Skip to main content
Top
Published in: Clinical Pharmacokinetics 6/2007

01-06-2007 | Review Article

Expression of Adenosine Triphosphate-Binding Cassette (ABC) Drug Transporters in Peripheral Blood Cells

Relevance for Physiology and Pharmacotherapy

Authors: Kathleen Köck, Markus Grube, Gabriele Jedlitschky, Lena Oevermann, Werner Siegmund, Christoph A. Ritter, Heyo K. Kroemer, PhD

Published in: Clinical Pharmacokinetics | Issue 6/2007

Login to get access

Abstract

Adenosine triphosphate-binding cassette (ABC)-type transport proteins were initially described for their ability to reduce intracellular concentrations of anti-cancer compounds, thereby conferring drug resistance. In recent years, expression of this type of proteins has also been reported in numerous cell types under physiological conditions; here, these transporters are often reported to alter systemic and local drug disposition (e.g. in the brain or the gastrointestinal tract). In this context, peripheral blood cells have also been found to express several ABC-type transporters. While erythrocytes mainly express multidrug resistance protein (MRP) 1, MRP4 and MRP5, which are discussed with regard to their involvement in glutathione homeostasis (MRP1) and in the efflux of cyclic nucleotides (MRP4 and MRP5), leukocytes also express P-glycoprotein and breast cancer resistance protein. In the latter cell types, the main function of efflux transporters may be protection against toxins, as these cells demonstrate a very high turnover rate. In platelets, only two ABC transporters have been described so far. Besides MRP1, platelets express relatively high amounts of MRP4 not only in the plasma membrane but also in the membrane of dense granules, suggesting relevance for mediator storage.
In addition to its physiological function, ABC transporter expression in these structures can be of pharmacological relevance since all systemic drugs reach their targets via circulation, thereby enabling interaction of the therapeutic agent with peripheral blood cells. Moreover, both intended effects and unwanted side effects occur in peripheral blood cells, and intracellular micropharmacokinetics can be affected by these transport proteins. The present review summarises the data available on expression of ABC transport proteins in peripheral blood cells.
Literature
1.
go back to reference Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001; 11(7): 1156–66PubMedCrossRef Dean M, Rzhetsky A, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 2001; 11(7): 1156–66PubMedCrossRef
2.
go back to reference Kage K, Tsukahara S, Sugiyama T, et al. Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int J Cancer 2002; 97(5): 626–30PubMedCrossRef Kage K, Tsukahara S, Sugiyama T, et al. Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization. Int J Cancer 2002; 97(5): 626–30PubMedCrossRef
3.
go back to reference de Graaf D, Sharma RC, Mechetner EB, et al. P-glycoprotein confers methotrexate resistance in 3T6 cells with deficient carrier-mediated methotrexate uptake. Proc Natl Acad Sci U S A 1996; 93(3): 1238–42PubMedCrossRef de Graaf D, Sharma RC, Mechetner EB, et al. P-glycoprotein confers methotrexate resistance in 3T6 cells with deficient carrier-mediated methotrexate uptake. Proc Natl Acad Sci U S A 1996; 93(3): 1238–42PubMedCrossRef
4.
go back to reference de Lannoy IA, Silverman M. The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem Biophys Res Commun 1992; 189(1): 551–7PubMedCrossRef de Lannoy IA, Silverman M. The MDR1 gene product, P-glycoprotein, mediates the transport of the cardiac glycoside, digoxin. Biochem Biophys Res Commun 1992; 189(1): 551–7PubMedCrossRef
5.
go back to reference Gramatte T, Oertel R. Intestinal secretion of intravenous talinolol is inhibited by luminal R-verapamil. Clin Pharmacol Ther 1999; 66(3): 239–45PubMedCrossRef Gramatte T, Oertel R. Intestinal secretion of intravenous talinolol is inhibited by luminal R-verapamil. Clin Pharmacol Ther 1999; 66(3): 239–45PubMedCrossRef
6.
go back to reference Hendricks CB, Rowinsky EK, Grochow LB, et al. Effect of P-glycoprotein expression on the accumulation and cytotoxicity of topotecan (SK&F 104864), a new camptothecin analogue. Cancer Res 1992; 52(8): 2268–78PubMed Hendricks CB, Rowinsky EK, Grochow LB, et al. Effect of P-glycoprotein expression on the accumulation and cytotoxicity of topotecan (SK&F 104864), a new camptothecin analogue. Cancer Res 1992; 52(8): 2268–78PubMed
7.
go back to reference Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101(2): 289–94PubMedCrossRef Kim RB, Fromm MF, Wandel C, et al. The drug transporter P-glycoprotein limits oral absorption and brain entry of HIV-1 protease inhibitors. J Clin Invest 1998; 101(2): 289–94PubMedCrossRef
8.
go back to reference Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S A 1997; 94(5): 2031–5PubMedCrossRef Sparreboom A, van Asperen J, Mayer U, et al. Limited oral bioavailability and active epithelial excretion of paclitaxel (Taxol) caused by P-glycoprotein in the intestine. Proc Natl Acad Sci U S A 1997; 94(5): 2031–5PubMedCrossRef
9.
go back to reference Ueda K, Cardarelli C, Gottesman MM, et al. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A 1987; 84(9): 3004–8PubMedCrossRef Ueda K, Cardarelli C, Gottesman MM, et al. Expression of a full-length cDNA for the human “MDR1” gene confers resistance to colchicine, doxorubicin, and vinblastine. Proc Natl Acad Sci U S A 1987; 84(9): 3004–8PubMedCrossRef
10.
go back to reference Verschraagen M, Koks CH, Schellens JH, et al. P-glycoprotein system as a determinant of drug interactions: the case of digoxin-verapamil. Pharmacol Res 1999; 40(4): 301–6PubMedCrossRef Verschraagen M, Koks CH, Schellens JH, et al. P-glycoprotein system as a determinant of drug interactions: the case of digoxin-verapamil. Pharmacol Res 1999; 40(4): 301–6PubMedCrossRef
11.
go back to reference Cole SP, Sparks KE, Fraser K, et al. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 1994; 54(22): 5902–10PubMed Cole SP, Sparks KE, Fraser K, et al. Pharmacological characterization of multidrug resistant MRP-transfected human tumor cells. Cancer Res 1994; 54(22): 5902–10PubMed
12.
go back to reference Hooijberg JH, Broxterman HJ, Kool M, et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res 1999; 59(11): 2532–5PubMed Hooijberg JH, Broxterman HJ, Kool M, et al. Antifolate resistance mediated by the multidrug resistance proteins MRP1 and MRP2. Cancer Res 1999; 59(11): 2532–5PubMed
13.
go back to reference Tamai I, Yamashita J, Kido Y, et al. Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood-brain barrier. J Pharmacol Exp Ther 2000; 295(1): 146–52PubMed Tamai I, Yamashita J, Kido Y, et al. Limited distribution of new quinolone antibacterial agents into brain caused by multiple efflux transporters at the blood-brain barrier. J Pharmacol Exp Ther 2000; 295(1): 146–52PubMed
14.
go back to reference Ritter CA, Jedlitschky G, Meyer zu Schwabedissen H, et al. Cellular export of drugs and signaling molecules by the ATP-binding cassette transporters MRP4 (ABCC4) and MRP5 (ABCC5). Drug Metab Rev 2005; 37(1): 253–78PubMedCrossRef Ritter CA, Jedlitschky G, Meyer zu Schwabedissen H, et al. Cellular export of drugs and signaling molecules by the ATP-binding cassette transporters MRP4 (ABCC4) and MRP5 (ABCC5). Drug Metab Rev 2005; 37(1): 253–78PubMedCrossRef
15.
go back to reference Allen JD, Van Dort SC, Buitelaar M, et al. Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res 2003; 63(6): 1339–44PubMed Allen JD, Van Dort SC, Buitelaar M, et al. Mouse breast cancer resistance protein (Bcrp1/Abcg2) mediates etoposide resistance and transport, but etoposide oral availability is limited primarily by P-glycoprotein. Cancer Res 2003; 63(6): 1339–44PubMed
16.
go back to reference Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 1998; 95(26): 15665–70PubMedCrossRef Doyle LA, Yang W, Abruzzo LV, et al. A multidrug resistance transporter from human MCF-7 breast cancer cells. Proc Natl Acad Sci U S A 1998; 95(26): 15665–70PubMedCrossRef
17.
go back to reference Maliepaard M, van Gastelen MA, de Jong LA, et al. Overex-pression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 1999; 59(18): 4559–63PubMed Maliepaard M, van Gastelen MA, de Jong LA, et al. Overex-pression of the BCRP/MXR/ABCP gene in a topotecan-selected ovarian tumor cell line. Cancer Res 1999; 59(18): 4559–63PubMed
18.
go back to reference Volk EL, Farley KM, Wu Y, et al. Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 2002; 62(17): 5035–40PubMed Volk EL, Farley KM, Wu Y, et al. Overexpression of wild-type breast cancer resistance protein mediates methotrexate resistance. Cancer Res 2002; 62(17): 5035–40PubMed
19.
go back to reference Wang X, Furukawa T, Nitanda T, et al. Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol 2003; 63(1): 65–72PubMedCrossRef Wang X, Furukawa T, Nitanda T, et al. Breast cancer resistance protein (BCRP/ABCG2) induces cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Mol Pharmacol 2003; 63(1): 65–72PubMedCrossRef
20.
go back to reference van der Sandt I, Vos CM, Nabulsi L, et al. Assessment of active transport of HIV protease inhibitors in various cell lines and the in vitro blood-brain barrier. AIDS 2001; 15(4): 483–91PubMedCrossRef van der Sandt I, Vos CM, Nabulsi L, et al. Assessment of active transport of HIV protease inhibitors in various cell lines and the in vitro blood-brain barrier. AIDS 2001; 15(4): 483–91PubMedCrossRef
21.
go back to reference Tanaka K, Hirai M, Tanigawara Y, et al. Relationship between expression level of P-glycoprotein and daunorubicin transport in LLC-PK1 cells transfected with human MDR1 gene. Biochem Pharmacol 1997; 53(5): 741–6PubMedCrossRef Tanaka K, Hirai M, Tanigawara Y, et al. Relationship between expression level of P-glycoprotein and daunorubicin transport in LLC-PK1 cells transfected with human MDR1 gene. Biochem Pharmacol 1997; 53(5): 741–6PubMedCrossRef
22.
go back to reference Wils P, Phung-Ba V, Warnery A, et al. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol 1994; 48(7): 1528–30PubMedCrossRef Wils P, Phung-Ba V, Warnery A, et al. Polarized transport of docetaxel and vinblastine mediated by P-glycoprotein in human intestinal epithelial cell monolayers. Biochem Pharmacol 1994; 48(7): 1528–30PubMedCrossRef
23.
go back to reference Luo FR, Paranjpe PV, Guo A, et al. Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Drug Metab Dispos 2002; 30(7): 763–70PubMedCrossRef Luo FR, Paranjpe PV, Guo A, et al. Intestinal transport of irinotecan in Caco-2 cells and MDCK II cells overexpressing efflux transporters Pgp, cMOAT, and MRP1. Drug Metab Dispos 2002; 30(7): 763–70PubMedCrossRef
24.
go back to reference Tanigawara Y, Okamura N, Hirai M, et al. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther 1992; 263(2): 840–5PubMed Tanigawara Y, Okamura N, Hirai M, et al. Transport of digoxin by human P-glycoprotein expressed in a porcine kidney epithelial cell line (LLC-PK1). J Pharmacol Exp Ther 1992; 263(2): 840–5PubMed
25.
go back to reference Pauli-Magnus C, Murdter T, Godel A, et al. P-glycoprotein-mediated transport of digitoxin, alpha-methyldigoxin and beta-acetyldigoxin. Naunyn Schmiedebergs Arch Pharmacol 2001; 363(3): 337–43PubMedCrossRef Pauli-Magnus C, Murdter T, Godel A, et al. P-glycoprotein-mediated transport of digitoxin, alpha-methyldigoxin and beta-acetyldigoxin. Naunyn Schmiedebergs Arch Pharmacol 2001; 363(3): 337–43PubMedCrossRef
26.
go back to reference Chen C, Mireles RJ, Campbell SD, et al. Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos 2005; 33(4): 537–46PubMedCrossRef Chen C, Mireles RJ, Campbell SD, et al. Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos 2005; 33(4): 537–46PubMedCrossRef
27.
go back to reference Soldner A, Benet LZ, Mutschler E, et al. Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and caco-2 cell monolayers. Br J Pharmacol 2000; 129(6): 1235–43PubMedCrossRef Soldner A, Benet LZ, Mutschler E, et al. Active transport of the angiotensin-II antagonist losartan and its main metabolite EXP 3174 across MDCK-MDR1 and caco-2 cell monolayers. Br J Pharmacol 2000; 129(6): 1235–43PubMedCrossRef
28.
go back to reference Yusa K, Tsuruo T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res 1989; 49(18): 5002–6PubMed Yusa K, Tsuruo T. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res 1989; 49(18): 5002–6PubMed
29.
go back to reference Bello-Reuss E, Ernest S, Holland OB, et al. Role of multidrug resistance P-glycoprotein in the secretion of aldosterone by human adrenal NCI-H295 cells. Am J Physiol Cell Physiol 2000; 278(6): C1256–65PubMed Bello-Reuss E, Ernest S, Holland OB, et al. Role of multidrug resistance P-glycoprotein in the secretion of aldosterone by human adrenal NCI-H295 cells. Am J Physiol Cell Physiol 2000; 278(6): C1256–65PubMed
30.
go back to reference Yates CR, Chang C, Kearbey JD, et al. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res 2003; 20(11): 1794–803PubMedCrossRef Yates CR, Chang C, Kearbey JD, et al. Structural determinants of P-glycoprotein-mediated transport of glucocorticoids. Pharm Res 2003; 20(11): 1794–803PubMedCrossRef
31.
go back to reference Huang L, Hoffman T, Vore M. Adenosine triphosphate-dependent transport of estradiol-17beta (beta-D-glucuronide) in membrane vesicles by MDR1 expressed in insect cells. Hepatology 1998; 28(5): 1371–7PubMedCrossRef Huang L, Hoffman T, Vore M. Adenosine triphosphate-dependent transport of estradiol-17beta (beta-D-glucuronide) in membrane vesicles by MDR1 expressed in insect cells. Hepatology 1998; 28(5): 1371–7PubMedCrossRef
32.
go back to reference Kim WY, Benet LZ. P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res 2004; 21(7): 1284–93PubMedCrossRef Kim WY, Benet LZ. P-glycoprotein (P-gp/MDR1)-mediated efflux of sex-steroid hormones and modulation of P-gp expression in vitro. Pharm Res 2004; 21(7): 1284–93PubMedCrossRef
33.
go back to reference Wandel C, Kim R, Wood M, et al. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology 2002; 96(4): 913–20PubMedCrossRef Wandel C, Kim R, Wood M, et al. Interaction of morphine, fentanyl, sufentanil, alfentanil, and loperamide with the efflux drug transporter P-glycoprotein. Anesthesiology 2002; 96(4): 913–20PubMedCrossRef
34.
go back to reference Pan BF, Dutt A, Nelson JA. Enhanced transepithelial flux of cimetidine by Madin-Darby canine kidney cells overexpressing human P-glycoprotein. J Pharmacol Exp Ther 1994; 270(1): 1–7PubMed Pan BF, Dutt A, Nelson JA. Enhanced transepithelial flux of cimetidine by Madin-Darby canine kidney cells overexpressing human P-glycoprotein. J Pharmacol Exp Ther 1994; 270(1): 1–7PubMed
35.
go back to reference Karyekar CS, Eddington ND, Garimella TS, et al. Evaluation of P-glycoprotein-mediated renal drug interactions in an MDR1-MDCK model. Pharmacotherapy 2003; 23(4): 436–42PubMedCrossRef Karyekar CS, Eddington ND, Garimella TS, et al. Evaluation of P-glycoprotein-mediated renal drug interactions in an MDR1-MDCK model. Pharmacotherapy 2003; 23(4): 436–42PubMedCrossRef
36.
go back to reference Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97(11): 2517–24PubMedCrossRef Schinkel AH, Wagenaar E, Mol CA, et al. P-glycoprotein in the blood-brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest 1996; 97(11): 2517–24PubMedCrossRef
37.
go back to reference Takano M, Hasegawa R, Fukuda T, et al. Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur J Pharmacol 1998; 358(3): 289–94PubMedCrossRef Takano M, Hasegawa R, Fukuda T, et al. Interaction with P-glycoprotein and transport of erythromycin, midazolam and ketoconazole in Caco-2 cells. Eur J Pharmacol 1998; 358(3): 289–94PubMedCrossRef
38.
go back to reference Miyama T, Takanaga H, Matsuo H, et al. P-glycoprotein-mediated transport of itraconazole across the blood-brain barrier. Antimicrob Agents Chemother 1998; 42(7): 1738–44PubMed Miyama T, Takanaga H, Matsuo H, et al. P-glycoprotein-mediated transport of itraconazole across the blood-brain barrier. Antimicrob Agents Chemother 1998; 42(7): 1738–44PubMed
39.
go back to reference Saeki T, Ueda K, Tanigawara Y, et al. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 1993; 268(9): 6077–80PubMed Saeki T, Ueda K, Tanigawara Y, et al. Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 1993; 268(9): 6077–80PubMed
40.
go back to reference Williams GC, Liu A, Knipp G, et al. Direct evidence that saquinavir is transported by multidrug resistance-associated protein (MRP1) and canalicular multispecific organic anion transporter (MRP2). Antimicrob Agents Chemother 2002; 46(11): 3456–62PubMedCrossRef Williams GC, Liu A, Knipp G, et al. Direct evidence that saquinavir is transported by multidrug resistance-associated protein (MRP1) and canalicular multispecific organic anion transporter (MRP2). Antimicrob Agents Chemother 2002; 46(11): 3456–62PubMedCrossRef
41.
go back to reference Conrad S, Kauffmann HM, Ito K, et al. A naturally occurring mutation in MRP1 results in a selective decrease in organic anion transport and in increased doxorubicin resistance. Pharmacogenetics 2002; 12(4): 321–30PubMedCrossRef Conrad S, Kauffmann HM, Ito K, et al. A naturally occurring mutation in MRP1 results in a selective decrease in organic anion transport and in increased doxorubicin resistance. Pharmacogenetics 2002; 12(4): 321–30PubMedCrossRef
42.
go back to reference Grant CE, Valdimarsson G, Hipfner DR, et al. Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. Cancer Res 1994; 54(2): 357–61PubMed Grant CE, Valdimarsson G, Hipfner DR, et al. Overexpression of multidrug resistance-associated protein (MRP) increases resistance to natural product drugs. Cancer Res 1994; 54(2): 357–61PubMed
43.
go back to reference Breuninger LM, Paul S, Gaughan K, et al. Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res 1995; 55(22): 5342–7PubMed Breuninger LM, Paul S, Gaughan K, et al. Expression of multidrug resistance-associated protein in NIH/3T3 cells confers multidrug resistance associated with increased drug efflux and altered intracellular drug distribution. Cancer Res 1995; 55(22): 5342–7PubMed
44.
go back to reference Renes J, de Vries EG, Nienhuis EF, et al. ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. Br J Pharmacol 1999; 126(3): 681–8PubMedCrossRef Renes J, de Vries EG, Nienhuis EF, et al. ATP- and glutathione-dependent transport of chemotherapeutic drugs by the multidrug resistance protein MRP1. Br J Pharmacol 1999; 126(3): 681–8PubMedCrossRef
45.
go back to reference Loe DW, Almquist KC, Deeley RG, et al. Multidrug resistance protein (MRP)-mediated transport of leukotriene C4 and chem-otherapeutic agents in membrane vesicles: demonstration of glutathione-dependent vincristine transport. J Biol Chem 1996; 271(16): 9675–82PubMedCrossRef Loe DW, Almquist KC, Deeley RG, et al. Multidrug resistance protein (MRP)-mediated transport of leukotriene C4 and chem-otherapeutic agents in membrane vesicles: demonstration of glutathione-dependent vincristine transport. J Biol Chem 1996; 271(16): 9675–82PubMedCrossRef
46.
go back to reference Muller M, Meijer C, Zaman GJ, et al. Overexpression of the gene encoding the multidrug resistance-associated protein results in increased ATP-dependent glutathione S-conjugate transport. Proc Natl Acad Sci U S A 1994; 91(26): 13033–7PubMedCrossRef Muller M, Meijer C, Zaman GJ, et al. Overexpression of the gene encoding the multidrug resistance-associated protein results in increased ATP-dependent glutathione S-conjugate transport. Proc Natl Acad Sci U S A 1994; 91(26): 13033–7PubMedCrossRef
47.
go back to reference Leier I, Jedlitschky G, Buchholz U, et al. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 1994; 269(45): 27807–10PubMed Leier I, Jedlitschky G, Buchholz U, et al. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. J Biol Chem 1994; 269(45): 27807–10PubMed
48.
go back to reference Loe DW, Almquist KC, Cole SP, et al. ATP-dependent 17 beta-estradiol 17- (beta-D-glucuronide) transport by multidrug resistance protein (MRP): inhibition by cholestatic steroids. J Biol Chem 1996; 271(16): 9683–9PubMedCrossRef Loe DW, Almquist KC, Cole SP, et al. ATP-dependent 17 beta-estradiol 17- (beta-D-glucuronide) transport by multidrug resistance protein (MRP): inhibition by cholestatic steroids. J Biol Chem 1996; 271(16): 9683–9PubMedCrossRef
49.
go back to reference Qian YM, Song WC, Cui H, et al. Glutathione stimulates sulfated estrogen transport by multidrug resistance protein 1. J Biol Chem 2001; 276(9): 6404–11PubMedCrossRef Qian YM, Song WC, Cui H, et al. Glutathione stimulates sulfated estrogen transport by multidrug resistance protein 1. J Biol Chem 2001; 276(9): 6404–11PubMedCrossRef
50.
go back to reference Zelcer N, Reid G, Wielinga P, et al. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem J 2003; 371(Pt 2): 361–7PubMedCrossRef Zelcer N, Reid G, Wielinga P, et al. Steroid and bile acid conjugates are substrates of human multidrug-resistance protein (MRP) 4 (ATP-binding cassette C4). Biochem J 2003; 371(Pt 2): 361–7PubMedCrossRef
51.
go back to reference Zaman GJ, Lankelma J, van Tellingen O, et al. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci U S A 1995; 92(17): 7690–4PubMedCrossRef Zaman GJ, Lankelma J, van Tellingen O, et al. Role of glutathione in the export of compounds from cells by the multidrug-resistance-associated protein. Proc Natl Acad Sci U S A 1995; 92(17): 7690–4PubMedCrossRef
52.
go back to reference Leier I, Jedlitschky G, Buchholz U, et al. ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochem J 1996; 314(Pt 2): 433–7PubMed Leier I, Jedlitschky G, Buchholz U, et al. ATP-dependent glutathione disulphide transport mediated by the MRP gene-encoded conjugate export pump. Biochem J 1996; 314(Pt 2): 433–7PubMed
53.
go back to reference Rigato I, Pascolo L, Fernetti C, et al. The human multidrug-resistance-associated protein MRP1 mediates ATP-dependent transport of unconjugated bilirubin. Biochem J 2004; 383(Pt 2): 335–41PubMed Rigato I, Pascolo L, Fernetti C, et al. The human multidrug-resistance-associated protein MRP1 mediates ATP-dependent transport of unconjugated bilirubin. Biochem J 2004; 383(Pt 2): 335–41PubMed
54.
go back to reference Renes J, de Vries EE, Hooiveld GJ, et al. Multidrug resistance protein MRP1 protects against the toxicity of the major lipid peroxidation product 4-hydroxynonenal. Biochem J 2000; 350 Pt 2: 555–61PubMedCrossRef Renes J, de Vries EE, Hooiveld GJ, et al. Multidrug resistance protein MRP1 protects against the toxicity of the major lipid peroxidation product 4-hydroxynonenal. Biochem J 2000; 350 Pt 2: 555–61PubMedCrossRef
55.
go back to reference Jedlitschky G, Leier I, Buchholz U, et al. ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochem J 1997; 327(Pt 1): 305–10PubMed Jedlitschky G, Leier I, Buchholz U, et al. ATP-dependent transport of bilirubin glucuronides by the multidrug resistance protein MRP1 and its hepatocyte canalicular isoform MRP2. Biochem J 1997; 327(Pt 1): 305–10PubMed
56.
go back to reference Dekkers DW, Comfurius P, Schroit AJ, et al. Transbilayer movement of NBD-labeled phospholipids in red blood cell membranes: outward-directed transport by the multidrug resistance protein 1 (MRP1). Biochemistry 1998; 37(42): 14833–7PubMedCrossRef Dekkers DW, Comfurius P, Schroit AJ, et al. Transbilayer movement of NBD-labeled phospholipids in red blood cell membranes: outward-directed transport by the multidrug resistance protein 1 (MRP1). Biochemistry 1998; 37(42): 14833–7PubMedCrossRef
57.
go back to reference Raggers RJ, van Helvoort A, Evers R, et al. The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J Cell Sci 1999; 112(Pt 3): 415–22PubMed Raggers RJ, van Helvoort A, Evers R, et al. The human multidrug resistance protein MRP1 translocates sphingolipid analogs across the plasma membrane. J Cell Sci 1999; 112(Pt 3): 415–22PubMed
58.
go back to reference Jedlitschky G, Leier I, Buchholz U, et al. Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res 1996; 56(5): 988–94PubMed Jedlitschky G, Leier I, Buchholz U, et al. Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump. Cancer Res 1996; 56(5): 988–94PubMed
59.
go back to reference Huisman MT, Smit JW, Crommentuyn KM, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS 2002; 16(17): 2295–301PubMedCrossRef Huisman MT, Smit JW, Crommentuyn KM, et al. Multidrug resistance protein 2 (MRP2) transports HIV protease inhibitors, and transport can be enhanced by other drugs. AIDS 2002; 16(17): 2295–301PubMedCrossRef
60.
go back to reference Evers R, de Haas M, Sparidans R, et al. Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer 2000; 83(3): 375–83PubMedCrossRef Evers R, de Haas M, Sparidans R, et al. Vinblastine and sulfinpyrazone export by the multidrug resistance protein MRP2 is associated with glutathione export. Br J Cancer 2000; 83(3): 375–83PubMedCrossRef
61.
go back to reference Cui Y, Konig J, Buchholz JK, et al. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 1999; 55(5): 929–37PubMed Cui Y, Konig J, Buchholz JK, et al. Drug resistance and ATP-dependent conjugate transport mediated by the apical multidrug resistance protein, MRP2, permanently expressed in human and canine cells. Mol Pharmacol 1999; 55(5): 929–37PubMed
62.
go back to reference Hagmann W, Schubert J, Konig J, et al. Reconstitution of transport-active multidrug resistance protein 2 (MRP2; ABCC2) in proteoliposomes. Biol Chem 2002; 383(6): 1001–9PubMedCrossRef Hagmann W, Schubert J, Konig J, et al. Reconstitution of transport-active multidrug resistance protein 2 (MRP2; ABCC2) in proteoliposomes. Biol Chem 2002; 383(6): 1001–9PubMedCrossRef
63.
go back to reference Kamisako T, Leier I, Cui Y, et al. Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology 1999; 30(2): 485–90PubMedCrossRef Kamisako T, Leier I, Cui Y, et al. Transport of monoglucuronosyl and bisglucuronosyl bilirubin by recombinant human and rat multidrug resistance protein 2. Hepatology 1999; 30(2): 485–90PubMedCrossRef
64.
go back to reference Evers R, Kool M, van Deemter L, et al. Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J Clin Invest 1998; 101(7): 1310–9PubMed Evers R, Kool M, van Deemter L, et al. Drug export activity of the human canalicular multispecific organic anion transporter in polarized kidney MDCK cells expressing cMOAT (MRP2) cDNA. J Clin Invest 1998; 101(7): 1310–9PubMed
65.
go back to reference Zeng H, Liu G, Rea PA, et al. Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res 2000; 60(17): 4779–84PubMed Zeng H, Liu G, Rea PA, et al. Transport of amphipathic anions by human multidrug resistance protein 3. Cancer Res 2000; 60(17): 4779–84PubMed
66.
go back to reference Kool M, van der LM, de Haas M, et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci U S A 1999; 96(12): 6914–9PubMedCrossRef Kool M, van der LM, de Haas M, et al. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci U S A 1999; 96(12): 6914–9PubMedCrossRef
67.
go back to reference Lee YM, Cui Y, Konig J, et al. Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3). Pharmacogenetics 2004; 14(4): 213–23PubMedCrossRef Lee YM, Cui Y, Konig J, et al. Identification and functional characterization of the natural variant MRP3-Arg1297His of human multidrug resistance protein 3 (MRP3/ABCC3). Pharmacogenetics 2004; 14(4): 213–23PubMedCrossRef
68.
go back to reference Zelcer N, van de WK, Hillebrand M, et al. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci U S A 2005; 102(20): 7274–9PubMedCrossRef Zelcer N, van de WK, Hillebrand M, et al. Mice lacking multidrug resistance protein 3 show altered morphine pharmacokinetics and morphine-6-glucuronide antinociception. Proc Natl Acad Sci U S A 2005; 102(20): 7274–9PubMedCrossRef
69.
go back to reference Schuetz JD, Connelly MC, Sun D, et al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 1999; 5(9): 1048–51PubMedCrossRef Schuetz JD, Connelly MC, Sun D, et al. MRP4: a previously unidentified factor in resistance to nucleoside-based antiviral drugs. Nat Med 1999; 5(9): 1048–51PubMedCrossRef
70.
go back to reference Reid G, Wielinga P, Zelcer N, et al. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol 2003; 63(5): 1094–103PubMedCrossRef Reid G, Wielinga P, Zelcer N, et al. Characterization of the transport of nucleoside analog drugs by the human multidrug resistance proteins MRP4 and MRP5. Mol Pharmacol 2003; 63(5): 1094–103PubMedCrossRef
71.
go back to reference Adachi M, Sampath J, Lan LB, et al. Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing. J Biol Chem 2002; 277(41): 38998–9004PubMedCrossRef Adachi M, Sampath J, Lan LB, et al. Expression of MRP4 confers resistance to ganciclovir and compromises bystander cell killing. J Biol Chem 2002; 277(41): 38998–9004PubMedCrossRef
72.
go back to reference Tian Q, Zhang J, Tan TM, et al. Human multidrug resistance associated protein 4 confers resistance to camptothecins. Pharm Res 2005; 22(11): 1837–53PubMedCrossRef Tian Q, Zhang J, Tan TM, et al. Human multidrug resistance associated protein 4 confers resistance to camptothecins. Pharm Res 2005; 22(11): 1837–53PubMedCrossRef
73.
go back to reference Chen ZS, Lee K, Walther S, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res 2002; 62(11): 3144–50PubMed Chen ZS, Lee K, Walther S, et al. Analysis of methotrexate and folate transport by multidrug resistance protein 4 (ABCC4): MRP4 is a component of the methotrexate efflux system. Cancer Res 2002; 62(11): 3144–50PubMed
74.
go back to reference Chen ZS, Lee K, Kruh GD. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4: resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 2001; 276(36): 33747–54PubMedCrossRef Chen ZS, Lee K, Kruh GD. Transport of cyclic nucleotides and estradiol 17-beta-D-glucuronide by multidrug resistance protein 4: resistance to 6-mercaptopurine and 6-thioguanine. J Biol Chem 2001; 276(36): 33747–54PubMedCrossRef
75.
go back to reference Reid G, Wielinga P, Zelcer N, et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A 2003; 100(16): 9244–9PubMedCrossRef Reid G, Wielinga P, Zelcer N, et al. The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci U S A 2003; 100(16): 9244–9PubMedCrossRef
76.
go back to reference Rius M, Hummel-Eisenbeiss J, Hofmann AF, et al. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am J Physiol Gastrointest Liver Physiol 2006; 290(4): G640–9PubMedCrossRef Rius M, Hummel-Eisenbeiss J, Hofmann AF, et al. Substrate specificity of human ABCC4 (MRP4)-mediated cotransport of bile acids and reduced glutathione. Am J Physiol Gastrointest Liver Physiol 2006; 290(4): G640–9PubMedCrossRef
77.
go back to reference Wijnholds J, Mol CA, van Deemter L, et al. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci U S A 2000; 97(13): 7476–81PubMedCrossRef Wijnholds J, Mol CA, van Deemter L, et al. Multidrug-resistance protein 5 is a multispecific organic anion transporter able to transport nucleotide analogs. Proc Natl Acad Sci U S A 2000; 97(13): 7476–81PubMedCrossRef
78.
go back to reference Pratt S, Shepard RL, Kandasamy RA, et al. The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther 2005; 4(5): 855–63PubMedCrossRef Pratt S, Shepard RL, Kandasamy RA, et al. The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther 2005; 4(5): 855–63PubMedCrossRef
79.
go back to reference Wielinga P, Hooijberg JH, Gunnarsdottir S, et al. The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolates. Cancer Res 2005; 65(10): 4425–30PubMedCrossRef Wielinga P, Hooijberg JH, Gunnarsdottir S, et al. The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolates. Cancer Res 2005; 65(10): 4425–30PubMedCrossRef
80.
go back to reference Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem 2000; 275(39): 30069–74PubMedCrossRef Jedlitschky G, Burchell B, Keppler D. The multidrug resistance protein 5 functions as an ATP-dependent export pump for cyclic nucleotides. J Biol Chem 2000; 275(39): 30069–74PubMedCrossRef
81.
go back to reference Belinsky MG, Chen ZS, Shchaveleva I, et al. Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res 2002; 62(21): 6172–7PubMed Belinsky MG, Chen ZS, Shchaveleva I, et al. Characterization of the drug resistance and transport properties of multidrug resistance protein 6 (MRP6, ABCC6). Cancer Res 2002; 62(21): 6172–7PubMed
82.
go back to reference Hopper-Borge E, Chen ZS, Shchaveleva I, et al. Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res 2004; 64(14): 4927–30PubMedCrossRef Hopper-Borge E, Chen ZS, Shchaveleva I, et al. Analysis of the drug resistance profile of multidrug resistance protein 7 (ABCC10): resistance to docetaxel. Cancer Res 2004; 64(14): 4927–30PubMedCrossRef
83.
go back to reference Chen ZS, Hopper-Borge E, Belinsky MG, et al. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol Pharmacol 2003; 63(2): 351–8PubMedCrossRef Chen ZS, Hopper-Borge E, Belinsky MG, et al. Characterization of the transport properties of human multidrug resistance protein 7 (MRP7, ABCC10). Mol Pharmacol 2003; 63(2): 351–8PubMedCrossRef
84.
go back to reference Guo Y, Kotova E, Chen ZS, et al. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′,3′-dideoxycytidine and 9′- (2′-phosphonylmethoxyethyl)adenine. J Biol Chem 2003; 278(32): 29509–14PubMedCrossRef Guo Y, Kotova E, Chen ZS, et al. MRP8, ATP-binding cassette C11 (ABCC11), is a cyclic nucleotide efflux pump and a resistance factor for fluoropyrimidines 2′,3′-dideoxycytidine and 9′- (2′-phosphonylmethoxyethyl)adenine. J Biol Chem 2003; 278(32): 29509–14PubMedCrossRef
85.
go back to reference Chen ZS, Guo Y, Belinsky MG, et al. Transport of bile acids, sulfated steroids, estradiol 17-beta-D-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11). Mol Pharmacol 2005; 67(2): 545–57PubMedCrossRef Chen ZS, Guo Y, Belinsky MG, et al. Transport of bile acids, sulfated steroids, estradiol 17-beta-D-glucuronide, and leukotriene C4 by human multidrug resistance protein 8 (ABCC11). Mol Pharmacol 2005; 67(2): 545–57PubMedCrossRef
86.
go back to reference Oguri T, Bessho Y, Achiwa H, et al. MRP8/ABCC11 directly confers resistance to 5-fluorouracil. Mol Cancer Ther 2007; 6(1): 122–7PubMedCrossRef Oguri T, Bessho Y, Achiwa H, et al. MRP8/ABCC11 directly confers resistance to 5-fluorouracil. Mol Cancer Ther 2007; 6(1): 122–7PubMedCrossRef
87.
go back to reference Wang X, Baba M. The role of breast cancer resistance protein (BCRP/ABCG2) in cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Antivir Chem Chemother 2005; 16(4): 213–6PubMed Wang X, Baba M. The role of breast cancer resistance protein (BCRP/ABCG2) in cellular resistance to HIV-1 nucleoside reverse transcriptase inhibitors. Antivir Chem Chemother 2005; 16(4): 213–6PubMed
88.
go back to reference Chen ZS, Robey RW, Belinsky MG, et al. Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res 2003; 63(14): 4048–54PubMed Chen ZS, Robey RW, Belinsky MG, et al. Transport of methotrexate, methotrexate polyglutamates, and 17beta-estradiol 17-(beta-D-glucuronide) by ABCG2: effects of acquired mutations at R482 on methotrexate transport. Cancer Res 2003; 63(14): 4048–54PubMed
89.
go back to reference Nakagawa R, Hara Y, Arakawa H, et al. ABCG2 confers resistance to indolocarbazole compounds by ATP-dependent transport. Biochem Biophys Res Commun 2002; 299(4): 669–75PubMedCrossRef Nakagawa R, Hara Y, Arakawa H, et al. ABCG2 confers resistance to indolocarbazole compounds by ATP-dependent transport. Biochem Biophys Res Commun 2002; 299(4): 669–75PubMedCrossRef
90.
go back to reference Brangi M, Litman T, Ciotti M, et al. Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res 1999; 59(23): 5938–46PubMed Brangi M, Litman T, Ciotti M, et al. Camptothecin resistance: role of the ATP-binding cassette (ABC), mitoxantrone-resistance half-transporter (MXR), and potential for glucuronidation in MXR-expressing cells. Cancer Res 1999; 59(23): 5938–46PubMed
91.
go back to reference Breedveld P, Pluim D, Cipriani G, et al. The effect of low pH on breast cancer resistance protein (ABCG2)-mediated transport of methotrexate, 7-hydroxymethotrexate, methotrexate diglutamate, folic acid, mitoxantrone, topotecan, and resveratrol in in vitro drug transport models. Mol Pharmacol 2007; 71(1): 240–9PubMedCrossRef Breedveld P, Pluim D, Cipriani G, et al. The effect of low pH on breast cancer resistance protein (ABCG2)-mediated transport of methotrexate, 7-hydroxymethotrexate, methotrexate diglutamate, folic acid, mitoxantrone, topotecan, and resveratrol in in vitro drug transport models. Mol Pharmacol 2007; 71(1): 240–9PubMedCrossRef
92.
go back to reference Huang L, Wang Y, Grimm S. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos 2006; 34(5): 738–42PubMedCrossRef Huang L, Wang Y, Grimm S. ATP-dependent transport of rosuvastatin in membrane vesicles expressing breast cancer resistance protein. Drug Metab Dispos 2006; 34(5): 738–42PubMedCrossRef
93.
go back to reference Pavek P, Merino G, Wagenaar E, et al. Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo-(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther 2005; 312(1): 144–52PubMedCrossRef Pavek P, Merino G, Wagenaar E, et al. Human breast cancer resistance protein: interactions with steroid drugs, hormones, the dietary carcinogen 2-amino-1-methyl-6-phenylimidazo-(4,5-b)pyridine, and transport of cimetidine. J Pharmacol Exp Ther 2005; 312(1): 144–52PubMedCrossRef
94.
go back to reference Robey RW, Medina-Perez WY, Nishiyama K, et al. Overex-pression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 2001; 7(1): 145–52PubMed Robey RW, Medina-Perez WY, Nishiyama K, et al. Overex-pression of the ATP-binding cassette half-transporter, ABCG2 (Mxr/BCrp/ABCP1), in flavopiridol-resistant human breast cancer cells. Clin Cancer Res 2001; 7(1): 145–52PubMed
95.
go back to reference Jonker JW, Buitelaar M, Wagenaar E, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A 2002; 99(24): 15649–54PubMedCrossRef Jonker JW, Buitelaar M, Wagenaar E, et al. The breast cancer resistance protein protects against a major chlorophyll-derived dietary phototoxin and protoporphyria. Proc Natl Acad Sci U S A 2002; 99(24): 15649–54PubMedCrossRef
96.
go back to reference Suzuki M, Suzuki H, Sugimoto Y, et al. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 2003; 278(25): 22644–9PubMedCrossRef Suzuki M, Suzuki H, Sugimoto Y, et al. ABCG2 transports sulfated conjugates of steroids and xenobiotics. J Biol Chem 2003; 278(25): 22644–9PubMedCrossRef
97.
go back to reference Srivastava SK, Beutler E. The transport of oxidized glutathione from human erythrocytes. J Biol Chem 1969; 244(1): 9–16PubMed Srivastava SK, Beutler E. The transport of oxidized glutathione from human erythrocytes. J Biol Chem 1969; 244(1): 9–16PubMed
98.
go back to reference Kondo T, Dale GL, Beutler E. Glutathione transport by inside-out vesicles from human erythrocytes. Proc Natl Acad Sci U S A 1980; 77(11): 6359–62PubMedCrossRef Kondo T, Dale GL, Beutler E. Glutathione transport by inside-out vesicles from human erythrocytes. Proc Natl Acad Sci U S A 1980; 77(11): 6359–62PubMedCrossRef
99.
go back to reference Prchal J, Srivastava SK, Beutler E. Active transport of GSSG from reconstituted erythrocyte ghosts. Blood 1975; 46(1): 111–7PubMed Prchal J, Srivastava SK, Beutler E. Active transport of GSSG from reconstituted erythrocyte ghosts. Blood 1975; 46(1): 111–7PubMed
100.
go back to reference Di Simplicio P, Cacace MG, Lusini L, et al. Role of protein-SH groups in redox homeostasis: the erythrocyte as a model system. Arch Biochem Biophys 1998; 355(2): 145–52PubMedCrossRef Di Simplicio P, Cacace MG, Lusini L, et al. Role of protein-SH groups in redox homeostasis: the erythrocyte as a model system. Arch Biochem Biophys 1998; 355(2): 145–52PubMedCrossRef
101.
go back to reference Edwards CJ, Fuller J. Oxidative stress in erythrocytes. Comparative Haematology International 1996; 6(1): 24–31CrossRef Edwards CJ, Fuller J. Oxidative stress in erythrocytes. Comparative Haematology International 1996; 6(1): 24–31CrossRef
102.
go back to reference Pulaski L, Jedlitschky G, Leier I, et al. Identification of the multidrug-resistance protein (MRP) as the glutathione-S-conjugate export pump of erythrocytes. Eur J Biochem 1996; 241(2): 644–8PubMedCrossRef Pulaski L, Jedlitschky G, Leier I, et al. Identification of the multidrug-resistance protein (MRP) as the glutathione-S-conjugate export pump of erythrocytes. Eur J Biochem 1996; 241(2): 644–8PubMedCrossRef
103.
go back to reference Klokouzas A, Wu CP, van Veen HW, et al. cGMP and glutathione-conjugate transport in human erythrocytes. Eur J Biochem 2003; 270(18): 3696–708PubMedCrossRef Klokouzas A, Wu CP, van Veen HW, et al. cGMP and glutathione-conjugate transport in human erythrocytes. Eur J Biochem 2003; 270(18): 3696–708PubMedCrossRef
104.
go back to reference Hirrlinger J, Dringen R. Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes. Methods Enzymol 2005; 400: 395–409PubMedCrossRef Hirrlinger J, Dringen R. Multidrug resistance protein 1-mediated export of glutathione and glutathione disulfide from brain astrocytes. Methods Enzymol 2005; 400: 395–409PubMedCrossRef
105.
go back to reference Spitz DR, Sullivan SJ, Malcolm RR, et al. Glutathione dependent metabolism and detoxification of 4-hydroxy-2-nonenal. Free Radic Biol Med 1991; 11(4): 415–23PubMedCrossRef Spitz DR, Sullivan SJ, Malcolm RR, et al. Glutathione dependent metabolism and detoxification of 4-hydroxy-2-nonenal. Free Radic Biol Med 1991; 11(4): 415–23PubMedCrossRef
106.
go back to reference Board PG. Transport of glutathione S-conjugate from human erythrocytes. FEBS Lett 1981; 124(2): 163–5PubMedCrossRef Board PG. Transport of glutathione S-conjugate from human erythrocytes. FEBS Lett 1981; 124(2): 163–5PubMedCrossRef
107.
go back to reference Klokouzas A, Barrand MA, Hladky SB. Effects of clotrimazole on transport mediated by multidrug resistance associated protein 1 (MRP1) in human erythrocytes and tumour cells. Eur J Biochem 2001; 268(24): 6569–77PubMedCrossRef Klokouzas A, Barrand MA, Hladky SB. Effects of clotrimazole on transport mediated by multidrug resistance associated protein 1 (MRP1) in human erythrocytes and tumour cells. Eur J Biochem 2001; 268(24): 6569–77PubMedCrossRef
108.
go back to reference Wijnholds J, Evers R, van Leusden MR, et al. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med 1997; 3(11): 1275–9PubMedCrossRef Wijnholds J, Evers R, van Leusden MR, et al. Increased sensitivity to anticancer drugs and decreased inflammatory response in mice lacking the multidrug resistance-associated protein. Nat Med 1997; 3(11): 1275–9PubMedCrossRef
109.
go back to reference Zeng H, Chen ZS, Belinsky MG, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res 2001; 61(19): 7225–32PubMed Zeng H, Chen ZS, Belinsky MG, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1: effect of polyglutamylation on MTX transport. Cancer Res 2001; 61(19): 7225–32PubMed
110.
go back to reference Tornhamre S, Sjolinder M, Lindberg A, et al. Demonstration of leukotriene-C4 synthase in platelets and species distribution of the enzyme activity. Eur J Biochem 1998; 251(1-2): 227–35PubMedCrossRef Tornhamre S, Sjolinder M, Lindberg A, et al. Demonstration of leukotriene-C4 synthase in platelets and species distribution of the enzyme activity. Eur J Biochem 1998; 251(1-2): 227–35PubMedCrossRef
111.
go back to reference Bagrij T, Klokouzas A, Hladky SB, et al. Influences of glutathione on anionic substrate efflux in tumour cells expressing the multidrug resistance-associated protein, MRP1. Biochem Pharmacol 2001; 62(2): 199–206PubMedCrossRef Bagrij T, Klokouzas A, Hladky SB, et al. Influences of glutathione on anionic substrate efflux in tumour cells expressing the multidrug resistance-associated protein, MRP1. Biochem Pharmacol 2001; 62(2): 199–206PubMedCrossRef
112.
go back to reference Loe DW, Oleschuk CJ, Deeley RG, et al. Structure-activity studies of verapamil analogs that modulate transport of leukotriene C (4) and reduced glutathione by multidrug resistance protein MRP1. Biochem Biophys Res Commun 2000; 275(3): 795–803PubMedCrossRef Loe DW, Oleschuk CJ, Deeley RG, et al. Structure-activity studies of verapamil analogs that modulate transport of leukotriene C (4) and reduced glutathione by multidrug resistance protein MRP1. Biochem Biophys Res Commun 2000; 275(3): 795–803PubMedCrossRef
113.
go back to reference Dekkers DW, Comfurius P, van Gool RG, et al. Multidrug resistance protein 1 regulates lipid asymmetry in erythrocyte membranes. Biochem J 2000; 350 Pt 2: 531–5PubMedCrossRef Dekkers DW, Comfurius P, van Gool RG, et al. Multidrug resistance protein 1 regulates lipid asymmetry in erythrocyte membranes. Biochem J 2000; 350 Pt 2: 531–5PubMedCrossRef
114.
go back to reference Flo K, Hansen M, Orbo A, et al. Effect of probenecid, verapamil and progesterone on the concentration-dependent and temperature-sensitive human erythrocyte uptake and export of guanosine 3′,5′cyclic monophosphate (cGMP). Scand J Clin Lab Invest 1995; 55(8): 715–21PubMedCrossRef Flo K, Hansen M, Orbo A, et al. Effect of probenecid, verapamil and progesterone on the concentration-dependent and temperature-sensitive human erythrocyte uptake and export of guanosine 3′,5′cyclic monophosphate (cGMP). Scand J Clin Lab Invest 1995; 55(8): 715–21PubMedCrossRef
115.
go back to reference Boadu E, Sager G. Binding characterization of a putative cGMP transporter in the cell membrane of human erythrocytes. Biochemistry 1997; 36(36): 10954–8PubMedCrossRef Boadu E, Sager G. Binding characterization of a putative cGMP transporter in the cell membrane of human erythrocytes. Biochemistry 1997; 36(36): 10954–8PubMedCrossRef
116.
go back to reference Sager G, Orbo A, Pettersen RH, et al. Export of guanosine 3′,5′-cyclic monophosphate (cGMP) from human erythrocytes characterized by inside-out membrane vesicles. Scand J Clin Lab Invest 1996; 56(4): 289–93PubMedCrossRef Sager G, Orbo A, Pettersen RH, et al. Export of guanosine 3′,5′-cyclic monophosphate (cGMP) from human erythrocytes characterized by inside-out membrane vesicles. Scand J Clin Lab Invest 1996; 56(4): 289–93PubMedCrossRef
117.
go back to reference Boadu E, Sager G. ATPase activity and transport by a cGMP transporter in human erythrocyte ghosts and proteoliposome-reconstituted membrane extracts. Biochim Biophys Acta 2000; 1509(1–2): 467–74PubMed Boadu E, Sager G. ATPase activity and transport by a cGMP transporter in human erythrocyte ghosts and proteoliposome-reconstituted membrane extracts. Biochim Biophys Acta 2000; 1509(1–2): 467–74PubMed
118.
go back to reference Wu CP, Woodcock H, Hladky SB, et al. cGMP (guanosine 3′,5′-cyclic monophosphate) transport across human erythrocyte membranes. Biochem Pharmacol 2005; 69(8): 1257–62PubMedCrossRef Wu CP, Woodcock H, Hladky SB, et al. cGMP (guanosine 3′,5′-cyclic monophosphate) transport across human erythrocyte membranes. Biochem Pharmacol 2005; 69(8): 1257–62PubMedCrossRef
119.
go back to reference Boadu E, Sager G. Reconstitution of ATP-dependent cGMP transport into proteoliposomes by membrane proteins from human erythrocytes. Scand J Clin Lab Invest 2004; 64(1): 41–8PubMedCrossRef Boadu E, Sager G. Reconstitution of ATP-dependent cGMP transport into proteoliposomes by membrane proteins from human erythrocytes. Scand J Clin Lab Invest 2004; 64(1): 41–8PubMedCrossRef
120.
go back to reference Zhou S, Zong Y, Ney PA, et al. Increased expression of the Abcg2 transporter during erythroid maturation plays a role in decreasing cellular protoporphyrin IX levels. Blood 2005; 105(6): 2571–6PubMedCrossRef Zhou S, Zong Y, Ney PA, et al. Increased expression of the Abcg2 transporter during erythroid maturation plays a role in decreasing cellular protoporphyrin IX levels. Blood 2005; 105(6): 2571–6PubMedCrossRef
121.
go back to reference Zhou S, Zong Y, Lu T, et al. Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques 2003; 35(6): 1248–52PubMed Zhou S, Zong Y, Lu T, et al. Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques 2003; 35(6): 1248–52PubMed
122.
go back to reference Tamura A, Watanabe M, Saito H, et al. Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol 2006; 70(1): 287–96PubMed Tamura A, Watanabe M, Saito H, et al. Functional validation of the genetic polymorphisms of human ATP-binding cassette (ABC) transporter ABCG2: identification of alleles that are defective in porphyrin transport. Mol Pharmacol 2006; 70(1): 287–96PubMed
123.
go back to reference Sidhu AB, Uhlemann AC, Valderramos SG, et al. Decreasing pfmdr1 copy number in plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 2006; 194(4): 528–35PubMedCrossRef Sidhu AB, Uhlemann AC, Valderramos SG, et al. Decreasing pfmdr1 copy number in plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J Infect Dis 2006; 194(4): 528–35PubMedCrossRef
124.
go back to reference Woodrow CJ, Krishna S. Antimalarial drugs: recent advances in molecular determinants of resistance and their clinical significance. Cell Mol Life Sci 2006; 63(14): 1586–96PubMedCrossRef Woodrow CJ, Krishna S. Antimalarial drugs: recent advances in molecular determinants of resistance and their clinical significance. Cell Mol Life Sci 2006; 63(14): 1586–96PubMedCrossRef
125.
go back to reference Riffkin CD, Chung R, Wall DM, et al. Modulation of the function of human MDR1 P-glycoprotein by the antimalarial drug mefloquine. Biochem Pharmacol 1996; 52(10): 1545–52PubMedCrossRef Riffkin CD, Chung R, Wall DM, et al. Modulation of the function of human MDR1 P-glycoprotein by the antimalarial drug mefloquine. Biochem Pharmacol 1996; 52(10): 1545–52PubMedCrossRef
126.
go back to reference Abraham EH, Shrivastav B, Salikhova AY, et al. Cellular and biophysical evidence for interactions between adenosine triphosphate and P-glycoprotein substrates: functional implications for adenosine triphosphate/drug cotransport in P-glycoprotein overexpressing tumor cells and in P-glycoprotein low-level expressing erythrocytes. Blood Cells Mol Dis 2001; 27(1): 181–200PubMedCrossRef Abraham EH, Shrivastav B, Salikhova AY, et al. Cellular and biophysical evidence for interactions between adenosine triphosphate and P-glycoprotein substrates: functional implications for adenosine triphosphate/drug cotransport in P-glycoprotein overexpressing tumor cells and in P-glycoprotein low-level expressing erythrocytes. Blood Cells Mol Dis 2001; 27(1): 181–200PubMedCrossRef
127.
go back to reference Wu CP, Klokouzas A, Hladky SB, et al. Interactions of mefloquine with ABC proteins, MRP1 (ABCC1) and MRP4 (ABCC4) that are present in human red cell membranes. Biochem Pharmacol 2005; 70(4): 500–10PubMedCrossRef Wu CP, Klokouzas A, Hladky SB, et al. Interactions of mefloquine with ABC proteins, MRP1 (ABCC1) and MRP4 (ABCC4) that are present in human red cell membranes. Biochem Pharmacol 2005; 70(4): 500–10PubMedCrossRef
128.
go back to reference Oerlemans R, van der HJ, Vink J, et al. Acquired resistance to chloroquine in human CEM T cells is mediated by multidrug resistance-associated protein 1 and provokes high levels of cross-resistance to glucocorticoids. Arthritis Rheum 2006; 54(2): 557–68PubMedCrossRef Oerlemans R, van der HJ, Vink J, et al. Acquired resistance to chloroquine in human CEM T cells is mediated by multidrug resistance-associated protein 1 and provokes high levels of cross-resistance to glucocorticoids. Arthritis Rheum 2006; 54(2): 557–68PubMedCrossRef
129.
go back to reference Vezmar M, Georges E. Direct binding of chloroquine to the multidrug resistance protein (MRP): possible role for MRP in chloroquine drug transport and resistance in tumor cells. Biochem Pharmacol 1998; 56(6): 733–42PubMedCrossRef Vezmar M, Georges E. Direct binding of chloroquine to the multidrug resistance protein (MRP): possible role for MRP in chloroquine drug transport and resistance in tumor cells. Biochem Pharmacol 1998; 56(6): 733–42PubMedCrossRef
130.
go back to reference Kartner N, Riordan JR, Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 1983; 221(4617): 1285–8PubMedCrossRef Kartner N, Riordan JR, Ling V. Cell surface P-glycoprotein associated with multidrug resistance in mammalian cell lines. Science 1983; 221(4617): 1285–8PubMedCrossRef
131.
go back to reference Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987; 84(21): 7735–8PubMedCrossRef Thiebaut F, Tsuruo T, Hamada H, et al. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc Natl Acad Sci U S A 1987; 84(21): 7735–8PubMedCrossRef
132.
go back to reference Chaudhary PM, Mechetner EB, Roninson IB. Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood 1992; 80(11): 2735–9PubMed Chaudhary PM, Mechetner EB, Roninson IB. Expression and activity of the multidrug resistance P-glycoprotein in human peripheral blood lymphocytes. Blood 1992; 80(11): 2735–9PubMed
133.
go back to reference Drach D, Zhao S, Drach J, et al. Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood 1992; 80(11): 2729–34PubMed Drach D, Zhao S, Drach J, et al. Subpopulations of normal peripheral blood and bone marrow cells express a functional multidrug resistant phenotype. Blood 1992; 80(11): 2729–34PubMed
134.
go back to reference Klimecki WT, Futscher BW, Grogan TM, et al. P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood 1994; 83(9): 2451–8PubMed Klimecki WT, Futscher BW, Grogan TM, et al. P-glycoprotein expression and function in circulating blood cells from normal volunteers. Blood 1994; 83(9): 2451–8PubMed
135.
go back to reference Ludescher C, Pall G, Irschick EU, et al. Differential activity of P-glycoprotein in normal blood lymphocyte subsets. Br J Haematol 1998; 101(4): 722–7PubMedCrossRef Ludescher C, Pall G, Irschick EU, et al. Differential activity of P-glycoprotein in normal blood lymphocyte subsets. Br J Haematol 1998; 101(4): 722–7PubMedCrossRef
136.
go back to reference Vasquez EM, Petrenko Y, Jacobssen V, et al. An assessment of P-glycoprotein expression and activity in peripheral blood lymphocytes of transplant candidates. Transplant Proc 2005; 37(1): 175–7PubMedCrossRef Vasquez EM, Petrenko Y, Jacobssen V, et al. An assessment of P-glycoprotein expression and activity in peripheral blood lymphocytes of transplant candidates. Transplant Proc 2005; 37(1): 175–7PubMedCrossRef
137.
go back to reference Meaden ER, Hoggard PG, Khoo SH, et al. Determination of P-gp and MRP1 expression and function in peripheral blood mononuclear cells in vivo. J Immunol Methods 2002; 262(1–2): 159–65PubMedCrossRef Meaden ER, Hoggard PG, Khoo SH, et al. Determination of P-gp and MRP1 expression and function in peripheral blood mononuclear cells in vivo. J Immunol Methods 2002; 262(1–2): 159–65PubMedCrossRef
138.
go back to reference Aggarwal S, Tsuruo T, Gupta S. Altered expression and function of P-glycoprotein (170 kDa), encoded by the MDR 1 gene, in T cell subsets from aging humans. J Clin Immunol 1997; 17(6): 448–54PubMedCrossRef Aggarwal S, Tsuruo T, Gupta S. Altered expression and function of P-glycoprotein (170 kDa), encoded by the MDR 1 gene, in T cell subsets from aging humans. J Clin Immunol 1997; 17(6): 448–54PubMedCrossRef
139.
go back to reference Donnenberg VS, Burckart GJ, Griffith BP, et al. P-glycoprotein (P-gp) is upregulated in peripheral T-cell subsets from solid organ transplant recipients. J Clin Pharmacol 2001; 41(12): 1271–9PubMedCrossRef Donnenberg VS, Burckart GJ, Griffith BP, et al. P-glycoprotein (P-gp) is upregulated in peripheral T-cell subsets from solid organ transplant recipients. J Clin Pharmacol 2001; 41(12): 1271–9PubMedCrossRef
140.
go back to reference Zhang J, Alston MA, Huang H, et al. Human T cell cytokine responses are dependent on multidrug resistance protein-1. Int Immunol 2006; 18(3): 485–93PubMedCrossRef Zhang J, Alston MA, Huang H, et al. Human T cell cytokine responses are dependent on multidrug resistance protein-1. Int Immunol 2006; 18(3): 485–93PubMedCrossRef
141.
go back to reference Oselin K, Mrozikiewicz PM, Pahkla R, et al. Quantitative determination of the human MRP1 and MRP2 mRNA expression in FACS-sorted peripheral blood CD4+, CD8+, CD19+, and CD56+ cells. Eur J Haematol 2003; 71(2): 119–23PubMedCrossRef Oselin K, Mrozikiewicz PM, Pahkla R, et al. Quantitative determination of the human MRP1 and MRP2 mRNA expression in FACS-sorted peripheral blood CD4+, CD8+, CD19+, and CD56+ cells. Eur J Haematol 2003; 71(2): 119–23PubMedCrossRef
142.
go back to reference Drach J, Gsur A, Hamilton G, et al. Involvement of P-glycoprotein in the transmembrane transport of interleukin-2 (IL-2), IL-4, and interferon-gamma in normal human T lymphocytes. Blood 1996; 88(5): 1747–54PubMed Drach J, Gsur A, Hamilton G, et al. Involvement of P-glycoprotein in the transmembrane transport of interleukin-2 (IL-2), IL-4, and interferon-gamma in normal human T lymphocytes. Blood 1996; 88(5): 1747–54PubMed
143.
go back to reference Raghu G, Park SW, Roninson IB, et al. Monoclonal antibodies against P-glycoprotein, an MDR1 gene product, inhibit interleukin-2 release from PHA-activated lymphocytes. Exp Hematol 1996; 24(10): 1258–64PubMed Raghu G, Park SW, Roninson IB, et al. Monoclonal antibodies against P-glycoprotein, an MDR1 gene product, inhibit interleukin-2 release from PHA-activated lymphocytes. Exp Hematol 1996; 24(10): 1258–64PubMed
144.
go back to reference Pawlik A, Baskiewicz-Masiuk M, Machalinski B, et al. Involvement of P-glycoprotein in the release of cytokines from peripheral blood mononuclear cells treated with methotrexate and dexamethasone. J Pharm Pharmacol 2005; 57(11): 1421–5PubMedCrossRef Pawlik A, Baskiewicz-Masiuk M, Machalinski B, et al. Involvement of P-glycoprotein in the release of cytokines from peripheral blood mononuclear cells treated with methotrexate and dexamethasone. J Pharm Pharmacol 2005; 57(11): 1421–5PubMedCrossRef
145.
go back to reference Pawlik A, Baskiewicz-Masiuk M, Machalinski B, et al. Involvement of C3435T and G2677T multidrug resistance gene polymorphisms in release of cytokines from peripheral blood mononuclear cells treated with methotrexate and dex-amethasone. Eur J Pharmacol 2005; 528(1-3): 27–36PubMedCrossRef Pawlik A, Baskiewicz-Masiuk M, Machalinski B, et al. Involvement of C3435T and G2677T multidrug resistance gene polymorphisms in release of cytokines from peripheral blood mononuclear cells treated with methotrexate and dex-amethasone. Eur J Pharmacol 2005; 528(1-3): 27–36PubMedCrossRef
146.
go back to reference Gollapudi S, Kim C, Gupta S. P-glycoprotein (encoded by multidrug resistance genes) is not required for interleukin-2 secretion in mice and humans. Genes Immun 2000; 1(6): 371–9PubMedCrossRef Gollapudi S, Kim C, Gupta S. P-glycoprotein (encoded by multidrug resistance genes) is not required for interleukin-2 secretion in mice and humans. Genes Immun 2000; 1(6): 371–9PubMedCrossRef
147.
go back to reference Machado CG, Calado RT, Garcia AB, et al. Age-related changes of the multidrug resistance P-glycoprotein function in normal human peripheral blood T lymphocytes. Braz J Med Biol Res 2003; 36(12): 1653–7PubMedCrossRef Machado CG, Calado RT, Garcia AB, et al. Age-related changes of the multidrug resistance P-glycoprotein function in normal human peripheral blood T lymphocytes. Braz J Med Biol Res 2003; 36(12): 1653–7PubMedCrossRef
148.
go back to reference Dosiou C, Giudice LC. Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev 2005; 26(1): 44–62PubMedCrossRef Dosiou C, Giudice LC. Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev 2005; 26(1): 44–62PubMedCrossRef
149.
go back to reference Egashira M, Kawamata N, Sugimoto K, et al. P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporin A and its analogue, PSC833. Blood 1999; 93(2): 599–606PubMed Egashira M, Kawamata N, Sugimoto K, et al. P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporin A and its analogue, PSC833. Blood 1999; 93(2): 599–606PubMed
150.
go back to reference Wilisch A, Noller A, Handgretinger R, et al. Mdr1/P-glycoprotein expression in natural killer (NK) cells enriched from peripheral or umbilical cord blood. Cancer Lett 1993; 69(2): 139–48PubMedCrossRef Wilisch A, Noller A, Handgretinger R, et al. Mdr1/P-glycoprotein expression in natural killer (NK) cells enriched from peripheral or umbilical cord blood. Cancer Lett 1993; 69(2): 139–48PubMedCrossRef
151.
go back to reference Janneh O, Owen A, Chandler B, et al. Modulation of the intracellular accumulation of saquinavir in peripheral blood mononuclear cells by inhibitors of MRP1, MRP2, P-gp and BCRP. AIDS 2005; 19(18): 2097–102PubMedCrossRef Janneh O, Owen A, Chandler B, et al. Modulation of the intracellular accumulation of saquinavir in peripheral blood mononuclear cells by inhibitors of MRP1, MRP2, P-gp and BCRP. AIDS 2005; 19(18): 2097–102PubMedCrossRef
152.
go back to reference Malorni W, Lucia MB, Rainaldi G, et al. Intracellular expression of P-170 glycoprotein in peripheral blood mononuclear cell subsets from healthy donors and HIV-infected patients. Haematologica 1998; 83(1): 13–20PubMed Malorni W, Lucia MB, Rainaldi G, et al. Intracellular expression of P-170 glycoprotein in peripheral blood mononuclear cell subsets from healthy donors and HIV-infected patients. Haematologica 1998; 83(1): 13–20PubMed
153.
go back to reference Trambas C, Wang Z, Cianfriglia M, et al. Evidence that natural killer cells express mini P-glycoproteins but not classic 170 kDa P-glycoprotein. Br J Haematol 2001; 114(1): 177–84PubMedCrossRef Trambas C, Wang Z, Cianfriglia M, et al. Evidence that natural killer cells express mini P-glycoproteins but not classic 170 kDa P-glycoprotein. Br J Haematol 2001; 114(1): 177–84PubMedCrossRef
154.
go back to reference Laupeze B, Amiot L, Payen L, et al. Multidrug resistance protein (MRP) activity in normal mature leukocytes and CD34-positive hematopoietic cells from peripheral blood. Life Sci 2001; 68(11): 1323–31PubMedCrossRef Laupeze B, Amiot L, Payen L, et al. Multidrug resistance protein (MRP) activity in normal mature leukocytes and CD34-positive hematopoietic cells from peripheral blood. Life Sci 2001; 68(11): 1323–31PubMedCrossRef
155.
go back to reference Frank MH, Denton MD, Alexander SI, et al. Specific MDR1 P-glycoprotein blockade inhibits human alloimmune T cell activation in vitro. J Immunol 2001; 166(4): 2451–9PubMed Frank MH, Denton MD, Alexander SI, et al. Specific MDR1 P-glycoprotein blockade inhibits human alloimmune T cell activation in vitro. J Immunol 2001; 166(4): 2451–9PubMed
156.
go back to reference Schinkel AH, Roelofs EM, Borst P. Characterization of the human MDR3 P-glycoprotein and its recognition by P-glycoprotein-specific monoclonal antibodies. Cancer Res 1991; 51(10): 2628–35PubMed Schinkel AH, Roelofs EM, Borst P. Characterization of the human MDR3 P-glycoprotein and its recognition by P-glycoprotein-specific monoclonal antibodies. Cancer Res 1991; 51(10): 2628–35PubMed
157.
go back to reference Ratnam KV, Tan CK. A review of neurological complications in AIDS. Singapore Med J 1989; 30(2): 199–201PubMed Ratnam KV, Tan CK. A review of neurological complications in AIDS. Singapore Med J 1989; 30(2): 199–201PubMed
158.
go back to reference Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005; 2(1): 86–98PubMedCrossRef Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2005; 2(1): 86–98PubMedCrossRef
159.
go back to reference Scherrmann JM. Expression and function of multidrug resistance transporters at the blood-brain barriers. Expert Opin Drug Metab Toxicol 2005; 1(2): 233–46PubMedCrossRef Scherrmann JM. Expression and function of multidrug resistance transporters at the blood-brain barriers. Expert Opin Drug Metab Toxicol 2005; 1(2): 233–46PubMedCrossRef
160.
go back to reference Meaden ER, Hoggard PG, Newton P, et al. P-glycoprotein and MRP1 expression and reduced ritonavir and saquinavir accumulation in HIV-infected individuals. J Antimicrob Chemother 2002; 50(4): 583–8PubMedCrossRef Meaden ER, Hoggard PG, Newton P, et al. P-glycoprotein and MRP1 expression and reduced ritonavir and saquinavir accumulation in HIV-infected individuals. J Antimicrob Chemother 2002; 50(4): 583–8PubMedCrossRef
161.
go back to reference Jones K, Bray PG, Khoo SH, et al. P-glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance? AIDS 2001; 15(11): 1353–8PubMedCrossRef Jones K, Bray PG, Khoo SH, et al. P-glycoprotein and transporter MRP1 reduce HIV protease inhibitor uptake in CD4 cells: potential for accelerated viral drug resistance? AIDS 2001; 15(11): 1353–8PubMedCrossRef
162.
go back to reference Jones K, Hoggard PG, Sales SD, et al. Differences in the intracellular accumulation of HIV protease inhibitors in vitro and the effect of active transport. AIDS 2001; 15(6): 675–81PubMedCrossRef Jones K, Hoggard PG, Sales SD, et al. Differences in the intracellular accumulation of HIV protease inhibitors in vitro and the effect of active transport. AIDS 2001; 15(6): 675–81PubMedCrossRef
163.
go back to reference Lee CG, Ramachandra M, Jeang KT, et al. Effect of ABC transporters on HIV-1 infection: inhibition of virus production by the MDR1 transporter. FASEB J 2000; 14(3): 516–22PubMed Lee CG, Ramachandra M, Jeang KT, et al. Effect of ABC transporters on HIV-1 infection: inhibition of virus production by the MDR1 transporter. FASEB J 2000; 14(3): 516–22PubMed
164.
go back to reference Speck RR, Yu XF, Hildreth J, et al. Differential effects of P-glycoprotein and multidrug resistance protein-1 on productive human immunodeficiency virus infection. J Infect Dis 2002; 186(3): 332–40PubMedCrossRef Speck RR, Yu XF, Hildreth J, et al. Differential effects of P-glycoprotein and multidrug resistance protein-1 on productive human immunodeficiency virus infection. J Infect Dis 2002; 186(3): 332–40PubMedCrossRef
165.
go back to reference Liao Z, Cimakasky LM, Hampton R, et al. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res Hum Retroviruses 2001; 17(11): 1009–19PubMedCrossRef Liao Z, Cimakasky LM, Hampton R, et al. Lipid rafts and HIV pathogenesis: host membrane cholesterol is required for infection by HIV type 1. AIDS Res Hum Retroviruses 2001; 17(11): 1009–19PubMedCrossRef
166.
go back to reference Mihm S, Ennen J, Pessara U, et al. Inhibition of HIV-1 replication and NF-kappa B activity by cysteine and cysteine derivatives. AIDS 1991; 5(5): 497–503PubMedCrossRef Mihm S, Ennen J, Pessara U, et al. Inhibition of HIV-1 replication and NF-kappa B activity by cysteine and cysteine derivatives. AIDS 1991; 5(5): 497–503PubMedCrossRef
167.
go back to reference Herzenberg LA, Dubs JG, De Rosa SC, et al. Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci U 1997; 94(5): 1967–72PubMedCrossRef Herzenberg LA, Dubs JG, De Rosa SC, et al. Glutathione deficiency is associated with impaired survival in HIV disease. Proc Natl Acad Sci U 1997; 94(5): 1967–72PubMedCrossRef
168.
go back to reference Srinivas RV, Middlemas D, Flynn P, et al. Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob Agents Chemother 1998; 42(12): 3157–62PubMed Srinivas RV, Middlemas D, Flynn P, et al. Human immunodeficiency virus protease inhibitors serve as substrates for multidrug transporter proteins MDR1 and MRP1 but retain antiviral efficacy in cell lines expressing these transporters. Antimicrob Agents Chemother 1998; 42(12): 3157–62PubMed
169.
go back to reference Dallas S, Ronaldson PT, Bendayan M, et al. Multidrug resistance protein 1-mediated transport of saquinavir by microglia. Neuroreport 2004; 15(7): 1183–6PubMedCrossRef Dallas S, Ronaldson PT, Bendayan M, et al. Multidrug resistance protein 1-mediated transport of saquinavir by microglia. Neuroreport 2004; 15(7): 1183–6PubMedCrossRef
170.
go back to reference Gupta A, Zhang Y, Unadkat JD, et al. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther 2004; 310(1): 334–41PubMedCrossRef Gupta A, Zhang Y, Unadkat JD, et al. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer resistance protein (BCRP/ABCG2). J Pharmacol Exp Ther 2004; 310(1): 334–41PubMedCrossRef
171.
go back to reference Jorajuria S, Dereuddre-Bosquet N, Naissant-Storck K, et al. Differential expression levels of MRP1, MRP4, and MRP5 in response to human immunodeficiency virus infection in human macrophages. Antimicrob Agents Chemother 2004; 48(5): 1889–91PubMedCrossRef Jorajuria S, Dereuddre-Bosquet N, Naissant-Storck K, et al. Differential expression levels of MRP1, MRP4, and MRP5 in response to human immunodeficiency virus infection in human macrophages. Antimicrob Agents Chemother 2004; 48(5): 1889–91PubMedCrossRef
172.
go back to reference Han K, Kahng J, Kim M, et al. Expression of functional markers in acute nonlymphoblastic leukemia. Acta Haematol 2000; 104(4): 174–80PubMedCrossRef Han K, Kahng J, Kim M, et al. Expression of functional markers in acute nonlymphoblastic leukemia. Acta Haematol 2000; 104(4): 174–80PubMedCrossRef
173.
go back to reference Del Poeta G, Venditti A, Aronica G, et al. P-glycoprotein expression in de novo acute myeloid leukemia. Leuk Lymphoma 1997; 27(3–4): 257–74PubMed Del Poeta G, Venditti A, Aronica G, et al. P-glycoprotein expression in de novo acute myeloid leukemia. Leuk Lymphoma 1997; 27(3–4): 257–74PubMed
174.
go back to reference Leith CP, Kopecky KJ, Godwin J, et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997; 89(9): 3323–9PubMed Leith CP, Kopecky KJ, Godwin J, et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood 1997; 89(9): 3323–9PubMed
175.
go back to reference Michieli M, Damiani D, Ermacora A, et al. P-glycoprotein, lung resistance-related protein and multidrug resistance associated protein in de novo acute non-lymphocytic leukaemias: biological and clinical implications. Br J Haematol 1999; 104(2): 328–35PubMedCrossRef Michieli M, Damiani D, Ermacora A, et al. P-glycoprotein, lung resistance-related protein and multidrug resistance associated protein in de novo acute non-lymphocytic leukaemias: biological and clinical implications. Br J Haematol 1999; 104(2): 328–35PubMedCrossRef
176.
go back to reference Li YH, Wang YH, Li Y, et al. MDR1 gene polymorphisms and clinical relevance. Yi Chuan Xue Bao 2006; 33(2): 93–104PubMed Li YH, Wang YH, Li Y, et al. MDR1 gene polymorphisms and clinical relevance. Yi Chuan Xue Bao 2006; 33(2): 93–104PubMed
177.
go back to reference Illmer T, Schuler US, Thiede C, et al. MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Res 2002; 62(17): 4955–62PubMed Illmer T, Schuler US, Thiede C, et al. MDR1 gene polymorphisms affect therapy outcome in acute myeloid leukemia patients. Cancer Res 2002; 62(17): 4955–62PubMed
178.
go back to reference Jamroziak K, Mlynarski W, Balcerczak E, et al. Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol 2004; 72(5): 314–21PubMedCrossRef Jamroziak K, Mlynarski W, Balcerczak E, et al. Functional C3435T polymorphism of MDR1 gene: an impact on genetic susceptibility and clinical outcome of childhood acute lymphoblastic leukemia. Eur J Haematol 2004; 72(5): 314–21PubMedCrossRef
179.
go back to reference Kim DH, Park JY, Sohn SK, et al. Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. Int J Cancer 2006; 118(9): 2195–201PubMedCrossRef Kim DH, Park JY, Sohn SK, et al. Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. Int J Cancer 2006; 118(9): 2195–201PubMedCrossRef
180.
go back to reference Damiani D, Tiribelli M, Calistri E, et al. The prognostic value of P-glycoprotein (ABCB) and breast cancer resistance protein (ABCG2) in adults with de novo acute myeloid leukemia with normal karyotype. Haematologica 2006; 91(6): 825–8PubMed Damiani D, Tiribelli M, Calistri E, et al. The prognostic value of P-glycoprotein (ABCB) and breast cancer resistance protein (ABCG2) in adults with de novo acute myeloid leukemia with normal karyotype. Haematologica 2006; 91(6): 825–8PubMed
181.
go back to reference Benderra Z, Faussat AM, Sayada L, et al. MRP3, BCRP, and P-glycoprotein activities are prognostic factors in adult acute myeloid leukemia. Clin Cancer Res 2005; 11(21): 7764–72PubMedCrossRef Benderra Z, Faussat AM, Sayada L, et al. MRP3, BCRP, and P-glycoprotein activities are prognostic factors in adult acute myeloid leukemia. Clin Cancer Res 2005; 11(21): 7764–72PubMedCrossRef
182.
go back to reference van der Kolk DM, de Vries EG, Muller M, et al. The role of drug efflux pumps in acute myeloid leukemia. Leuk Lymphoma 2002; 43(4): 685–701PubMedCrossRef van der Kolk DM, de Vries EG, Muller M, et al. The role of drug efflux pumps in acute myeloid leukemia. Leuk Lymphoma 2002; 43(4): 685–701PubMedCrossRef
183.
go back to reference Swerts K, De Moerloose B, Dhooge C, et al. Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur J Cancer 2006; 42(3): 295–309PubMedCrossRef Swerts K, De Moerloose B, Dhooge C, et al. Prognostic significance of multidrug resistance-related proteins in childhood acute lymphoblastic leukaemia. Eur J Cancer 2006; 42(3): 295–309PubMedCrossRef
184.
go back to reference Jedlitschky G, Tirschmann K, Lubenow LE, et al. The nucleotide transporter MRP4 (ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage. Blood 2004; 104(12): 3603–10PubMedCrossRef Jedlitschky G, Tirschmann K, Lubenow LE, et al. The nucleotide transporter MRP4 (ABCC4) is highly expressed in human platelets and present in dense granules, indicating a role in mediator storage. Blood 2004; 104(12): 3603–10PubMedCrossRef
185.
go back to reference Sjolinder M, Tornhamre S, Claesson HE, et al. Characterization of a leukotriene C4 export mechanism in human platelets: possible involvement of multidrug resistance-associated protein 1. J Lipid Res 1999; 40(3): 439–46PubMed Sjolinder M, Tornhamre S, Claesson HE, et al. Characterization of a leukotriene C4 export mechanism in human platelets: possible involvement of multidrug resistance-associated protein 1. J Lipid Res 1999; 40(3): 439–46PubMed
186.
go back to reference Lindgren JA, Edenius C. Transcellular biosynthesis of leukotrienes and lipoxins via leukotriene A4 transfer. Trends Pharmacol Sci 1993; 14(10): 351–4PubMedCrossRef Lindgren JA, Edenius C. Transcellular biosynthesis of leukotrienes and lipoxins via leukotriene A4 transfer. Trends Pharmacol Sci 1993; 14(10): 351–4PubMedCrossRef
187.
go back to reference Spangrude GJ, Johnson GR. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci U S A 1990; 87(19): 7433–7PubMedCrossRef Spangrude GJ, Johnson GR. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci U S A 1990; 87(19): 7433–7PubMedCrossRef
188.
go back to reference Wolf NS, Kone A, Priestley GV, et al. In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp Hematol 1993; 21(5): 614–22PubMed Wolf NS, Kone A, Priestley GV, et al. In vivo and in vitro characterization of long-term repopulating primitive hematopoietic cells isolated by sequential Hoechst 33342-rhodamine 123 FACS selection. Exp Hematol 1993; 21(5): 614–22PubMed
189.
go back to reference Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991; 66(1): 85–94PubMedCrossRef Chaudhary PM, Roninson IB. Expression and activity of P-glycoprotein, a multidrug efflux pump, in human hematopoietic stem cells. Cell 1991; 66(1): 85–94PubMedCrossRef
190.
go back to reference Berenson RJ, Bensinger WI, Hill RS, et al. Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 1991; 77(8): 1717–22PubMed Berenson RJ, Bensinger WI, Hill RS, et al. Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood 1991; 77(8): 1717–22PubMed
191.
go back to reference Krause DS, Ito T, Fackler MJ, et al. Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood 1994; 84(3): 691–701PubMed Krause DS, Ito T, Fackler MJ, et al. Characterization of murine CD34, a marker for hematopoietic progenitor and stem cells. Blood 1994; 84(3): 691–701PubMed
192.
go back to reference Osawa M, Hanada K, Hamada H, et al. Long-term lymphohe-matopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996; 273(5272): 242–5PubMedCrossRef Osawa M, Hanada K, Hamada H, et al. Long-term lymphohe-matopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996; 273(5272): 242–5PubMedCrossRef
193.
go back to reference Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997; 3(12): 1337–45PubMedCrossRef Goodell MA, Rosenzweig M, Kim H, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997; 3(12): 1337–45PubMedCrossRef
194.
go back to reference Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183(4): 1797–806PubMedCrossRef Goodell MA, Brose K, Paradis G, et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183(4): 1797–806PubMedCrossRef
195.
go back to reference Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7(9): 1028–34PubMedCrossRef Zhou S, Schuetz JD, Bunting KD, et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7(9): 1028–34PubMedCrossRef
196.
go back to reference Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002; 99(2): 507–12PubMedCrossRef Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002; 99(2): 507–12PubMedCrossRef
197.
go back to reference Tadjali M, Zhou S, Rehg J, et al. Prospective isolation of murine hematopoietic stem cells by expression of an Abcg2/GFP allele. Stem Cells 2006; 24(6): 1556–63PubMedCrossRef Tadjali M, Zhou S, Rehg J, et al. Prospective isolation of murine hematopoietic stem cells by expression of an Abcg2/GFP allele. Stem Cells 2006; 24(6): 1556–63PubMedCrossRef
198.
go back to reference Morita Y, Ema H, Yamazaki S, et al. Non-side-population hematopoietic stem cells in mouse bone marrow. Blood 2006; 108(8): 2850–6PubMedCrossRef Morita Y, Ema H, Yamazaki S, et al. Non-side-population hematopoietic stem cells in mouse bone marrow. Blood 2006; 108(8): 2850–6PubMedCrossRef
199.
go back to reference Mogi M, Yang J, Lambert JF, et al. Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem 2003; 278(40): 39068–75PubMedCrossRef Mogi M, Yang J, Lambert JF, et al. Akt signaling regulates side population cell phenotype via Bcrp1 translocation. J Biol Chem 2003; 278(40): 39068–75PubMedCrossRef
200.
go back to reference Uchida N, Dykstra B, Lyons K, et al. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status. Blood 2004; 103(12): 4487–95PubMedCrossRef Uchida N, Dykstra B, Lyons K, et al. ABC transporter activities of murine hematopoietic stem cells vary according to their developmental and activation status. Blood 2004; 103(12): 4487–95PubMedCrossRef
201.
go back to reference Zhou S, Morris JJ, Barnes Y, et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A 2002; 99(19): 12339–44PubMedCrossRef Zhou S, Morris JJ, Barnes Y, et al. Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci U S A 2002; 99(19): 12339–44PubMedCrossRef
202.
go back to reference Krishnamurthy P, Ross DD, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 2004; 279(23): 24218–25PubMedCrossRef Krishnamurthy P, Ross DD, Nakanishi T, et al. The stem cell marker Bcrp/ABCG2 enhances hypoxic cell survival through interactions with heme. J Biol Chem 2004; 279(23): 24218–25PubMedCrossRef
203.
go back to reference van Tellingen O, Buckle T, Jonker JW, et al. P-glycoprotein and Mrp1 collectively protect the bone marrow from vincristine-induced toxicity in vivo. Br J Cancer 2003; 89(9): 1776–82PubMedCrossRef van Tellingen O, Buckle T, Jonker JW, et al. P-glycoprotein and Mrp1 collectively protect the bone marrow from vincristine-induced toxicity in vivo. Br J Cancer 2003; 89(9): 1776–82PubMedCrossRef
Metadata
Title
Expression of Adenosine Triphosphate-Binding Cassette (ABC) Drug Transporters in Peripheral Blood Cells
Relevance for Physiology and Pharmacotherapy
Authors
Kathleen Köck
Markus Grube
Gabriele Jedlitschky
Lena Oevermann
Werner Siegmund
Christoph A. Ritter
Heyo K. Kroemer, PhD
Publication date
01-06-2007
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 6/2007
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200746060-00001

Other articles of this Issue 6/2007

Clinical Pharmacokinetics 6/2007 Go to the issue