Skip to main content
Top
Published in: Drug Safety 8/2009

01-08-2009 | Current Opinion

Do Nanomedicines Require Novel Safety Assessments to Ensure their Safety for Long-Term Human Use?

Authors: Dr Peter Hoet, Barbara Legiest, Jorina Geys, Benoit Nemery

Published in: Drug Safety | Issue 8/2009

Login to get access

Abstract

Nanomaterials have different chemical, physical and biological characteristics than larger materials of the same chemical composition. These differences give nanotechnology a double identity: their use implies novel and interesting medical and/or industrial applications but also potential danger for human and environmental health. Here, we briefly review the most important types of nanomaterials, the difficulties in assessing safety or toxicity, and describe existing test protocols used in nanomaterial safety evaluation. In general, the big challenge of nanotechnology, particularly for nanomedicine (nanobioengineering), is to understand which nano-specific characteristics interact with particular biological systems and functions in order to optimize the therapeutic potential and reduce the undesired responses. The evaluation of the safety of medicinal nanomaterials, especially for long-term application, is an important challenge for the near future. At present, it is still too early to predict, on the basis of the characteristics of the nanomaterial, a possible biological response because no reliable database exists. Therefore, a case-by-case approach for hazard identification is still required, so it is difficult to establish a risk assessment framework.
Literature
1.
go back to reference Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7): 823–39PubMedCrossRef Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 2005; 113(7): 823–39PubMedCrossRef
2.
go back to reference Maynard AD, Aitken RJ, Butz T, et al. Safe handling of nanotechnology. Nature 2006; 444(7117): 267–9PubMedCrossRef Maynard AD, Aitken RJ, Butz T, et al. Safe handling of nanotechnology. Nature 2006; 444(7117): 267–9PubMedCrossRef
4.
go back to reference Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol 2007; 18(1): 26–30PubMedCrossRef Caruthers SD, Wickline SA, Lanza GM. Nanotechnological applications in medicine. Curr Opin Biotechnol 2007; 18(1): 26–30PubMedCrossRef
5.
go back to reference Leroueil PR, Hong S, Mecke A, et al. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc Chem Res 2007; 40(5): 335–42PubMedCrossRef Leroueil PR, Hong S, Mecke A, et al. Nanoparticle interaction with biological membranes: does nanotechnology present a Janus face? Acc Chem Res 2007; 40(5): 335–42PubMedCrossRef
6.
go back to reference Donaldson K, Seaton A. The Janus faces of nanoparticles. J Nanosci Nanotechnol 2007; 7(12): 4607–11PubMed Donaldson K, Seaton A. The Janus faces of nanoparticles. J Nanosci Nanotechnol 2007; 7(12): 4607–11PubMed
7.
go back to reference Warheit DB, Borm PJ, Hennes C, et al. Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol 2007; 19(8): 631–43PubMedCrossRef Warheit DB, Borm PJ, Hennes C, et al. Testing strategies to establish the safety of nanomaterials: conclusions of an ECETOC workshop. Inhal Toxicol 2007; 19(8): 631–43PubMedCrossRef
8.
go back to reference Medina C, Santos-Martinez MJ, Radomski A, et al. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 2007; 150(5): 552–8PubMedCrossRef Medina C, Santos-Martinez MJ, Radomski A, et al. Nanoparticles: pharmacological and toxicological significance. Br J Pharmacol 2007; 150(5): 552–8PubMedCrossRef
9.
10.
go back to reference Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004; 100(1): 5–28PubMedCrossRef Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 2004; 100(1): 5–28PubMedCrossRef
11.
go back to reference Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm 2000; 26(4): 459–63PubMedCrossRef Cherian AK, Rana AC, Jain SK. Self-assembled carbohydrate-stabilized ceramic nanoparticles for the parenteral delivery of insulin. Drug Dev Ind Pharm 2000; 26(4): 459–63PubMedCrossRef
12.
go back to reference Yamamoto A, Honma R, Sumita M, et al. Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res A 2004; 68(2): 244–56PubMedCrossRef Yamamoto A, Honma R, Sumita M, et al. Cytotoxicity evaluation of ceramic particles of different sizes and shapes. J Biomed Mater Res A 2004; 68(2): 244–56PubMedCrossRef
13.
go back to reference Gupta AK, Naregalkar RR, Vaidya VD, et al. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2007; 2(1): 23–39CrossRef Gupta AK, Naregalkar RR, Vaidya VD, et al. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomed 2007; 2(1): 23–39CrossRef
14.
go back to reference Weng J, Ren J. Luminescent quantum dots: a very attractive and promising tool in biomedicine. Curr Med Chem 2006; 13(8): 897–909PubMedCrossRef Weng J, Ren J. Luminescent quantum dots: a very attractive and promising tool in biomedicine. Curr Med Chem 2006; 13(8): 897–909PubMedCrossRef
15.
16.
go back to reference Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 2008; 41(1): 60–8PubMedCrossRef Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 2008; 41(1): 60–8PubMedCrossRef
17.
go back to reference Lam CW, James JT, McCluskey R, et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 2006; 36(3): 189–217PubMedCrossRef Lam CW, James JT, McCluskey R, et al. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Crit Rev Toxicol 2006; 36(3): 189–217PubMedCrossRef
18.
go back to reference Murakami T, Tsuchida K. Recent advances in inorganic nanoparticle-based drug delivery systems. Mini Rev Med Chem 2008; 8(2): 175–83PubMedCrossRef Murakami T, Tsuchida K. Recent advances in inorganic nanoparticle-based drug delivery systems. Mini Rev Med Chem 2008; 8(2): 175–83PubMedCrossRef
19.
go back to reference Reasor MJ, Hastings KL, Ulrich RG. Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 2006; 5(4): 567–83PubMedCrossRef Reasor MJ, Hastings KL, Ulrich RG. Drug-induced phospholipidosis: issues and future directions. Expert Opin Drug Saf 2006; 5(4): 567–83PubMedCrossRef
20.
go back to reference ICH. Note for guidance on preclinical safety evaluation of biotechnology-derived pharmaceuticals. ICH topic: preclinical safety evaluation of biotechnology-derived pharmaceuticals. London: EMEA, 1998; S6: 1–10 ICH. Note for guidance on preclinical safety evaluation of biotechnology-derived pharmaceuticals. ICH topic: preclinical safety evaluation of biotechnology-derived pharmaceuticals. London: EMEA, 1998; S6: 1–10
21.
go back to reference Fabian E, Landsiedel R, Ma-Hock L, et al. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 2008; 82(3): 151–7PubMedCrossRef Fabian E, Landsiedel R, Ma-Hock L, et al. Tissue distribution and toxicity of intravenously administered titanium dioxide nanoparticles in rats. Arch Toxicol 2008; 82(3): 151–7PubMedCrossRef
22.
go back to reference Worle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006; 6(6): 1261–8PubMedCrossRef Worle-Knirsch JM, Pulskamp K, Krug HF. Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 2006; 6(6): 1261–8PubMedCrossRef
23.
go back to reference Pulskamp K, Diabaté S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 2007; 1(4): 293–9 Pulskamp K, Diabaté S, Krug HF. Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 2007; 1(4): 293–9
24.
go back to reference Cui D, Tian F, Ozkan CS, et al. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 2005; 155: 73–85PubMedCrossRef Cui D, Tian F, Ozkan CS, et al. Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 2005; 155: 73–85PubMedCrossRef
25.
go back to reference Murr LE, Garza KM, Soto KF, et al. Cytotoxicity assessment of some carbon nanotubes and related carbon nanoparticle aggregates and the implications for anthropogenic carbon nanotube aggregates in the environment. Int J Environ Res Public Health 2005; 2(1): 31–42PubMedCrossRef Murr LE, Garza KM, Soto KF, et al. Cytotoxicity assessment of some carbon nanotubes and related carbon nanoparticle aggregates and the implications for anthropogenic carbon nanotube aggregates in the environment. Int J Environ Res Public Health 2005; 2(1): 31–42PubMedCrossRef
26.
go back to reference Soto KF, Carrasco A, Powell TG, et al. Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res 2005; 7: 145–69CrossRef Soto KF, Carrasco A, Powell TG, et al. Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res 2005; 7: 145–69CrossRef
27.
go back to reference Soto K, Garza KM, Murr LE. Cytotoxic effects of aggregated nanomaterials. Acta Biomater 2007; 3(3): 351–8PubMedCrossRef Soto K, Garza KM, Murr LE. Cytotoxic effects of aggregated nanomaterials. Acta Biomater 2007; 3(3): 351–8PubMedCrossRef
28.
go back to reference Sayes CM, Wahi R, Kurian PA, et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 2006; 92(1): 174–85PubMedCrossRef Sayes CM, Wahi R, Kurian PA, et al. Correlating nanoscale titania structure with toxicity: a cytotoxicity and inflammatory response study with human dermal fibroblasts and human lung epithelial cells. Toxicol Sci 2006; 92(1): 174–85PubMedCrossRef
29.
go back to reference Zhang LW, Zeng L, Barron AR, et al. Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int J Toxicol 2007; 26(2): 103–13PubMedCrossRef Zhang LW, Zeng L, Barron AR, et al. Biological interactions of functionalized single-wall carbon nanotubes in human epidermal keratinocytes. Int J Toxicol 2007; 26(2): 103–13PubMedCrossRef
30.
go back to reference Dutta D, Sundaram SK, Teeguarden JG, et al. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 2007; 100(1): 303–15PubMedCrossRef Dutta D, Sundaram SK, Teeguarden JG, et al. Adsorbed proteins influence the biological activity and molecular targeting of nanomaterials. Toxicol Sci 2007; 100(1): 303–15PubMedCrossRef
31.
go back to reference Schimmelpfeng J, Drosselmeyer E, Hofheinz V, et al. Influence of surfactant components and exposure geometry on the effects of quartz and asbestos on alveolar macrophages. Environ Health Perspect 1992; 97: 225–31PubMedCrossRef Schimmelpfeng J, Drosselmeyer E, Hofheinz V, et al. Influence of surfactant components and exposure geometry on the effects of quartz and asbestos on alveolar macrophages. Environ Health Perspect 1992; 97: 225–31PubMedCrossRef
32.
go back to reference Gao N, Keane MJ, Ong T, et al. Effects of phospholipid surfactant on apoptosis induction by respirable quartz and kaolin in NR8383 rat pulmonary macrophages. Toxicol Appl Pharmacol 2001; 175(3): 217–25PubMedCrossRef Gao N, Keane MJ, Ong T, et al. Effects of phospholipid surfactant on apoptosis induction by respirable quartz and kaolin in NR8383 rat pulmonary macrophages. Toxicol Appl Pharmacol 2001; 175(3): 217–25PubMedCrossRef
33.
go back to reference Wallace WE, Keane MJ, Murray DK, et al. Phospholipid lung surfactant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. J Nanopart Res 2007; 9: 23–38CrossRef Wallace WE, Keane MJ, Murray DK, et al. Phospholipid lung surfactant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. J Nanopart Res 2007; 9: 23–38CrossRef
34.
go back to reference Monteiro-Riviere NA, Nemanich RJ, Inman AO, et al. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 2005; 155: 377–84PubMedCrossRef Monteiro-Riviere NA, Nemanich RJ, Inman AO, et al. Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 2005; 155: 377–84PubMedCrossRef
35.
go back to reference Davoren M, Herzog E, Casey A, et al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 2007; 21: 438–48PubMedCrossRef Davoren M, Herzog E, Casey A, et al. In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol In Vitro 2007; 21: 438–48PubMedCrossRef
36.
go back to reference Wick P, Manser P, Limbach LK, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 2007; 168(2): 121–31PubMedCrossRef Wick P, Manser P, Limbach LK, et al. The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 2007; 168(2): 121–31PubMedCrossRef
37.
go back to reference Smart SK, Cassady AI, Lu GQ, et al. The biocompatibility of carbon nanotubes. Carbon 2006; 44: 1034–47CrossRef Smart SK, Cassady AI, Lu GQ, et al. The biocompatibility of carbon nanotubes. Carbon 2006; 44: 1034–47CrossRef
38.
go back to reference Murdock RC, Braydich-Stolle L, Schrand AM, et al. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 2007; 101(2): 239–53PubMedCrossRef Murdock RC, Braydich-Stolle L, Schrand AM, et al. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 2007; 101(2): 239–53PubMedCrossRef
39.
go back to reference Monteiro-Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 2006; 44: 1070–8CrossRef Monteiro-Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 2006; 44: 1070–8CrossRef
40.
go back to reference Hurt RH, Monthioux M, Kane A. Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 2006; 44: 1028–33CrossRef Hurt RH, Monthioux M, Kane A. Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 2006; 44: 1028–33CrossRef
41.
go back to reference Hoet PH, Bruske-Hohlfeld I, Salata OV. Nanoparticles: known and unknown health risks. J Nanobiotechnol 2004; 2(1): 12CrossRef Hoet PH, Bruske-Hohlfeld I, Salata OV. Nanoparticles: known and unknown health risks. J Nanobiotechnol 2004; 2(1): 12CrossRef
42.
go back to reference Oberdörster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994; 102 Suppl. 5: 173–9PubMedCrossRef Oberdörster G, Ferin J, Lehnert BE. Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 1994; 102 Suppl. 5: 173–9PubMedCrossRef
43.
go back to reference Nemmar A, Hoet PH, Vanquickenborne B, et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002; 105(4): 411–4PubMedCrossRef Nemmar A, Hoet PH, Vanquickenborne B, et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002; 105(4): 411–4PubMedCrossRef
44.
go back to reference Nemmar A, Vanbilloen H, Hoylaerts MF, et al. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 2001; 164(9): 1665–8PubMed Nemmar A, Vanbilloen H, Hoylaerts MF, et al. Passage of intratracheally instilled ultrafine particles from the lung into the systemic circulation in hamster. Am J Respir Crit Care Med 2001; 164(9): 1665–8PubMed
45.
go back to reference Kreyling WG, Semmler M, Erbe F, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 2002; 65(20): 1513–30PubMedCrossRef Kreyling WG, Semmler M, Erbe F, et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health A 2002; 65(20): 1513–30PubMedCrossRef
46.
go back to reference Rothen-Rutishauser B, Muhlfeld C, Blank F, et al. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol 2007; 4: 9PubMedCrossRef Rothen-Rutishauser B, Muhlfeld C, Blank F, et al. Translocation of particles and inflammatory responses after exposure to fine particles and nanoparticles in an epithelial airway model. Part Fibre Toxicol 2007; 4: 9PubMedCrossRef
47.
go back to reference Muhlfeld C, Mayhew TM, Gehr P, et al. A novel quantitative method for analyzing the distributions of nanoparticles between different tissue and intracellular compartments. J Aerosol Med 2007; 20(4): 395–407PubMedCrossRef Muhlfeld C, Mayhew TM, Gehr P, et al. A novel quantitative method for analyzing the distributions of nanoparticles between different tissue and intracellular compartments. J Aerosol Med 2007; 20(4): 395–407PubMedCrossRef
49.
go back to reference Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev 2002; 54 Suppl. 1: S77–98PubMedCrossRef Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev 2002; 54 Suppl. 1: S77–98PubMedCrossRef
50.
go back to reference Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 2006; 91(1): 159–65PubMedCrossRef Ryman-Rasmussen JP, Riviere JE, Monteiro-Riviere NA. Penetration of intact skin by quantum dots with diverse physicochemical properties. Toxicol Sci 2006; 91(1): 159–65PubMedCrossRef
51.
go back to reference Jani P, Halbert GW, Langridge J, et al. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 1990; 42(12): 821–6PubMedCrossRef Jani P, Halbert GW, Langridge J, et al. Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 1990; 42(12): 821–6PubMedCrossRef
52.
go back to reference Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 1995; 2(6): 385–9PubMedCrossRef Yamago S, Tokuyama H, Nakamura E, et al. In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 1995; 2(6): 385–9PubMedCrossRef
53.
go back to reference Qu X, Khutoryanskiy VV, Stewart A, et al. Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude. Biomacromolecules 2006; 7(12): 3452–9PubMedCrossRef Qu X, Khutoryanskiy VV, Stewart A, et al. Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude. Biomacromolecules 2006; 7(12): 3452–9PubMedCrossRef
54.
go back to reference Brown JS, Zeman KL, Bennett WD. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 2002; 166(9): 1240–7PubMedCrossRef Brown JS, Zeman KL, Bennett WD. Ultrafine particle deposition and clearance in the healthy and obstructed lung. Am J Respir Crit Care Med 2002; 166(9): 1240–7PubMedCrossRef
55.
go back to reference Takenaka S, Karg E, Roth C, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 2001; 109 Suppl. 4: 547–51PubMedCrossRef Takenaka S, Karg E, Roth C, et al. Pulmonary and systemic distribution of inhaled ultrafine silver particles in rats. Environ Health Perspect 2001; 109 Suppl. 4: 547–51PubMedCrossRef
56.
go back to reference Nigavekar SS, Sung LY, Llanes M, et al. 3H Dendrimer nanoparticle organ/tumor distribution. Pharm Res 2004; 21(3): 476–83PubMedCrossRef Nigavekar SS, Sung LY, Llanes M, et al. 3H Dendrimer nanoparticle organ/tumor distribution. Pharm Res 2004; 21(3): 476–83PubMedCrossRef
57.
go back to reference Sayes CM, Liang F, Hudson JL, et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 2006; 161(2): 135–42PubMedCrossRef Sayes CM, Liang F, Hudson JL, et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 2006; 161(2): 135–42PubMedCrossRef
58.
go back to reference Warheit DB, Webb TR, Reed KL, et al. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 2007; 230(1): 90–104PubMedCrossRef Warheit DB, Webb TR, Reed KL, et al. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles: differential responses related to surface properties. Toxicology 2007; 230(1): 90–104PubMedCrossRef
59.
go back to reference Warheit DB, Brock WJ, Lee KP, et al. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol Sci 2005; 88(2): 514–24PubMedCrossRef Warheit DB, Brock WJ, Lee KP, et al. Comparative pulmonary toxicity inhalation and instillation studies with different TiO2 particle formulations: impact of surface treatments on particle toxicity. Toxicol Sci 2005; 88(2): 514–24PubMedCrossRef
60.
go back to reference Lomer MC, Hutchinson C, Volkert S, et al. Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br J Nutr 2004; 92(6): 947–55PubMedCrossRef Lomer MC, Hutchinson C, Volkert S, et al. Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br J Nutr 2004; 92(6): 947–55PubMedCrossRef
61.
go back to reference Florence AT. Issues in oral nanoparticle drug carrier uptake and targeting. J Drug Target 2004; 12(2): 65–70PubMedCrossRef Florence AT. Issues in oral nanoparticle drug carrier uptake and targeting. J Drug Target 2004; 12(2): 65–70PubMedCrossRef
62.
go back to reference ICH. Note for guidance on the genotoxicity testing and data interpretation for pharmaceuticals intended for human use. ICH topic: preclinical safety evaluation of biotechnologyderived pharmaceuticals. London: EMEA, 2008; S2: 1–28 ICH. Note for guidance on the genotoxicity testing and data interpretation for pharmaceuticals intended for human use. ICH topic: preclinical safety evaluation of biotechnologyderived pharmaceuticals. London: EMEA, 2008; S2: 1–28
63.
go back to reference Schins RP, Knaapen AM. Genotoxicity of poorly soluble particles. Inhal Toxicol 2007; 19 Suppl. 1: 189–98PubMedCrossRef Schins RP, Knaapen AM. Genotoxicity of poorly soluble particles. Inhal Toxicol 2007; 19 Suppl. 1: 189–98PubMedCrossRef
64.
go back to reference Singh N, Manshian B, Jenkins GJ, et al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. Epub 2009 May 6 Singh N, Manshian B, Jenkins GJ, et al. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials. Epub 2009 May 6
65.
go back to reference Choi AO, Brown SE, Szyf M, et al. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med 2008; 86(3): 291–302PubMedCrossRef Choi AO, Brown SE, Szyf M, et al. Quantum dot-induced epigenetic and genotoxic changes in human breast cancer cells. J Mol Med 2008; 86(3): 291–302PubMedCrossRef
66.
go back to reference Baccarelli A, Wright RO, Bollati V, et al. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 2009; 179(7): 572–8PubMedCrossRef Baccarelli A, Wright RO, Bollati V, et al. Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med 2009; 179(7): 572–8PubMedCrossRef
67.
go back to reference Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita 2003; 39(3): 405–10PubMed Donaldson K, Stone V. Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita 2003; 39(3): 405–10PubMed
68.
go back to reference Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622–7PubMedCrossRef Nel A, Xia T, Madler L, et al. Toxic potential of materials at the nanolevel. Science 2006; 311(5761): 622–7PubMedCrossRef
69.
go back to reference Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nano 2008; 3(7): 423–8CrossRef Poland CA, Duffin R, Kinloch I, et al. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nano 2008; 3(7): 423–8CrossRef
70.
go back to reference Muller J, Decordier I, Hoet PH, et al. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 2008; 29(2): 427–33PubMedCrossRef Muller J, Decordier I, Hoet PH, et al. Clastogenic and aneugenic effects of multi-wall carbon nanotubes in epithelial cells. Carcinogenesis 2008; 29(2): 427–33PubMedCrossRef
71.
go back to reference Semmler-Behnke M, Kreyling WG, Lipka J, et al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small 2008; 4(12): 2108–11PubMedCrossRef Semmler-Behnke M, Kreyling WG, Lipka J, et al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small 2008; 4(12): 2108–11PubMedCrossRef
72.
go back to reference Takenaka S, Karg E, Kreyling WG, et al. Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 2006; 18(10): 733–40PubMedCrossRef Takenaka S, Karg E, Kreyling WG, et al. Distribution pattern of inhaled ultrafine gold particles in the rat lung. Inhal Toxicol 2006; 18(10): 733–40PubMedCrossRef
73.
go back to reference Dumortier H, Lacotte S, Pastorin G, et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 2006; 6(7): 1522–8PubMedCrossRef Dumortier H, Lacotte S, Pastorin G, et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett 2006; 6(7): 1522–8PubMedCrossRef
74.
go back to reference Monteiller C, Tran L, MacNee W, et al. The proinflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 2007; 64(9): 609–15PubMedCrossRef Monteiller C, Tran L, MacNee W, et al. The proinflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med 2007; 64(9): 609–15PubMedCrossRef
75.
go back to reference Singh S, Shi T, Duffin R, et al. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 2007; 222(2): 141–51PubMedCrossRef Singh S, Shi T, Duffin R, et al. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol 2007; 222(2): 141–51PubMedCrossRef
76.
go back to reference Gheshlaghi ZN, Riazi GH, Ahmadian S, et al. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochim Biophys Sin (Shanghai) 2008; 40: 777–82 Gheshlaghi ZN, Riazi GH, Ahmadian S, et al. Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochim Biophys Sin (Shanghai) 2008; 40: 777–82
77.
go back to reference Lipski AM, Pino CJ, Haselton FR, et al. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials 2008; 29: 3836–46PubMedCrossRef Lipski AM, Pino CJ, Haselton FR, et al. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials 2008; 29: 3836–46PubMedCrossRef
78.
go back to reference Kaiser JP, Wick P, Manser P, et al. Single walled carbon nanotubes (SWCNT) affect cell physiology and cell architecture. J Mater Sci Mater Med 2008; 19: 1523–7PubMedCrossRef Kaiser JP, Wick P, Manser P, et al. Single walled carbon nanotubes (SWCNT) affect cell physiology and cell architecture. J Mater Sci Mater Med 2008; 19: 1523–7PubMedCrossRef
79.
go back to reference Putman E, van der Laan JW, van LH. Assessing immunotoxicity: guidelines. Fundam Clin Pharmacol 2003; 17(5): 615–26PubMedCrossRef Putman E, van der Laan JW, van LH. Assessing immunotoxicity: guidelines. Fundam Clin Pharmacol 2003; 17(5): 615–26PubMedCrossRef
80.
go back to reference Putman E, van der Laan JW, van Loveren H. Assessing immunotoxicity: guidelines. Fundam Clin Pharmacol 2003; 17: 615–26PubMedCrossRef Putman E, van der Laan JW, van Loveren H. Assessing immunotoxicity: guidelines. Fundam Clin Pharmacol 2003; 17: 615–26PubMedCrossRef
81.
go back to reference Izhaky D, Pecht I. What else can the immune system recognize? ProcNatl Acad Sci U S A 1998; 95(20): 11509–10CrossRef Izhaky D, Pecht I. What else can the immune system recognize? ProcNatl Acad Sci U S A 1998; 95(20): 11509–10CrossRef
82.
go back to reference Mitchell LA, Gao J, Wal RV, et al. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 2007; 100(1): 203–14PubMedCrossRef Mitchell LA, Gao J, Wal RV, et al. Pulmonary and systemic immune response to inhaled multiwalled carbon nanotubes. Toxicol Sci 2007; 100(1): 203–14PubMedCrossRef
83.
go back to reference Nygaard UC, Samuelsen M, Aase A, et al. The capacity of particles to increase allergic sensitization is predicted by particle number and surface area, not by particle mass. Toxicol Sci 2004; 82: 515–24PubMedCrossRef Nygaard UC, Samuelsen M, Aase A, et al. The capacity of particles to increase allergic sensitization is predicted by particle number and surface area, not by particle mass. Toxicol Sci 2004; 82: 515–24PubMedCrossRef
84.
go back to reference Don Porto CA, Hoet PH, Verschaeve L, et al. Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environ Mol Mutagen 2001; 37: 155–63CrossRef Don Porto CA, Hoet PH, Verschaeve L, et al. Genotoxic effects of carbon black particles, diesel exhaust particles, and urban air particulates and their extracts on a human alveolar epithelial cell line (A549) and a human monocytic cell line (THP-1). Environ Mol Mutagen 2001; 37: 155–63CrossRef
85.
go back to reference Don Porto CA, Hoet PH, Nemery B, et al. HLA-DR expression after exposure of human monocytic cells to air particulates. Clin Exp Allergy 2002; 32(2): 296–300CrossRef Don Porto CA, Hoet PH, Nemery B, et al. HLA-DR expression after exposure of human monocytic cells to air particulates. Clin Exp Allergy 2002; 32(2): 296–300CrossRef
86.
go back to reference Van ZM, Granum B. Adjuvant activity of particulate pollutants in different mouse models. Toxicology 2000; 152(1–3): 69–77 Van ZM, Granum B. Adjuvant activity of particulate pollutants in different mouse models. Toxicology 2000; 152(1–3): 69–77
87.
go back to reference Goodman CM, McCusker CD, Yilmaz T, et al. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004; 15(4): 897–900PubMedCrossRef Goodman CM, McCusker CD, Yilmaz T, et al. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 2004; 15(4): 897–900PubMedCrossRef
88.
go back to reference Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006; 160(2): 121–6PubMedCrossRef Bottini M, Bruckner S, Nika K, et al. Multi-walled carbon nanotubes induce T lymphocyte apoptosis. Toxicol Lett 2006; 160(2): 121–6PubMedCrossRef
89.
go back to reference Fiorito S, Serafino A, Andreola F, et al. Toxicity and biocompatibility of carbon nanoparticles. J Nanosci Nanotechnol 2006; 6(3): 591–9PubMedCrossRef Fiorito S, Serafino A, Andreola F, et al. Toxicity and biocompatibility of carbon nanoparticles. J Nanosci Nanotechnol 2006; 6(3): 591–9PubMedCrossRef
90.
go back to reference Chen YW, Hwang KC, Yen CC, et al. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Regul Integr Comp Physiol 2004; 287(1): R21–6PubMedCrossRef Chen YW, Hwang KC, Yen CC, et al. Fullerene derivatives protect against oxidative stress in RAW 264.7 cells and ischemia-reperfused lungs. Am J Physiol Regul Integr Comp Physiol 2004; 287(1): R21–6PubMedCrossRef
91.
go back to reference Barlow PG, Brown DM, Donaldson K, et al. Reduced alveolar macrophage migration induced by acute ambient particle (PM(10)) exposure. Cell Biol Toxicol 2008; 24(3): 243–52PubMedCrossRef Barlow PG, Brown DM, Donaldson K, et al. Reduced alveolar macrophage migration induced by acute ambient particle (PM(10)) exposure. Cell Biol Toxicol 2008; 24(3): 243–52PubMedCrossRef
92.
go back to reference Brown DM, Kinloch IA, Bangert U, et al. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 2007; 45(9): 1743–56CrossRef Brown DM, Kinloch IA, Bangert U, et al. An in vitro study of the potential of carbon nanotubes and nanofibres to induce inflammatory mediators and frustrated phagocytosis. Carbon 2007; 45(9): 1743–56CrossRef
93.
go back to reference Shaunak S, Thomas S, Gianasi E, et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 2004; 22(8): 977–84PubMedCrossRef Shaunak S, Thomas S, Gianasi E, et al. Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 2004; 22(8): 977–84PubMedCrossRef
94.
go back to reference Cromer JR, Wood SJ, Miller KA, et al. Functionalized dendrimers as endotoxin sponges. Bioorg Med Chem Lett 2005; 15(5): 1295–8PubMedCrossRef Cromer JR, Wood SJ, Miller KA, et al. Functionalized dendrimers as endotoxin sponges. Bioorg Med Chem Lett 2005; 15(5): 1295–8PubMedCrossRef
95.
go back to reference Shvedova AA, Fabisiak JP, Kisin ER, et al. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 2008; 38(5): 579–90PubMedCrossRef Shvedova AA, Fabisiak JP, Kisin ER, et al. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol 2008; 38(5): 579–90PubMedCrossRef
96.
go back to reference Hoek G, Brunekreef B, Fischer P, et al. The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology 2001; 12(3): 355–7PubMedCrossRef Hoek G, Brunekreef B, Fischer P, et al. The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology 2001; 12(3): 355–7PubMedCrossRef
97.
go back to reference Pope III CA, Verrier RL, Lovett EG, et al. Heart rate variability associated with particulate air pollution. Am Heart J 1999; 138 (5 Pt 1): 890–9PubMedCrossRef Pope III CA, Verrier RL, Lovett EG, et al. Heart rate variability associated with particulate air pollution. Am Heart J 1999; 138 (5 Pt 1): 890–9PubMedCrossRef
98.
go back to reference Samet JM, Dominici F, Curriero FC, et al. Fine particulate air pollution and mortality in 20 US cities, 1987–1994. N Engl J Med 2000; 343(24): 1742–9PubMedCrossRef Samet JM, Dominici F, Curriero FC, et al. Fine particulate air pollution and mortality in 20 US cities, 1987–1994. N Engl J Med 2000; 343(24): 1742–9PubMedCrossRef
99.
go back to reference Baccarelli A, Zanobetti A, Martinelli I, et al. Effects of exposure to air pollution on blood coagulation. J Thromb Haemost 2007; 5(2): 252–60PubMedCrossRef Baccarelli A, Zanobetti A, Martinelli I, et al. Effects of exposure to air pollution on blood coagulation. J Thromb Haemost 2007; 5(2): 252–60PubMedCrossRef
100.
go back to reference Nemmar A, Hoylaerts MF, Hoet PH, et al. Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol 2003; 186(1): 38–45PubMedCrossRef Nemmar A, Hoylaerts MF, Hoet PH, et al. Size effect of intratracheally instilled particles on pulmonary inflammation and vascular thrombosis. Toxicol Appl Pharmacol 2003; 186(1): 38–45PubMedCrossRef
101.
go back to reference Niwa Y, Iwai N. Nanomaterials induce oxidized low-density lipoprotein cellular uptake in macrophages and platelet aggregation. Circ J 2007; 71(3): 437–44PubMedCrossRef Niwa Y, Iwai N. Nanomaterials induce oxidized low-density lipoprotein cellular uptake in macrophages and platelet aggregation. Circ J 2007; 71(3): 437–44PubMedCrossRef
102.
go back to reference Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol 2006; 15(6): 318–30PubMedCrossRef Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol 2006; 15(6): 318–30PubMedCrossRef
103.
go back to reference Tran CL, Buchanan D, Cullen RT, et al. Inhalation of poorly soluble particles: II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 2000; 12(12): 1113–26PubMedCrossRef Tran CL, Buchanan D, Cullen RT, et al. Inhalation of poorly soluble particles: II. Influence of particle surface area on inflammation and clearance. Inhal Toxicol 2000; 12(12): 1113–26PubMedCrossRef
108.
go back to reference Alderson NE. Is special FDA regulation of nanomedicine needed? A conversation with Norris E. Alderson — interview by Barbara J. Culliton. Health Aff (Millwood) 2008; 27(4): w315–7CrossRef Alderson NE. Is special FDA regulation of nanomedicine needed? A conversation with Norris E. Alderson — interview by Barbara J. Culliton. Health Aff (Millwood) 2008; 27(4): w315–7CrossRef
109.
go back to reference Gaspar R. Regulatory issues surrounding nanomedicines: setting the scene for the next generation of nanopharmaceuticals. Nanomedicine 2007; 2: 143–7PubMedCrossRef Gaspar R. Regulatory issues surrounding nanomedicines: setting the scene for the next generation of nanopharmaceuticals. Nanomedicine 2007; 2: 143–7PubMedCrossRef
110.
go back to reference Resnik DB, Tinkle SS. Ethical issues in clinical trials involving nanomedicine. Contemp Clin Trials 2007; 28: 433–41PubMedCrossRef Resnik DB, Tinkle SS. Ethical issues in clinical trials involving nanomedicine. Contemp Clin Trials 2007; 28: 433–41PubMedCrossRef
111.
go back to reference DeVille KA. Law, regulation and the medical use of nanotechnology. In: Jotterand F, editor. Emerging conceptual, ethical and policy issues in bionanotechnology. Philosophy and medicine. Vol. 101. Dordrecht: Springer, 2008: 181–200CrossRef DeVille KA. Law, regulation and the medical use of nanotechnology. In: Jotterand F, editor. Emerging conceptual, ethical and policy issues in bionanotechnology. Philosophy and medicine. Vol. 101. Dordrecht: Springer, 2008: 181–200CrossRef
Metadata
Title
Do Nanomedicines Require Novel Safety Assessments to Ensure their Safety for Long-Term Human Use?
Authors
Dr Peter Hoet
Barbara Legiest
Jorina Geys
Benoit Nemery
Publication date
01-08-2009
Publisher
Springer International Publishing
Published in
Drug Safety / Issue 8/2009
Print ISSN: 0114-5916
Electronic ISSN: 1179-1942
DOI
https://doi.org/10.2165/00002018-200932080-00002

Other articles of this Issue 8/2009

Drug Safety 8/2009 Go to the issue

Correspondence

The Authors’ Reply