Skip to main content
Top
Published in: Drug Safety 6/2008

01-06-2008 | Review Article

Safety of Green Tea Extracts

A Systematic Review by the US Pharmacopeia

Authors: Dr Dandapantula N. Sarma, Marilyn L. Barrett, Mary L. Chavez, Paula Gardiner, Richard Ko, Gail B. Mahady, Robin J. Marles, Linda S. Pellicore, Gabriel I. Giancaspro, Tieraona Low Dog

Published in: Drug Safety | Issue 6/2008

Login to get access

Abstract

Green tea [Camellia sinensis (L.) Kuntze] is the fourth most commonly used dietary supplement in the US. Recently, regulatory agencies in France and Spain suspended market authorization of a weight-loss product containing green tea extract because of hepatotoxicity concerns. This was followed by publication of adverse event case reports involving green tea products. In response, the US Pharmacopeia (USP) Dietary Supplement Information Expert Committee (DSI EC) systematically reviewed the safety information for green tea products in order to re-evaluate the current safety class to which these products are assigned. DSI EC searched PubMed (January 1966–June 2007) and EMBASE (January 1988–June 2007) for clinical case reports and animal pharmacological or toxicological information. Reports were also obtained from a diverse range of other sources, including published reviews, the US FDA MedWatch programme, USP’s MEDMARX® adverse event reporting system, the Australian Therapeutic Goods Administration, the UK Medicines and Healthcare products Regulatory Agency, and Health Canada’s Canadian Adverse Drug Reaction Monitoring Program. Case reports pertaining to liver damage were evaluated according to the Naranjo causality algorithm scale. In addition, the Committee analysed information concerning historical use, regulatory status, and current extent of use of green tea products. A total of 216 case reports on green tea products were analysed, including 34 reports concerning liver damage. Twenty-seven reports pertaining to liver damage were categorized as possible causality and seven as probable causality. Clinical pharmacokinetic and animal toxicological information indicated that consumption of green tea concentrated extracts on an empty stomach is more likely to lead to adverse effects than consumption in the fed state. Based on this safety review, the DSI EC determined that when dietary supplement products containing green tea extracts are used and formulated appropriately the Committee is unaware of significant safety issues that would prohibit monograph development, provided a caution statement is included in the labelling section. Following this decision, USP’s DSI ECs may develop monographs for green tea extracts, and USP may offer its verification programmes related to that dietary ingredient.
Footnotes
1
1The use of trade names is for product identification purposes only and does not imply endorsement
 
Literature
1.
go back to reference Bhattacharyya L, Cecil T, Dabbah R, et al. The value of USP public standards for therapeutic products. Pharm Res 2004; 21(10): 1725–31PubMedCrossRef Bhattacharyya L, Cecil T, Dabbah R, et al. The value of USP public standards for therapeutic products. Pharm Res 2004; 21(10): 1725–31PubMedCrossRef
2.
go back to reference Schiff Jr PL, Srinivasan VS, Giancaspro GI, et al. The development of USP botanical dietary supplement monographs, 1995–2005. J Nat Prod 2006; 69(3): 464–72PubMedCrossRef Schiff Jr PL, Srinivasan VS, Giancaspro GI, et al. The development of USP botanical dietary supplement monographs, 1995–2005. J Nat Prod 2006; 69(3): 464–72PubMedCrossRef
3.
go back to reference Atwater J, Salguero JM, Roll DB. The USP Dietary Supplement Verification Program: Helping Pharmacists and Consumers Select Dietary Supplements. US Pharm 2005; 30: 61–4 Atwater J, Salguero JM, Roll DB. The USP Dietary Supplement Verification Program: Helping Pharmacists and Consumers Select Dietary Supplements. US Pharm 2005; 30: 61–4
4.
go back to reference McGuffin M, Kartesz JT, Leung AY, et al., editors. In: Herbs of Commerce. 2nd ed. Silver Spring (MD): American Herbal Products Association, 2000 McGuffin M, Kartesz JT, Leung AY, et al., editors. In: Herbs of Commerce. 2nd ed. Silver Spring (MD): American Herbal Products Association, 2000
5.
go back to reference Nutrition Business Journal. Top US herbal supplements 2006. Boulder (CO): Nutrition Business Journal, 2006 Nutrition Business Journal. Top US herbal supplements 2006. Boulder (CO): Nutrition Business Journal, 2006
6.
go back to reference Bun SS, Bun H, Guedon D, et al. Effect of green tea extracts on liver functions in Wistar rats. Food Chem Toxicol 2006; 44(7): 1108–13PubMedCrossRef Bun SS, Bun H, Guedon D, et al. Effect of green tea extracts on liver functions in Wistar rats. Food Chem Toxicol 2006; 44(7): 1108–13PubMedCrossRef
7.
go back to reference Barrett ML. The handbook of clinically tested herbal remedies. Vol 2. New York: The Haworth Herbal Press, 2004 Barrett ML. The handbook of clinically tested herbal remedies. Vol 2. New York: The Haworth Herbal Press, 2004
8.
go back to reference Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med 1992; 21(3): 334–50PubMedCrossRef Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med 1992; 21(3): 334–50PubMedCrossRef
10.
go back to reference Kantelip JP, Laroche D. Green tea and liver disorders. National Drug Surveillance survey submitted to the Technical Committee. Besancon: Besancon regional drug surveillance centre; 2003 Feb 11 Kantelip JP, Laroche D. Green tea and liver disorders. National Drug Surveillance survey submitted to the Technical Committee. Besancon: Besancon regional drug surveillance centre; 2003 Feb 11
11.
go back to reference Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981; 30(2): 239–45PubMedCrossRef Naranjo CA, Busto U, Sellers EM, et al. A method for estimating the probability of adverse drug reactions. Clin Pharmacol Ther 1981; 30(2): 239–45PubMedCrossRef
12.
go back to reference Busto U, Naranjo CA, Sellers EM. Comparison of two recently published algorithms for assessing the probability of adverse drug reactions. Br J Clin Pharmacol 1982; 13(2): 223–7PubMedCrossRef Busto U, Naranjo CA, Sellers EM. Comparison of two recently published algorithms for assessing the probability of adverse drug reactions. Br J Clin Pharmacol 1982; 13(2): 223–7PubMedCrossRef
13.
go back to reference Michel DJ, Knodel LC. Comparison of three algorithms used to evaluate adverse drug reactions. Am J Hosp Pharm 1986; 43(7): 1709–14PubMed Michel DJ, Knodel LC. Comparison of three algorithms used to evaluate adverse drug reactions. Am J Hosp Pharm 1986; 43(7): 1709–14PubMed
14.
go back to reference Jones JK. Adverse drug reactions in the community health setting: approaches to recognizing, counseling, and reporting. Fam Community Health 1982; 5(2): 58–67PubMed Jones JK. Adverse drug reactions in the community health setting: approaches to recognizing, counseling, and reporting. Fam Community Health 1982; 5(2): 58–67PubMed
15.
go back to reference Kramer MS, Leventhal JM, Hutchinson TA, et al. An algorithm for the operational assessment of adverse drug reactions: I. Background, description, and instructions for use. JAMA 1979; 242(7): 623–32PubMedCrossRef Kramer MS, Leventhal JM, Hutchinson TA, et al. An algorithm for the operational assessment of adverse drug reactions: I. Background, description, and instructions for use. JAMA 1979; 242(7): 623–32PubMedCrossRef
16.
go back to reference WHO. WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems. Geneva: WHO, 2004 WHO. WHO guidelines on safety monitoring of herbal medicines in pharmacovigilance systems. Geneva: WHO, 2004
17.
go back to reference Danan G, Benichou C. Causality assessment of adverse reactions to drugs: I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol 1993; 46(11): 1323–30PubMedCrossRef Danan G, Benichou C. Causality assessment of adverse reactions to drugs: I. A novel method based on the conclusions of international consensus meetings: application to drug-induced liver injuries. J Clin Epidemiol 1993; 46(11): 1323–30PubMedCrossRef
18.
go back to reference Andrade RJ, Robles M, Fernandez-Castaner A, et al. Assessment of drug-induced hepatotoxicity in clinical practice: a challenge for gastroenterologists. World J Gastroenterol 2007; 13(3): 329–40PubMed Andrade RJ, Robles M, Fernandez-Castaner A, et al. Assessment of drug-induced hepatotoxicity in clinical practice: a challenge for gastroenterologists. World J Gastroenterol 2007; 13(3): 329–40PubMed
21.
go back to reference Gloro R, Hourmand-Ollivier I, Mosquet B, et al. Fulminant hepatitis during self-medication with hydroalcoholic extract of green tea. Eur J Gastroenterol Hepatol 2005; 17(10): 1135–7PubMedCrossRef Gloro R, Hourmand-Ollivier I, Mosquet B, et al. Fulminant hepatitis during self-medication with hydroalcoholic extract of green tea. Eur J Gastroenterol Hepatol 2005; 17(10): 1135–7PubMedCrossRef
22.
go back to reference Seddik M, Lucidarme D, Creusy C, et al. Is Exolise hepatotoxic? [in French]. Gastroenterol Clin Biol 2001; 25(8-9): 834–5PubMed Seddik M, Lucidarme D, Creusy C, et al. Is Exolise hepatotoxic? [in French]. Gastroenterol Clin Biol 2001; 25(8-9): 834–5PubMed
23.
go back to reference Vial T, Bernard G, Lewden B, et al. Acute hepatitis due to Exolise, a Camellia sinensis-derived drug [in French]. Gastroenterol Clin Biol 2003; 27(12): 1166–7PubMed Vial T, Bernard G, Lewden B, et al. Acute hepatitis due to Exolise, a Camellia sinensis-derived drug [in French]. Gastroenterol Clin Biol 2003; 27(12): 1166–7PubMed
24.
go back to reference Pedros C, Cereza G, Garcia N, et al. Liver toxicity of Camellia sinensis dried etanolic extract [in Spanish]. Med Clin (Barc) 2003; 121(15): 598–9CrossRef Pedros C, Cereza G, Garcia N, et al. Liver toxicity of Camellia sinensis dried etanolic extract [in Spanish]. Med Clin (Barc) 2003; 121(15): 598–9CrossRef
25.
go back to reference Jimenez-Saenz M, Martinez-Sanchez M del C. Acute hepatitis associated with the use of green tea infusions. J Hepatol 2006; 44(3): 616–7PubMedCrossRef Jimenez-Saenz M, Martinez-Sanchez M del C. Acute hepatitis associated with the use of green tea infusions. J Hepatol 2006; 44(3): 616–7PubMedCrossRef
26.
go back to reference Stevens T, Qadri A, Zein NN. Two patients with acute liver injury associated with use of the herbal weight-loss supplement Hydroxycut. Ann Intern Med 2005; 142(6): 477–8PubMed Stevens T, Qadri A, Zein NN. Two patients with acute liver injury associated with use of the herbal weight-loss supplement Hydroxycut. Ann Intern Med 2005; 142(6): 477–8PubMed
28.
go back to reference Javaid A, Bonkovsky HL. Hepatotoxicity due to extracts of Chinese green tea (Camellia sinensis): a growing concern. J Hepatol 2006; 45(2): 334–5PubMedCrossRef Javaid A, Bonkovsky HL. Hepatotoxicity due to extracts of Chinese green tea (Camellia sinensis): a growing concern. J Hepatol 2006; 45(2): 334–5PubMedCrossRef
29.
go back to reference Molinari M, Watt KD, Kruszyna T, et al. Acute liver failure induced by green tea extracts: case report and review of the literature. Liver Transpl 2006; 12(12): 1892–5PubMedCrossRef Molinari M, Watt KD, Kruszyna T, et al. Acute liver failure induced by green tea extracts: case report and review of the literature. Liver Transpl 2006; 12(12): 1892–5PubMedCrossRef
30.
go back to reference Bonkovsky HL. Hepatotoxicity associated with supplements containing Chinese green tea (Camellia sinensis). Ann Intern Med 2006; 144(1): 68–71PubMed Bonkovsky HL. Hepatotoxicity associated with supplements containing Chinese green tea (Camellia sinensis). Ann Intern Med 2006; 144(1): 68–71PubMed
32.
go back to reference Lanca S, Alves A, Vieira AI, et al. Chromium-induced toxic hepatitis. Eur J Intern Med 2002; 13(8): 518–20PubMedCrossRef Lanca S, Alves A, Vieira AI, et al. Chromium-induced toxic hepatitis. Eur J Intern Med 2002; 13(8): 518–20PubMedCrossRef
33.
go back to reference Woolf AD, Watson WA, Smolinske S, et al. The severity of toxic reactions to ephedra: comparisons to other botanical products and national trends from 1993–2002. Clin Toxicol (Phila) 2005; 43(5): 347–55CrossRef Woolf AD, Watson WA, Smolinske S, et al. The severity of toxic reactions to ephedra: comparisons to other botanical products and national trends from 1993–2002. Clin Toxicol (Phila) 2005; 43(5): 347–55CrossRef
34.
go back to reference Nadir A, Reddy D, Van Thiel DH. Cascara sagrada-induced intrahepatic cholestasis causing portal hypertension: case report and review of herbal hepatotoxicity. Am J Gastroenterol 2000; 95(12): 3634–7PubMedCrossRef Nadir A, Reddy D, Van Thiel DH. Cascara sagrada-induced intrahepatic cholestasis causing portal hypertension: case report and review of herbal hepatotoxicity. Am J Gastroenterol 2000; 95(12): 3634–7PubMedCrossRef
36.
go back to reference Pisters KM, Newman RA, Coldman B, et al. Phase I trial of oral green tea extract in adult patients with solid tumors. J Clin Oncol 2001; 19(6): 1830–8PubMed Pisters KM, Newman RA, Coldman B, et al. Phase I trial of oral green tea extract in adult patients with solid tumors. J Clin Oncol 2001; 19(6): 1830–8PubMed
37.
go back to reference Yang CS, Chen L, Lee MJ, et al. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 1998; 7(4): 351–4PubMed Yang CS, Chen L, Lee MJ, et al. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 1998; 7(4): 351–4PubMed
38.
go back to reference Chow HH, Cai Y, Alberts DS, et al. Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol Biomarkers Prev 2001; 10(1): 53–8PubMed Chow HH, Cai Y, Alberts DS, et al. Phase I pharmacokinetic study of tea polyphenols following single-dose administration of epigallocatechin gallate and polyphenon E. Cancer Epidemiol Biomarkers Prev 2001; 10(1): 53–8PubMed
39.
go back to reference Chow HH, Cai Y, Hakim IA, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 2003; 9(9): 3312–9PubMed Chow HH, Cai Y, Hakim IA, et al. Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clin Cancer Res 2003; 9(9): 3312–9PubMed
41.
go back to reference Chow HH, Hakim IA, Vining DR, et al. Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin Cancer Res 2005; 11(12): 4627–33PubMedCrossRef Chow HH, Hakim IA, Vining DR, et al. Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin Cancer Res 2005; 11(12): 4627–33PubMedCrossRef
42.
go back to reference Ullmann U, Haller J, Decourt JP, et al. A single ascending dose study of epigallocatechin gallate in healthy volunteers. J Int Med Res 2003; 31(2): 88–101PubMed Ullmann U, Haller J, Decourt JP, et al. A single ascending dose study of epigallocatechin gallate in healthy volunteers. J Int Med Res 2003; 31(2): 88–101PubMed
43.
go back to reference Ullmann U, Haller J, Decourt JD, et al. Plasma-kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers. Int J Vitam Nutr Res 2004; 74(4): 269–78PubMedCrossRef Ullmann U, Haller J, Decourt JD, et al. Plasma-kinetic characteristics of purified and isolated green tea catechin epigallocatechin gallate (EGCG) after 10 days repeated dosing in healthy volunteers. Int J Vitam Nutr Res 2004; 74(4): 269–78PubMedCrossRef
44.
go back to reference Swezey RR, Aldridge DE, LeValley SE, et al. Absorption, tissue distribution and elimination of 4-[3H]-epigallocatechin gallate in beagle dogs. Int J Toxicol 2003; 22(3): 187–93PubMedCrossRef Swezey RR, Aldridge DE, LeValley SE, et al. Absorption, tissue distribution and elimination of 4-[3H]-epigallocatechin gallate in beagle dogs. Int J Toxicol 2003; 22(3): 187–93PubMedCrossRef
45.
go back to reference Chen L, Lee MJ, Li H, et al. Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos 1997; 25(9): 1045–50PubMed Chen L, Lee MJ, Li H, et al. Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos 1997; 25(9): 1045–50PubMed
46.
go back to reference Zhu BT, Patel UK, Cai MX, et al. Rapid conversion of tea catechins to monomethylated products by rat liver cytosolic catechol-O-methyltransferase. Xenobiotica 2001; 31(12): 879–90PubMedCrossRef Zhu BT, Patel UK, Cai MX, et al. Rapid conversion of tea catechins to monomethylated products by rat liver cytosolic catechol-O-methyltransferase. Xenobiotica 2001; 31(12): 879–90PubMedCrossRef
47.
go back to reference Zhu M, Chen Y, Li RC. Oral absorption and bioavailability of tea catechins. Planta Med 2000; 66(5): 444–7PubMedCrossRef Zhu M, Chen Y, Li RC. Oral absorption and bioavailability of tea catechins. Planta Med 2000; 66(5): 444–7PubMedCrossRef
48.
go back to reference Suganuma M, Okabe S, Oniyama M, et al. Wide distribution of [3H](−)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 1998; 19(10): 1771–6PubMedCrossRef Suganuma M, Okabe S, Oniyama M, et al. Wide distribution of [3H](−)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 1998; 19(10): 1771–6PubMedCrossRef
49.
go back to reference Lambert JD, Lee MJ, Lu H, et al. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr 2003; 133(12): 4172–7PubMed Lambert JD, Lee MJ, Lu H, et al. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J Nutr 2003; 133(12): 4172–7PubMed
50.
go back to reference Galati G, Lin A, Sultan AM, et al. Cellular and in vivo hepato-toxicity caused by green tea phenolic acids and catechins. Free Radic Biol Med 2006; 40(4): 570–80PubMedCrossRef Galati G, Lin A, Sultan AM, et al. Cellular and in vivo hepato-toxicity caused by green tea phenolic acids and catechins. Free Radic Biol Med 2006; 40(4): 570–80PubMedCrossRef
51.
go back to reference Isbrucker RA, Edwards JA, Wolz E, et al. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute, and short-term toxicity studies. Food Chem Toxicol 2006; 44(5): 636–50PubMedCrossRef Isbrucker RA, Edwards JA, Wolz E, et al. Safety studies on epigallocatechin gallate (EGCG) preparations. Part 2: dermal, acute, and short-term toxicity studies. Food Chem Toxicol 2006; 44(5): 636–50PubMedCrossRef
52.
go back to reference Chen JH, Tipoe GL, Liong EC, et al. Green tea polyphenols prevent toxin-induced hepatotoxicity in mice by down-regulating inducible nitric oxide-derived prooxidants. Am J Clin Nutr 2004; 80(3): 742–51PubMed Chen JH, Tipoe GL, Liong EC, et al. Green tea polyphenols prevent toxin-induced hepatotoxicity in mice by down-regulating inducible nitric oxide-derived prooxidants. Am J Clin Nutr 2004; 80(3): 742–51PubMed
53.
go back to reference Zhang XG, Xu P, Liu Q, et al. Effect of tea polyphenol on cytokine gene expression in rats with alcoholic liver disease. Hepatobiliary Pancreat Dis Int 2006; 5(2): 268–72PubMed Zhang XG, Xu P, Liu Q, et al. Effect of tea polyphenol on cytokine gene expression in rats with alcoholic liver disease. Hepatobiliary Pancreat Dis Int 2006; 5(2): 268–72PubMed
54.
go back to reference Dobrzynska I, Sniecinska A, Skrzydlewska E, et al. Green tea modulation of the biochemical and electric properties of rat liver cells that were affected by ethanol and aging. Cell Mol Biol Lett 2004; 9(4A): 709–21PubMed Dobrzynska I, Sniecinska A, Skrzydlewska E, et al. Green tea modulation of the biochemical and electric properties of rat liver cells that were affected by ethanol and aging. Cell Mol Biol Lett 2004; 9(4A): 709–21PubMed
55.
go back to reference Nishikawa T, Nakajima T, Moriguchi M, et al. A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins. J Hepatol 2006; 44(6): 1074–82PubMedCrossRef Nishikawa T, Nakajima T, Moriguchi M, et al. A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins. J Hepatol 2006; 44(6): 1074–82PubMedCrossRef
56.
go back to reference Fiorini RN, Donovan JL, Rodwell D, et al. Short-term administration of (−)-epigallocatechin gallate reduces hepatic steatosis and protects against warm hepatic ischemia/reperfusion injury in steatotic mice. Liver Transpl 2005; 11(3): 298–308PubMedCrossRef Fiorini RN, Donovan JL, Rodwell D, et al. Short-term administration of (−)-epigallocatechin gallate reduces hepatic steatosis and protects against warm hepatic ischemia/reperfusion injury in steatotic mice. Liver Transpl 2005; 11(3): 298–308PubMedCrossRef
57.
go back to reference Schmidt M, Schmitz HJ, Baumgart A, et al. Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture. Food Chem Toxicol 2005; 43(2): 307–14PubMedCrossRef Schmidt M, Schmitz HJ, Baumgart A, et al. Toxicity of green tea extracts and their constituents in rat hepatocytes in primary culture. Food Chem Toxicol 2005; 43(2): 307–14PubMedCrossRef
58.
go back to reference Imai K, Suga K, Nakachi K. Cancer-preventive effects of drinking green tea among a Japanese population. Prev Med 1997; 26(6): 769–75PubMedCrossRef Imai K, Suga K, Nakachi K. Cancer-preventive effects of drinking green tea among a Japanese population. Prev Med 1997; 26(6): 769–75PubMedCrossRef
59.
go back to reference Woo JJ. Adverse event monitoring and multivitamin-mul-timineral dietary supplements. Am J Clin Nutr 2007; 85(1): 323S–4SPubMed Woo JJ. Adverse event monitoring and multivitamin-mul-timineral dietary supplements. Am J Clin Nutr 2007; 85(1): 323S–4SPubMed
Metadata
Title
Safety of Green Tea Extracts
A Systematic Review by the US Pharmacopeia
Authors
Dr Dandapantula N. Sarma
Marilyn L. Barrett
Mary L. Chavez
Paula Gardiner
Richard Ko
Gail B. Mahady
Robin J. Marles
Linda S. Pellicore
Gabriel I. Giancaspro
Tieraona Low Dog
Publication date
01-06-2008
Publisher
Springer International Publishing
Published in
Drug Safety / Issue 6/2008
Print ISSN: 0114-5916
Electronic ISSN: 1179-1942
DOI
https://doi.org/10.2165/00002018-200831060-00003

Other articles of this Issue 6/2008

Drug Safety 6/2008 Go to the issue