
go back to reference Tattersall DF, Rycroft W, Hargreaves RJ, et al. The tachykinin NK1 receptor antagonist CP-99,994 attenuates cisplatin induced emesis in ferret. Eur J Pharmacol 1993; 250: R5–6PubMedCrossRef Tattersall DF, Rycroft W, Hargreaves RJ, et al. The tachykinin NK1 receptor antagonist CP-99,994 attenuates cisplatin induced emesis in ferret. Eur J Pharmacol 1993; 250: R5–6PubMedCrossRef
22.
go back to reference Tattersall FD, Rycroft W, Hill RG, et al. Enantiospecific inhibition of apomorphine-induced emesis in the ferret by the neu-rokinin1 receptor antagonist CP-99, 994. Neuropharmacology 1995; 33: 259–60CrossRef Tattersall FD, Rycroft W, Hill RG, et al. Enantiospecific inhibition of apomorphine-induced emesis in the ferret by the neu-rokinin1 receptor antagonist CP-99, 994. Neuropharmacology 1995; 33: 259–60CrossRef
23.
go back to reference Tattersall FD, Rycroft W, Marmont N, et al. Enantiospecific inhibition of emesis induced by nicotine in the house musk shrew (Suncus murinus) by the neurokinin1 (NK1) receptor antagonist CP-99, 994. Neuropharmacology 1995; 34: 1697–9PubMedCrossRef Tattersall FD, Rycroft W, Marmont N, et al. Enantiospecific inhibition of emesis induced by nicotine in the house musk shrew (Suncus murinus) by the neurokinin1 (NK1) receptor antagonist CP-99, 994. Neuropharmacology 1995; 34: 1697–9PubMedCrossRef
24.
go back to reference Watson JW, Nagahisa A, Lucot JB, et al. The tachykinins and emesis: towards complete control? In: Reynolds DJM, Andrew PLR, Davis CJ, editors. Serotonin and the scientific basis of anti-emetic therapy. Oxford: Oxford Clinical Communications, 1995: 233–8 Watson JW, Nagahisa A, Lucot JB, et al. The tachykinins and emesis: towards complete control? In: Reynolds DJM, Andrew PLR, Davis CJ, editors. Serotonin and the scientific basis of anti-emetic therapy. Oxford: Oxford Clinical Communications, 1995: 233–8
25.
go back to reference Watson JW, Gonsalves SF, Fossa AA, et al. The anti-emetic effects of CP-99,994 in the ferret and the dog: role of the NK1 receptor. Br J Pharmacol 1995; 115: 84–94PubMedCrossRef Watson JW, Gonsalves SF, Fossa AA, et al. The anti-emetic effects of CP-99,994 in the ferret and the dog: role of the NK1 receptor. Br J Pharmacol 1995; 115: 84–94PubMedCrossRef
26.
go back to reference Gonsalves SF, Watson JW, Ashton C. Broad spectrum antiemetic effects of CP-122,721, a tachykinin NK1 receptor antagonist, in ferrets. Eur J Pharmacol 1996; 305: 181–5PubMedCrossRef Gonsalves SF, Watson JW, Ashton C. Broad spectrum antiemetic effects of CP-122,721, a tachykinin NK1 receptor antagonist, in ferrets. Eur J Pharmacol 1996; 305: 181–5PubMedCrossRef
27.
go back to reference Gardner CJ, Twissell DJ, Dale TJ, et al. The broad-spectrum anti-emetic activity of the novel non-peptide tachykinin NK1 receptor, GR 203040. Br JPharmacol 1995; 116: 3158–63CrossRef Gardner CJ, Twissell DJ, Dale TJ, et al. The broad-spectrum anti-emetic activity of the novel non-peptide tachykinin NK1 receptor, GR 203040. Br JPharmacol 1995; 116: 3158–63CrossRef
28.
go back to reference Amour DR, Chung KML, Congreve B, et al. Tetrazole NK1 receptor antagonists: the identification of an exceptionally potent orally active antiemetic compound. Bioorg Med Chem 1996; 6: 1015–20CrossRef Amour DR, Chung KML, Congreve B, et al. Tetrazole NK1 receptor antagonists: the identification of an exceptionally potent orally active antiemetic compound. Bioorg Med Chem 1996; 6: 1015–20CrossRef
29.
go back to reference Grélot L, Dapzol J, Estève E, et al. Potent inhibition of acute and delayed cisplatin-induced nausea and vomiting in piglets treated by GR205171, a novel highly selective NK1 receptor antagonist. Br J Pharmacol 1998; 124: 1643–50PubMedCrossRef Grélot L, Dapzol J, Estève E, et al. Potent inhibition of acute and delayed cisplatin-induced nausea and vomiting in piglets treated by GR205171, a novel highly selective NK1 receptor antagonist. Br J Pharmacol 1998; 124: 1643–50PubMedCrossRef
30.
go back to reference Furukawa N, Fukuda H, Hatano M, et al. A neurokinin 1 receptor antagonist reduced hypersalivation and gastric contractility related to emesis in dogs. Am J Physiol 1998; G1193-201 Furukawa N, Fukuda H, Hatano M, et al. A neurokinin 1 receptor antagonist reduced hypersalivation and gastric contractility related to emesis in dogs. Am J Physiol 1998; G1193-201
31.
go back to reference Fukuda H, Koga T, Furukawa N, et al. The tachykinin NK1 receptor antagonist GR 205171 prevents vagal stimulation-induced retching but not neuronal transmission from emetic vagal afferents to solitary nucleus neurons in dogs. Brain Res 1998; 802: 221–31PubMedCrossRef Fukuda H, Koga T, Furukawa N, et al. The tachykinin NK1 receptor antagonist GR 205171 prevents vagal stimulation-induced retching but not neuronal transmission from emetic vagal afferents to solitary nucleus neurons in dogs. Brain Res 1998; 802: 221–31PubMedCrossRef
32.
go back to reference Tattersall FD, Rycroft W, Francis B, et al. Tachykinins NK1 receptor antagonists act centrally to inhibit emesis induced by the chemotherapeutic agent cisplatin in ferrets. Neuropharmacology 1996; 35: 1121–9PubMedCrossRef Tattersall FD, Rycroft W, Francis B, et al. Tachykinins NK1 receptor antagonists act centrally to inhibit emesis induced by the chemotherapeutic agent cisplatin in ferrets. Neuropharmacology 1996; 35: 1121–9PubMedCrossRef
33.
go back to reference Singh L, Field MJ, Hughes J, et al. The tachykinin NK1 receptor antagonist PD 154075 blocks cisplatin-induced delayed emesis in the ferret. Eur J Pharmacol 1997; 321: 209–16PubMedCrossRef Singh L, Field MJ, Hughes J, et al. The tachykinin NK1 receptor antagonist PD 154075 blocks cisplatin-induced delayed emesis in the ferret. Eur J Pharmacol 1997; 321: 209–16PubMedCrossRef
34.
go back to reference Saito R, Suehiro Y, Ariumi H, et al. Anti-emetic effects of a novel NK-1 receptor antagonist HSP-117 in ferrets. Neurosci Lett 1998; 254: 169–72PubMedCrossRef Saito R, Suehiro Y, Ariumi H, et al. Anti-emetic effects of a novel NK-1 receptor antagonist HSP-117 in ferrets. Neurosci Lett 1998; 254: 169–72PubMedCrossRef
35.
go back to reference Minami M, Endo T, Kikuchi K, et al. Antiemetic effects of sendide, a peptide tachykinin NK1 receptor antagonist, in the ferret. Eur J Pharmacol 1998; 363: 49–55PubMedCrossRef Minami M, Endo T, Kikuchi K, et al. Antiemetic effects of sendide, a peptide tachykinin NK1 receptor antagonist, in the ferret. Eur J Pharmacol 1998; 363: 49–55PubMedCrossRef
36.
go back to reference Gardner CJ, Bountra C, Bunce KT, et al. Anti-emetic activity of neurokinin NK1 receptor antagonists is mediated centrally in the ferret [abstract]. Br J Pharmacol 1994; 112: 516P Gardner CJ, Bountra C, Bunce KT, et al. Anti-emetic activity of neurokinin NK1 receptor antagonists is mediated centrally in the ferret [abstract]. Br J Pharmacol 1994; 112: 516P
37.
go back to reference Rupniak NMJ, Carlson E, Boyce S, et al. Enantioselective inhibition of the formalin paw late phase by the NK1 receptor antagonist L-733,060 in gerbils. Pain 1996; 67: 189–95PubMedCrossRef Rupniak NMJ, Carlson E, Boyce S, et al. Enantioselective inhibition of the formalin paw late phase by the NK1 receptor antagonist L-733,060 in gerbils. Pain 1996; 67: 189–95PubMedCrossRef
38.
go back to reference Milano S, Grélot L, Blower P, et al. The piglet as a suitable animal model for studying the delayed phase of chemotherapy-induced delayed emesis. J Pharmacol Exp Ther 1995; 274: 951–61PubMed Milano S, Grélot L, Blower P, et al. The piglet as a suitable animal model for studying the delayed phase of chemotherapy-induced delayed emesis. J Pharmacol Exp Ther 1995; 274: 951–61PubMed
39.
go back to reference Grélot L, Milano S, Le Stunff H, et al. Repeated administration of the 5-HT3 receptor antagonist Granisetron reduces the incidence of delayed cisplatin-induced emesis in the piglet. J Pharmacol Exp Ther 1996; 279: 255–61PubMed Grélot L, Milano S, Le Stunff H, et al. Repeated administration of the 5-HT3 receptor antagonist Granisetron reduces the incidence of delayed cisplatin-induced emesis in the piglet. J Pharmacol Exp Ther 1996; 279: 255–61PubMed
40.
go back to reference Gardner C, Perren M. Inhibition of anaesthetic-induced emesis by a NK1 or 5-HT3 receptor antagonist in the house musk shrew, Suncus murinus. Neuropharmacology 1998; 37: 1643–4PubMedCrossRef Gardner C, Perren M. Inhibition of anaesthetic-induced emesis by a NK1 or 5-HT3 receptor antagonist in the house musk shrew, Suncus murinus. Neuropharmacology 1998; 37: 1643–4PubMedCrossRef
41.
go back to reference McAllister KH, Pratt JA. GR205171 blocks apomorphine and amphetamine-induced conditioned taste aversions. Eur J Pharmacol 1998; 353: 141–8PubMedCrossRef McAllister KH, Pratt JA. GR205171 blocks apomorphine and amphetamine-induced conditioned taste aversions. Eur J Pharmacol 1998; 353: 141–8PubMedCrossRef
42.
go back to reference Matsuki N, Toyoda H, Saito H. Role of substance P in emesis. Folia Pharmacol Jpn 1996; 108 Suppl. 1: 133–8CrossRef Matsuki N, Toyoda H, Saito H. Role of substance P in emesis. Folia Pharmacol Jpn 1996; 108 Suppl. 1: 133–8CrossRef
43.
go back to reference Shiroshita Y, Koga T, Fukuda H. Capsaicin in 4th ventricle abolishes retching and transmission of emetic vagal afferents to solitary nucleus neurons. Eur J Pharmacol 1997; 339:183–92PubMedCrossRef Shiroshita Y, Koga T, Fukuda H. Capsaicin in 4th ventricle abolishes retching and transmission of emetic vagal afferents to solitary nucleus neurons. Eur J Pharmacol 1997; 339:183–92PubMedCrossRef
44.
go back to reference Davidson JS, Oland L, Boissonade F The effects of centrally injected NK1 receptor antagonists on emesis in the ferret [abstract]. Gastroenterology 1995; 108: A589 Davidson JS, Oland L, Boissonade F The effects of centrally injected NK1 receptor antagonists on emesis in the ferret [abstract]. Gastroenterology 1995; 108: A589
45.
go back to reference Yates BJ, Grélot L, Kerman IA, et al. Organisation of the vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. Am J Physiol 1994; 267: R974–83PubMed Yates BJ, Grélot L, Kerman IA, et al. Organisation of the vestibular inputs to nucleus tractus solitarius and adjacent structures in cat brain stem. Am J Physiol 1994; 267: R974–83PubMed
46.
go back to reference Leslie RA. Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema and dorsal motor nucleus of the vagus. Neurochem Int 1985;7: 191–211PubMedCrossRef Leslie RA. Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema and dorsal motor nucleus of the vagus. Neurochem Int 1985;7: 191–211PubMedCrossRef
47.
go back to reference Dockray GJ, Sharkey KA. Neurochemistry of visceral afferent neurones. Prog Brain Res 1986; 67: 133–48PubMedCrossRef Dockray GJ, Sharkey KA. Neurochemistry of visceral afferent neurones. Prog Brain Res 1986; 67: 133–48PubMedCrossRef
48.
go back to reference Dockray GJ, Green T, Varro A. The afferent peptidergic innervation of the upper gastrointestinal tract. In: Singer MV, Goebell H, editors. Nerves and GI tract. Falk Symposium 50. Lancaster: Kluwer Academic 1989: 105–22 Dockray GJ, Green T, Varro A. The afferent peptidergic innervation of the upper gastrointestinal tract. In: Singer MV, Goebell H, editors. Nerves and GI tract. Falk Symposium 50. Lancaster: Kluwer Academic 1989: 105–22
49.
go back to reference Fasth KJ, Bergstrom M, Kilpatrick G, et al. Brain uptake and receptor binding of two 11C-labelled selective high affinity NK1-antagonists, GR203040 and GR 205171. J Label Compounds Radiopharm 1997; 40: 665–7 Fasth KJ, Bergstrom M, Kilpatrick G, et al. Brain uptake and receptor binding of two 11C-labelled selective high affinity NK1-antagonists, GR203040 and GR 205171. J Label Compounds Radiopharm 1997; 40: 665–7
50.
go back to reference Sakurada T, Sakudara C, Tan-No K, et al. Neurokinin receptor antagonists; therapeutic potential in the treatment of pain syndromes. CNS Drugs 1997; 8: 436–47CrossRef Sakurada T, Sakudara C, Tan-No K, et al. Neurokinin receptor antagonists; therapeutic potential in the treatment of pain syndromes. CNS Drugs 1997; 8: 436–47CrossRef
51.
go back to reference Palmer JL, Fumoleau B, Bryssine P, et al. Preliminary pharma-cokinetics of the NK1 receptor antagonist GR205171 in patients with chemotherapy induced or postoperative nausea and vomiting [abstract]. Chester: British Pharmacological Society, Apr 1998 Palmer JL, Fumoleau B, Bryssine P, et al. Preliminary pharma-cokinetics of the NK1 receptor antagonist GR205171 in patients with chemotherapy induced or postoperative nausea and vomiting [abstract]. Chester: British Pharmacological Society, Apr 1998
52.
go back to reference Hesketh PJ, Gralla RJ, Webb RT, et al. Randomized phase II study of the neurokinin 1 receptor antagonist CJ-11,974 in the control of cisplatin-induced emesis. J Clin Oncol 1999; 17: 338–43PubMed Hesketh PJ, Gralla RJ, Webb RT, et al. Randomized phase II study of the neurokinin 1 receptor antagonist CJ-11,974 in the control of cisplatin-induced emesis. J Clin Oncol 1999; 17: 338–43PubMed
53.
go back to reference Navari RM, Reinhardt RR, Gralla RJ, et al. Reduction of cisplatin-induced emesis by a selective neurokinin1-receptor antagonist. N Engl J Med 1999; 340: 190–5PubMedCrossRef Navari RM, Reinhardt RR, Gralla RJ, et al. Reduction of cisplatin-induced emesis by a selective neurokinin1-receptor antagonist. N Engl J Med 1999; 340: 190–5PubMedCrossRef
54.
go back to reference Fumoleau P, Graham E, Giovanni M, et al. Control of acute cisplatin-induced emesis and nausea with the NK1 receptor antagonist GR205171 in combination with ondansetron [abstract]. iProceedings of the 34th Annual Meeting of the American Society of Clinical Oncology: 1998 May 16–18; Los Angeles (CA), 17: 225 Fumoleau P, Graham E, Giovanni M, et al. Control of acute cisplatin-induced emesis and nausea with the NK1 receptor antagonist GR205171 in combination with ondansetron [abstract]. iProceedings of the 34th Annual Meeting of the American Society of Clinical Oncology: 1998 May 16–18; Los Angeles (CA), 17: 225
55.
go back to reference Diemunsch P, Schoeffler P, Bryssine B, et al. Anti-emetic activity of the NK1 receptor antagonist GR205171 in the treatment of established PONV following major gynaecological surgery. Br J Anaesth 1999; 82: 274–6PubMedCrossRef Diemunsch P, Schoeffler P, Bryssine B, et al. Anti-emetic activity of the NK1 receptor antagonist GR205171 in the treatment of established PONV following major gynaecological surgery. Br J Anaesth 1999; 82: 274–6PubMedCrossRef
56.
go back to reference Kris MG, Radford JE, Pizzo B A, et al. Use of an NK1 receptor antagonist to prevent delayed emesis after cisplatin. J Natl Cancer Institute 1997; 89: 817–8CrossRef Kris MG, Radford JE, Pizzo B A, et al. Use of an NK1 receptor antagonist to prevent delayed emesis after cisplatin. J Natl Cancer Institute 1997; 89: 817–8CrossRef
57.
go back to reference Gesztesi ZS, Song D, White PR Comparison of a new NK1 antagonist (CP122,721) to ondansetron in the prevention of postoperative nausea and vomiting [abstract]. Anesth Analg 1998; 86 Suppl. 2: S32CrossRef Gesztesi ZS, Song D, White PR Comparison of a new NK1 antagonist (CP122,721) to ondansetron in the prevention of postoperative nausea and vomiting [abstract]. Anesth Analg 1998; 86 Suppl. 2: S32CrossRef
58.
go back to reference Van Belle S, Cocquyt V, De Smet M, et al. Comparison of a neurokinin1 antagonist, L-758,298, to ondansetron in the prevention of cisplatin-induced emesis [abstract]. Proceedings of the 34th Annual Meeting of the American Society of Clinical Oncology: 1998 May 16–18; Los Angeles(CA), 1998; 17: 189 Van Belle S, Cocquyt V, De Smet M, et al. Comparison of a neurokinin1 antagonist, L-758,298, to ondansetron in the prevention of cisplatin-induced emesis [abstract]. Proceedings of the 34th Annual Meeting of the American Society of Clinical Oncology: 1998 May 16–18; Los Angeles(CA), 1998; 17: 189
59.
go back to reference Dionne RA, Max MB, Gordon SM, et al. The substance P receptor antagonist CP-99,994 reduces acute postoperative pain. Clin Pharmacol Ther 1998; 64: 562–8PubMedCrossRef Dionne RA, Max MB, Gordon SM, et al. The substance P receptor antagonist CP-99,994 reduces acute postoperative pain. Clin Pharmacol Ther 1998; 64: 562–8PubMedCrossRef
60.
go back to reference Diemunsch P, Korttila K, Kovac A. Current therapy for management of postoperative nausea and vomiting: the 5-HT3 receptor antagonists. Ambulatory Surg 1999; 7: 111–22CrossRef Diemunsch P, Korttila K, Kovac A. Current therapy for management of postoperative nausea and vomiting: the 5-HT3 receptor antagonists. Ambulatory Surg 1999; 7: 111–22CrossRef
Metadata
Title
Potential of Substance P Antagonists as Antiemetics
Authors
Dr Pierre Diemunsch
Laurent Grélot
Publication date
01-09-2000
Publisher
Springer International Publishing
Published in
Drugs / Issue 3/2000
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.2165/00003495-200060030-00002

Other articles of this Issue 3/2000

Drugs 3/2000 Go to the issue

Adis Drug Evaluation

Desirudin

Adis New Drug Profile

Nateglinide

Adis New Drug Profile

Nateglinide