Skip to main content
Top
Published in: CNS Drugs 5/2011

01-05-2011 | Review Article

Glatiramer Acetate in the Treatment of Multiple Sclerosis

Emerging Concepts Regarding its Mechanism of Action

Authors: Patrice H. Lalive, Oliver Neuhaus, Mahdia Benkhoucha, Danielle Burger, Reinhard Hohlfeld, Scott S. Zamvil, Dr Martin S. Weber

Published in: CNS Drugs | Issue 5/2011

Login to get access

Abstract

Glatiramer acetate is a synthetic, random copolymer widely used as a first-line agent for the treatment of relapsing-remitting multiple sclerosis (MS). While earlier studies primarily attributed its clinical effect to a shift in the cytokine secretion of CD4+ T helper (Th) cells, growing evidence in MS and its animal model, experimental autoimmune encephalomyelitis (EAE), suggests that glatiramer acetate treatment is associated with a broader immunomodulatory effect on cells of both the innate and adaptive immune system. To date, glatiramer acetate-mediated modulation of antigen-presenting cells (APC) such as monocytes and dendritic cells, CD4+ Th cells, CD8+ T cells, Foxp3+ regulatory T cells and antibody production by plasma cells have been reported; in addition, most recent investigations indicate that glatiramer acetate treatment may also promote regulatory B-cell properties. Experimental evidence suggests that, among these diverse effects, a fostering interplay between anti-inflammatory T-cell populations and regulatory type II APC may be the central axis in glatiramer acetate-mediated immune modulation of CNS autoimmune disease. Besides altering inflammatory processes, glatiramer acetate could exert direct neuroprotective and/or neuroregenerative properties, which could be of relevance for the treatment of MS, but even more so for primarily neurodegenerative disorders, such as Alzheimer’s or Parkinson’s disease. In this review, we provide a comprehensive and critical overview of established and recent findings aiming to elucidate the complex mechanism of action of glatiramer acetate.
Literature
1.
go back to reference Teitelbaum D, Meshorer A, Hirshfeld T, et al. Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur J Immunol 1971 Aug; 1(4): 242–8PubMedCrossRef Teitelbaum D, Meshorer A, Hirshfeld T, et al. Suppression of experimental allergic encephalomyelitis by a synthetic polypeptide. Eur J Immunol 1971 Aug; 1(4): 242–8PubMedCrossRef
2.
go back to reference Teitelbaum D, Webb C, Bree M, et al. Suppression of experimental allergic encephalomyelitis in Rhesus monkeys by a synthetic basic copolymer. Clin Immunol Immunopathol 1974 Nov; 3(2): 256–62PubMedCrossRef Teitelbaum D, Webb C, Bree M, et al. Suppression of experimental allergic encephalomyelitis in Rhesus monkeys by a synthetic basic copolymer. Clin Immunol Immunopathol 1974 Nov; 3(2): 256–62PubMedCrossRef
3.
go back to reference Lisak RP, Zweiman B, Blanchard N, et al. Effect of treatment with Copolymer 1 (Cop-1) on the in vivo and in vitro manifestations of experimental allergic encephalomyelitis (EAE). J Neurol Sci 1983 Dec; 62 (1–3): 281–93CrossRef Lisak RP, Zweiman B, Blanchard N, et al. Effect of treatment with Copolymer 1 (Cop-1) on the in vivo and in vitro manifestations of experimental allergic encephalomyelitis (EAE). J Neurol Sci 1983 Dec; 62 (1–3): 281–93CrossRef
4.
go back to reference Teitelbaum D, Fridkis-Hareli M, Arnon R, et al. Copolymer 1 inhibits chronic relapsing experimental allergic encephalomyelitis induced by proteolipid protein (PLP) peptides in mice and interferes with PLP-specific T cell responses. J Neuroimmunol 1996 Feb; 64(2): 209–17PubMedCrossRef Teitelbaum D, Fridkis-Hareli M, Arnon R, et al. Copolymer 1 inhibits chronic relapsing experimental allergic encephalomyelitis induced by proteolipid protein (PLP) peptides in mice and interferes with PLP-specific T cell responses. J Neuroimmunol 1996 Feb; 64(2): 209–17PubMedCrossRef
5.
go back to reference Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology 1995; 45: 1268–76PubMedCrossRef Johnson KP, Brooks BR, Cohen JA, et al. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology 1995; 45: 1268–76PubMedCrossRef
6.
go back to reference Mikol DD, Barkhof F, Chang P, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 2008 Oct; 7(10): 903–14PubMedCrossRef Mikol DD, Barkhof F, Chang P, et al. Comparison of subcutaneous interferon beta-1a with glatiramer acetate in patients with relapsing multiple sclerosis (the REbif vs Glatiramer Acetate in Relapsing MS Disease [REGARD] study): a multicentre, randomised, parallel, open-label trial. Lancet Neurol 2008 Oct; 7(10): 903–14PubMedCrossRef
7.
go back to reference O’Connor P, Filippi M, Arnason B, et al. 250 mug or 500 mug interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol 2009 Oct; 8(10): 889–97PubMedCrossRef O’Connor P, Filippi M, Arnason B, et al. 250 mug or 500 mug interferon beta-1b versus 20 mg glatiramer acetate in relapsing-remitting multiple sclerosis: a prospective, randomised, multicentre study. Lancet Neurol 2009 Oct; 8(10): 889–97PubMedCrossRef
8.
go back to reference Duda PW, Schmied MC, Cook SL, et al. Glatiramer acetate(Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 2000; 105(7): 967–76PubMedCrossRef Duda PW, Schmied MC, Cook SL, et al. Glatiramer acetate(Copaxone) induces degenerate, Th2-polarized immune responses in patients with multiple sclerosis. J Clin Invest 2000; 105(7): 967–76PubMedCrossRef
9.
go back to reference Neuhaus O, Farina C, Yassouridis A, et al. Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci U S A 2000; 97(13): 7452–7PubMedCrossRef Neuhaus O, Farina C, Yassouridis A, et al. Multiple sclerosis: comparison of copolymer-1-reactive T cell lines from treated and untreated subjects reveals cytokine shift from T helper 1 to T helper 2 cells. Proc Natl Acad Sci U S A 2000; 97(13): 7452–7PubMedCrossRef
10.
go back to reference Vieira PL, Heystek HC, Wormmeester J, et al. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol 2003 May 1; 170(9): 4483–8PubMed Vieira PL, Heystek HC, Wormmeester J, et al. Glatiramer acetate (copolymer-1, copaxone) promotes Th2 cell development and increased IL-10 production through modulation of dendritic cells. J Immunol 2003 May 1; 170(9): 4483–8PubMed
11.
go back to reference Hong J, Li N, Zhang X, et al. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci U S A 2005 May 3; 102(18): 6449–54PubMedCrossRef Hong J, Li N, Zhang X, et al. Induction of CD4+CD25+ regulatory T cells by copolymer-I through activation of transcription factor Foxp3. Proc Natl Acad Sci U S A 2005 May 3; 102(18): 6449–54PubMedCrossRef
12.
go back to reference Weber MS, Prod’homme T, Youssef S, et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 2007 Aug; 13(8): 935–43PubMedCrossRef Weber MS, Prod’homme T, Youssef S, et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 2007 Aug; 13(8): 935–43PubMedCrossRef
13.
go back to reference Karandikar NJ, Crawford MP, Yan X, et al. Glatiramer acetate (Copaxone) therapy induces CD8(+) T cell responses in patients with multiple sclerosis. J Clin Invest 2002 Mar; 109(5): 641–9PubMed Karandikar NJ, Crawford MP, Yan X, et al. Glatiramer acetate (Copaxone) therapy induces CD8(+) T cell responses in patients with multiple sclerosis. J Clin Invest 2002 Mar; 109(5): 641–9PubMed
14.
go back to reference Weber MS, Starck M, Wagenpfeil S, et al. Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo. Brain 2004 Jun; 127 (Pt 6): 1370–8PubMedCrossRef Weber MS, Starck M, Wagenpfeil S, et al. Multiple sclerosis: glatiramer acetate inhibits monocyte reactivity in vitro and in vivo. Brain 2004 Jun; 127 (Pt 6): 1370–8PubMedCrossRef
15.
go back to reference Kim HJ, Ifergan I, Antel JP, et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 2004 Jun 1; 172(11): 7144–53PubMed Kim HJ, Ifergan I, Antel JP, et al. Type 2 monocyte and microglia differentiation mediated by glatiramer acetate therapy in patients with multiple sclerosis. J Immunol 2004 Jun 1; 172(11): 7144–53PubMed
16.
go back to reference Stasiolek M, Bayas A, Kruse N, et al. Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 2006 May; 129 (Pt 5): 1293–305PubMedCrossRef Stasiolek M, Bayas A, Kruse N, et al. Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 2006 May; 129 (Pt 5): 1293–305PubMedCrossRef
17.
go back to reference Stuve O, Youssef S, Weber MS, et al. Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Invest 2006 Apr; 116(4): 1037–44PubMedCrossRef Stuve O, Youssef S, Weber MS, et al. Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Invest 2006 Apr; 116(4): 1037–44PubMedCrossRef
18.
go back to reference Burger D, Molnarfi N, Weber MS, et al. Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1beta in human monocytes and multiple sclerosis. roc Natl Acad Sci U S A 2009 Mar 17; 106(11): 4355–9CrossRef Burger D, Molnarfi N, Weber MS, et al. Glatiramer acetate increases IL-1 receptor antagonist but decreases T cell-induced IL-1beta in human monocytes and multiple sclerosis. roc Natl Acad Sci U S A 2009 Mar 17; 106(11): 4355–9CrossRef
19.
go back to reference Kala M, Rhodes SN, Piao WH, et al. B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis. Exp Neurol 2010 Jan; 221(1): 136–45PubMedCrossRef Kala M, Rhodes SN, Piao WH, et al. B cells from glatiramer acetate-treated mice suppress experimental autoimmune encephalomyelitis. Exp Neurol 2010 Jan; 221(1): 136–45PubMedCrossRef
20.
go back to reference Begum-Haque S, Sharma A, Christy M, et al. Increased expression of B cell-associated regulatory cytokines by glatiramer acetate in mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 2010 Feb 26; 219 (1–2): 47–53 Begum-Haque S, Sharma A, Christy M, et al. Increased expression of B cell-associated regulatory cytokines by glatiramer acetate in mice with experimental autoimmune encephalomyelitis. J Neuroimmunol 2010 Feb 26; 219 (1–2): 47–53
21.
go back to reference Aharoni R, Eilam R, Domev H, et al. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 2005 Dec 27; 102(52): 19045–50PubMedCrossRef Aharoni R, Eilam R, Domev H, et al. The immunomodulator glatiramer acetate augments the expression of neurotrophic factors in brains of experimental autoimmune encephalomyelitis mice. Proc Natl Acad Sci U S A 2005 Dec 27; 102(52): 19045–50PubMedCrossRef
22.
go back to reference Chen M, Valenzuela RM, Dhib-Jalbut S. Glatiramer acetate-reactive T cells produce brain-derived neurotrophic factor. J Neurol Sci 2003 Nov 15; 215(1–2): 37–44PubMedCrossRef Chen M, Valenzuela RM, Dhib-Jalbut S. Glatiramer acetate-reactive T cells produce brain-derived neurotrophic factor. J Neurol Sci 2003 Nov 15; 215(1–2): 37–44PubMedCrossRef
23.
go back to reference Kipnis J, Yoles E, Porat Z, et al. T cell immunity to copolymer1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 2000 Jun 20; 97(13): 7446–51PubMedCrossRef Kipnis J, Yoles E, Porat Z, et al. T cell immunity to copolymer1 confers neuroprotection on the damaged optic nerve: possible therapy for optic neuropathies. Proc Natl Acad Sci U S A 2000 Jun 20; 97(13): 7446–51PubMedCrossRef
24.
go back to reference Ziemssen T, Kumpfel T, Klinkert WE, et al. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy — brain-derived neurotrophic factor. Brain 2002 Nov; 125 (Pt 11): 2381–91PubMedCrossRef Ziemssen T, Kumpfel T, Klinkert WE, et al. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy — brain-derived neurotrophic factor. Brain 2002 Nov; 125 (Pt 11): 2381–91PubMedCrossRef
25.
go back to reference Skihar V, Silva C, Chojnacki A, et al. Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc Natl Acad Sci U S A 2009 Oct 20; 106(42): 17992–7PubMedCrossRef Skihar V, Silva C, Chojnacki A, et al. Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc Natl Acad Sci U S A 2009 Oct 20; 106(42): 17992–7PubMedCrossRef
26.
go back to reference Aharoni R, Herschkovitz A, Eilam R, et al. Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2008 Aug 12; 105(32): 11358–63PubMedCrossRef Aharoni R, Herschkovitz A, Eilam R, et al. Demyelination arrest and remyelination induced by glatiramer acetate treatment of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2008 Aug 12; 105(32): 11358–63PubMedCrossRef
27.
go back to reference Neuhaus O, Farina C, Wekerle H, et al. Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 2001; 56(6): 702–8PubMedCrossRef Neuhaus O, Farina C, Wekerle H, et al. Mechanisms of action of glatiramer acetate in multiple sclerosis. Neurology 2001; 56(6): 702–8PubMedCrossRef
28.
go back to reference Farina C, Weber MS, Meinl E, et al. Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurol 2005 Sep; 4(9): 567–75PubMedCrossRef Farina C, Weber MS, Meinl E, et al. Glatiramer acetate in multiple sclerosis: update on potential mechanisms of action. Lancet Neurol 2005 Sep; 4(9): 567–75PubMedCrossRef
29.
go back to reference Fridkis-Hareli M, Strominger JL. Promiscuous binding of synthetic copolymer 1 to purified HLA-DR molecules. J Immunol 1998 May 1; 160(9): 4386–97PubMed Fridkis-Hareli M, Strominger JL. Promiscuous binding of synthetic copolymer 1 to purified HLA-DR molecules. J Immunol 1998 May 1; 160(9): 4386–97PubMed
30.
go back to reference Fridkis-Hareli M, Teitelbaum D, Gurevich E, et al. Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility complex molecules on living antigen-presenting cells: specificity and promiscuity. Proc Natl Acad Sci U S A 1994 May 24; 91(11): 4872–6PubMedCrossRef Fridkis-Hareli M, Teitelbaum D, Gurevich E, et al. Direct binding of myelin basic protein and synthetic copolymer 1 to class II major histocompatibility complex molecules on living antigen-presenting cells: specificity and promiscuity. Proc Natl Acad Sci U S A 1994 May 24; 91(11): 4872–6PubMedCrossRef
31.
go back to reference Teitelbaum D, Milo R, Arnon R, et al. Synthetic copolymer 1 inhibits human T-cell lines specific for myelin basic protein. Proc Natl Acad Sci U S A 1992 Jan 1; 89(1): 137–41PubMedCrossRef Teitelbaum D, Milo R, Arnon R, et al. Synthetic copolymer 1 inhibits human T-cell lines specific for myelin basic protein. Proc Natl Acad Sci U S A 1992 Jan 1; 89(1): 137–41PubMedCrossRef
32.
go back to reference Webb C, Teitelbaum D, Herz A, et al. Molecular requirementsinvolved in suppression of EAE by synthetic basic copolymers of amino acids. Immunochemistry 1976 Apr; 13(4): 333–7PubMedCrossRef Webb C, Teitelbaum D, Herz A, et al. Molecular requirementsinvolved in suppression of EAE by synthetic basic copolymers of amino acids. Immunochemistry 1976 Apr; 13(4): 333–7PubMedCrossRef
33.
go back to reference Aharoni R, Schlegel PG, Teitelbaum D, et al. Studies on the mechanism and specificity of the effect of the synthetic random copolymer GLAT on graft-versus-host disease. Immunol Lett 1997 Jul; 58(2): 79–87PubMedCrossRef Aharoni R, Schlegel PG, Teitelbaum D, et al. Studies on the mechanism and specificity of the effect of the synthetic random copolymer GLAT on graft-versus-host disease. Immunol Lett 1997 Jul; 58(2): 79–87PubMedCrossRef
34.
go back to reference Wiesemann E, Klatt J, Sonmez D, et al. Glatiramer acetate(GA) induces IL-13/IL-5 secretion in naive T cells. J Neuroimmunol 2001 Sep 3; 119(1): 137–44PubMedCrossRef Wiesemann E, Klatt J, Sonmez D, et al. Glatiramer acetate(GA) induces IL-13/IL-5 secretion in naive T cells. J Neuroimmunol 2001 Sep 3; 119(1): 137–44PubMedCrossRef
35.
go back to reference Dhib-Jalbut S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 2002 Apr 23; 58(8 Suppl. 4): S3–9PubMedCrossRef Dhib-Jalbut S. Mechanisms of action of interferons and glatiramer acetate in multiple sclerosis. Neurology 2002 Apr 23; 58(8 Suppl. 4): S3–9PubMedCrossRef
36.
go back to reference Aharoni R, Teitelbaum D, Sela M, et al. Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 1997; 94(20): 10821–6PubMedCrossRef Aharoni R, Teitelbaum D, Sela M, et al. Copolymer 1 induces T cells of the T helper type 2 that crossreact with myelin basic protein and suppress experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 1997; 94(20): 10821–6PubMedCrossRef
37.
go back to reference Aharoni R, Teitelbaum D, Leitner O, et al. Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc Natl Acad Sci U S A 2000; 97(21): 11472–7PubMedCrossRef Aharoni R, Teitelbaum D, Leitner O, et al. Specific Th2 cells accumulate in the central nervous system of mice protected against experimental autoimmune encephalomyelitis by copolymer 1. Proc Natl Acad Sci U S A 2000; 97(21): 11472–7PubMedCrossRef
38.
go back to reference Chen M, Gran B, Costello K, et al. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult Scler 2001 Aug; 7(4): 209–19PubMed Chen M, Gran B, Costello K, et al. Glatiramer acetate induces a Th2-biased response and crossreactivity with myelin basic protein in patients with MS. Mult Scler 2001 Aug; 7(4): 209–19PubMed
39.
go back to reference Aharoni R, Teitelbaum D, Sela M, et al. Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J Neuroimmunol 1998; 91(1–2): 135–46PubMedCrossRef Aharoni R, Teitelbaum D, Sela M, et al. Bystander suppression of experimental autoimmune encephalomyelitis by T cell lines and clones of the Th2 type induced by copolymer 1. J Neuroimmunol 1998; 91(1–2): 135–46PubMedCrossRef
40.
go back to reference Kantengwa S, Weber MS, Juillard C, et al. Inhibition of naive Th1 CD4+ T cells by glatiramer acetate in multiple sclerosis. J Neuroimmunol 2007 Apr; 185(1–2): 123–9PubMedCrossRef Kantengwa S, Weber MS, Juillard C, et al. Inhibition of naive Th1 CD4+ T cells by glatiramer acetate in multiple sclerosis. J Neuroimmunol 2007 Apr; 185(1–2): 123–9PubMedCrossRef
41.
go back to reference Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003 Feb 14; 299(5609): 1057–61PubMedCrossRef Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003 Feb 14; 299(5609): 1057–61PubMedCrossRef
42.
go back to reference Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001 Jan; 27(1): 68–73PubMedCrossRef Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001 Jan; 27(1): 68–73PubMedCrossRef
43.
go back to reference Kukreja A, Cost G, Marker J, et al. Multiple immunoregulatory defects in type-1 diabetes. J Clin Invest 2002 Jan; 109(1): 131–40PubMed Kukreja A, Cost G, Marker J, et al. Multiple immunoregulatory defects in type-1 diabetes. J Clin Invest 2002 Jan; 109(1): 131–40PubMed
44.
go back to reference Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004 Apr 5; 199(7): 971–9PubMedCrossRef Viglietta V, Baecher-Allan C, Weiner HL, et al. Loss of functional suppression by CD4+CD25+ regulatory T cells in patients with multiple sclerosis. J Exp Med 2004 Apr 5; 199(7): 971–9PubMedCrossRef
45.
go back to reference Farina C, Then Bergh F, Albrecht H, et al. Treatment of multiple sclerosis with Copaxone (COP): Elispot assay detects COP-induced interleukin-4 and interferon-gamma response in blood cells. Brain 2001 Apr; 124 (Pt 4): 705–19PubMedCrossRef Farina C, Then Bergh F, Albrecht H, et al. Treatment of multiple sclerosis with Copaxone (COP): Elispot assay detects COP-induced interleukin-4 and interferon-gamma response in blood cells. Brain 2001 Apr; 124 (Pt 4): 705–19PubMedCrossRef
46.
go back to reference Tennakoon DK, Mehta RS, Ortega SB, et al. Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol 2006 Jun 1; 176(11): 7119–29PubMed Tennakoon DK, Mehta RS, Ortega SB, et al. Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol 2006 Jun 1; 176(11): 7119–29PubMed
47.
go back to reference Biegler BW, Yan SX, Ortega SB, et al. Glatiramer acetate (GA) therapy induces a focused, oligoclonal CD8+ T-cell repertoire in multiple sclerosis. J Neuroimmunol 2006 Nov; 180(1–2): 159–71PubMedCrossRef Biegler BW, Yan SX, Ortega SB, et al. Glatiramer acetate (GA) therapy induces a focused, oligoclonal CD8+ T-cell repertoire in multiple sclerosis. J Neuroimmunol 2006 Nov; 180(1–2): 159–71PubMedCrossRef
48.
go back to reference Teitelbaum D, Brenner T, Abramsky O, et al. Antibodies to glatiramer acetate do not interfere with its biological functions and therapeutic efficacy. Mult Scler 2003 Dec; 9(6): 592–9PubMedCrossRef Teitelbaum D, Brenner T, Abramsky O, et al. Antibodies to glatiramer acetate do not interfere with its biological functions and therapeutic efficacy. Mult Scler 2003 Dec; 9(6): 592–9PubMedCrossRef
49.
go back to reference Farina C, Vargas V, Heydari N, et al. Treatment with glatiramer acetate induces specific IgG4 antibodies in multiple sclerosis patients. J Neuroimmunol 2002 Feb; 123(1–2): 188–92PubMedCrossRef Farina C, Vargas V, Heydari N, et al. Treatment with glatiramer acetate induces specific IgG4 antibodies in multiple sclerosis patients. J Neuroimmunol 2002 Feb; 123(1–2): 188–92PubMedCrossRef
50.
go back to reference Kappos L, Clanet M, Sandberg-Wollheim M, et al. Neutralizing antibodies and efficacy of interferon beta-1a: a 4-year controlled study. Neurology 2005 Jul 12; 65(1): 40–7PubMedCrossRef Kappos L, Clanet M, Sandberg-Wollheim M, et al. Neutralizing antibodies and efficacy of interferon beta-1a: a 4-year controlled study. Neurology 2005 Jul 12; 65(1): 40–7PubMedCrossRef
51.
go back to reference Karussis D, Teitelbaum D, Sicsic C, et al. Long-term treatment of multiple sclerosis with glatiramer acetate: natural history of the subtypes of anti-glatiramer acetate antibodies and their correlation with clinical efficacy. J Neuroimmunol 2010 Mar 30; 220(1–2): 125–30PubMedCrossRef Karussis D, Teitelbaum D, Sicsic C, et al. Long-term treatment of multiple sclerosis with glatiramer acetate: natural history of the subtypes of anti-glatiramer acetate antibodies and their correlation with clinical efficacy. J Neuroimmunol 2010 Mar 30; 220(1–2): 125–30PubMedCrossRef
52.
go back to reference Brenner T, Arnon R, Sela M, et al. Humoral and cellular immune responses to Copolymer 1 in multiple sclerosis patients treated with Copaxone. J Neuroimmunol 2001 Apr 2; 115(1–2): 152–60PubMedCrossRef Brenner T, Arnon R, Sela M, et al. Humoral and cellular immune responses to Copolymer 1 in multiple sclerosis patients treated with Copaxone. J Neuroimmunol 2001 Apr 2; 115(1–2): 152–60PubMedCrossRef
53.
go back to reference Ure DR, Rodriguez M. Polyreactive antibodies to glatiramer acetate promote myelin repair in murine model of demyelinating disease. FASEB J 2002 Aug; 16(10): 1260–2PubMed Ure DR, Rodriguez M. Polyreactive antibodies to glatiramer acetate promote myelin repair in murine model of demyelinating disease. FASEB J 2002 Aug; 16(10): 1260–2PubMed
54.
go back to reference Weber MS, Prod’homme T, Patarroyo JC, et al. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 2010 Sep; 68(3): 369–83PubMedCrossRef Weber MS, Prod’homme T, Patarroyo JC, et al. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol 2010 Sep; 68(3): 369–83PubMedCrossRef
55.
go back to reference Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008 Feb 14; 358(7): 676–88PubMedCrossRef Hauser SL, Waubant E, Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med 2008 Feb 14; 358(7): 676–88PubMedCrossRef
56.
go back to reference Bar-Or A, Fawaz L, Fan B, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 2010 Apr; 67(4): 452–61PubMedCrossRef Bar-Or A, Fawaz L, Fan B, et al. Abnormal B-cell cytokine responses a trigger of T-cell-mediated disease in MS? Ann Neurol 2010 Apr; 67(4): 452–61PubMedCrossRef
57.
go back to reference Fillatreau S, Sweenie CH, McGeachy MJ, et al. B cells regulateautoimmunity by provision of IL-10. Nat Immunol 2002 Oct; 3(10): 944–50PubMedCrossRef Fillatreau S, Sweenie CH, McGeachy MJ, et al. B cells regulateautoimmunity by provision of IL-10. Nat Immunol 2002 Oct; 3(10): 944–50PubMedCrossRef
58.
go back to reference Mann MK, Maresz K, Shriver LP, et al. B cell regulation of CD4 + CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol 2007 Mar 15; 178(6): 3447–56PubMed Mann MK, Maresz K, Shriver LP, et al. B cell regulation of CD4 + CD25+ T regulatory cells and IL-10 via B7 is essential for recovery from experimental autoimmune encephalomyelitis. J Immunol 2007 Mar 15; 178(6): 3447–56PubMed
59.
go back to reference Bouaziz JD, Yanaba K, Tedder TF. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev 2008 Aug; 224: 201–14PubMedCrossRef Bouaziz JD, Yanaba K, Tedder TF. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev 2008 Aug; 224: 201–14PubMedCrossRef
60.
go back to reference De Smedt T, Van Mechelen M, De Becker G, et al. Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 1997 May; 27(5): 1229–35PubMedCrossRef De Smedt T, Van Mechelen M, De Becker G, et al. Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 1997 May; 27(5): 1229–35PubMedCrossRef
61.
go back to reference Li Q, Milo R, Panitch H, et al. Glatiramer acetate blocksthe activation of THP-1 cells by interferon-gamma. Eur J Pharmacol 1998 Jan 26; 342(2–3): 303–10PubMedCrossRef Li Q, Milo R, Panitch H, et al. Glatiramer acetate blocksthe activation of THP-1 cells by interferon-gamma. Eur J Pharmacol 1998 Jan 26; 342(2–3): 303–10PubMedCrossRef
62.
go back to reference Hussien Y, Sanna A, Soderstrom M, et al. Glatiramer acetate and IFN-beta act on dendritic cells in multiple sclerosis. J Neuroimmunol 2001 Dec 3; 121(1–2): 102–10PubMedCrossRef Hussien Y, Sanna A, Soderstrom M, et al. Glatiramer acetate and IFN-beta act on dendritic cells in multiple sclerosis. J Neuroimmunol 2001 Dec 3; 121(1–2): 102–10PubMedCrossRef
63.
go back to reference Jung S, Siglienti I, Grauer O, et al. Induction of IL-10 in ratperitoneal macrophages and dendritic cells by glatiramer acetate. J Neuroimmunol 2004 Mar; 148(1–2): 63–73PubMedCrossRef Jung S, Siglienti I, Grauer O, et al. Induction of IL-10 in ratperitoneal macrophages and dendritic cells by glatiramer acetate. J Neuroimmunol 2004 Mar; 148(1–2): 63–73PubMedCrossRef
64.
go back to reference Sanna A, Fois ML, Arru G, et al. Glatiramer acetate reduces lymphocyte proliferation and enhances IL-5 and IL-13 production through modulation of monocyte-derived dendritic cells in multiple sclerosis. Clin Exp Immunol 2006 Feb; 143(2): 357–62PubMedCrossRef Sanna A, Fois ML, Arru G, et al. Glatiramer acetate reduces lymphocyte proliferation and enhances IL-5 and IL-13 production through modulation of monocyte-derived dendritic cells in multiple sclerosis. Clin Exp Immunol 2006 Feb; 143(2): 357–62PubMedCrossRef
65.
go back to reference Carpintero R, Brandt KJ, Gruaz L, et al. Glatiramer acetate triggers PI3Kdelta/Akt and MEK/ERK pathways to induce IL-1 receptor antagonist in human monocytes. Proc Natl Acad Sci U S A 2010 Oct 12; 107(41): 17692–7PubMedCrossRef Carpintero R, Brandt KJ, Gruaz L, et al. Glatiramer acetate triggers PI3Kdelta/Akt and MEK/ERK pathways to induce IL-1 receptor antagonist in human monocytes. Proc Natl Acad Sci U S A 2010 Oct 12; 107(41): 17692–7PubMedCrossRef
66.
go back to reference Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006 May 11; 441(7090): 235–8PubMedCrossRef Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 2006 May 11; 441(7090): 235–8PubMedCrossRef
67.
go back to reference Korn T, Mitsdoerffer M, Croxford AL, et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2008 Nov 25; 105(47): 18460–5PubMedCrossRef Korn T, Mitsdoerffer M, Croxford AL, et al. IL-6 controls Th17 immunity in vivo by inhibiting the conversion of conventional T cells into Foxp3+ regulatory T cells. Proc Natl Acad Sci U S A 2008 Nov 25; 105(47): 18460–5PubMedCrossRef
68.
go back to reference Korn T, Oukka M, Kuchroo V, et al. Th17 cells: effector T cells with inflammatory properties. Semin Immunol 2007 Dec; 19(6): 362–71PubMedCrossRef Korn T, Oukka M, Kuchroo V, et al. Th17 cells: effector T cells with inflammatory properties. Semin Immunol 2007 Dec; 19(6): 362–71PubMedCrossRef
69.
go back to reference Mombaerts P, Iacomini J, Johnson RS, et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992 Mar 6; 68(5): 869–77PubMedCrossRef Mombaerts P, Iacomini J, Johnson RS, et al. RAG-1-deficient mice have no mature B and T lymphocytes. Cell 1992 Mar 6; 68(5): 869–77PubMedCrossRef
70.
go back to reference Aharoni R, Kayhan B, Eilam R, et al. Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad Sci U S A 2003 Nov 25; 100(24): 14157–62PubMedCrossRef Aharoni R, Kayhan B, Eilam R, et al. Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad Sci U S A 2003 Nov 25; 100(24): 14157–62PubMedCrossRef
71.
go back to reference Allie R, Hu L, Mullen KM, et al. Bystander modulation of chemokine receptor expression on peripheral blood T lymphocytes mediated by glatiramer therapy. Arch Neurol 2005 Jun; 62(6): 889–94PubMedCrossRef Allie R, Hu L, Mullen KM, et al. Bystander modulation of chemokine receptor expression on peripheral blood T lymphocytes mediated by glatiramer therapy. Arch Neurol 2005 Jun; 62(6): 889–94PubMedCrossRef
72.
go back to reference Zhang M, Chan CC, Vistica B, et al. Copolymer 1 inhibits experimental autoimmune uveoretinitis. J Neuroimmunol 2000 Mar 1; 103(2): 189–94PubMedCrossRef Zhang M, Chan CC, Vistica B, et al. Copolymer 1 inhibits experimental autoimmune uveoretinitis. J Neuroimmunol 2000 Mar 1; 103(2): 189–94PubMedCrossRef
73.
go back to reference Gur C, Karussis D, Golden E, et al. Amelioration of experimental colitis by Copaxone is associated with class-II-restricted CD4 immune blocking. Clin Immunol 2006 Feb–Mar; 118(2–3): 307–16PubMedCrossRef Gur C, Karussis D, Golden E, et al. Amelioration of experimental colitis by Copaxone is associated with class-II-restricted CD4 immune blocking. Clin Immunol 2006 Feb–Mar; 118(2–3): 307–16PubMedCrossRef
74.
go back to reference Arnon R, Aharoni R. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci U S A 2004 Oct 5; 101 Suppl. 2: 14593–8PubMedCrossRef Arnon R, Aharoni R. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci U S A 2004 Oct 5; 101 Suppl. 2: 14593–8PubMedCrossRef
75.
go back to reference Kerschensteiner M, Stadelmann C, Dechant G, et al. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 2003 Mar; 53(3): 292–304PubMedCrossRef Kerschensteiner M, Stadelmann C, Dechant G, et al. Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 2003 Mar; 53(3): 292–304PubMedCrossRef
76.
go back to reference Riley CP, Cope TC, Buck CR. CNS neurotrophins are biologically active and expressed by multiple cell types. J Mol Histol 2004 Nov; 35(8–9): 771–83PubMedCrossRef Riley CP, Cope TC, Buck CR. CNS neurotrophins are biologically active and expressed by multiple cell types. J Mol Histol 2004 Nov; 35(8–9): 771–83PubMedCrossRef
77.
go back to reference Kerschensteiner M, Gallmeier E, Behrens L, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 1999 Mar 1; 189(5): 865–70PubMedCrossRef Kerschensteiner M, Gallmeier E, Behrens L, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 1999 Mar 1; 189(5): 865–70PubMedCrossRef
78.
go back to reference Stadelmann C, Kerschensteiner M, Misgeld T, et al. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 2002 Jan; 125 (Pt 1): 75–85PubMedCrossRef Stadelmann C, Kerschensteiner M, Misgeld T, et al. BDNF and gp145trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 2002 Jan; 125 (Pt 1): 75–85PubMedCrossRef
79.
go back to reference Maier K, Kuhnert AV, Taheri N, et al. Effects of glatiramer acetate and interferon-beta on neurodegeneration in a model of multiple sclerosis: a comparative study. Am J Pathol 2006 Oct; 169(4): 1353–64PubMedCrossRef Maier K, Kuhnert AV, Taheri N, et al. Effects of glatiramer acetate and interferon-beta on neurodegeneration in a model of multiple sclerosis: a comparative study. Am J Pathol 2006 Oct; 169(4): 1353–64PubMedCrossRef
80.
go back to reference Aharoni R, Arnon R, Eilam R. Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 2005 Sep 7; 25(36): 8217–28PubMedCrossRef Aharoni R, Arnon R, Eilam R. Neurogenesis and neuroprotection induced by peripheral immunomodulatory treatment of experimental autoimmune encephalomyelitis. J Neurosci 2005 Sep 7; 25(36): 8217–28PubMedCrossRef
81.
go back to reference Gilgun-Sherki Y, Panet H, Holdengreber V, et al. Axonal damage is reduced following glatiramer acetate treatment in C57/bl mice with chronic-induced experimental autoimmune encephalomyelitis. Neurosci Res 2003 Oct; 47(2): 201–7PubMedCrossRef Gilgun-Sherki Y, Panet H, Holdengreber V, et al. Axonal damage is reduced following glatiramer acetate treatment in C57/bl mice with chronic-induced experimental autoimmune encephalomyelitis. Neurosci Res 2003 Oct; 47(2): 201–7PubMedCrossRef
82.
go back to reference Liu J, Johnson TV, Lin J, et al. T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 2007 Nov; 37(11): 3143–54PubMedCrossRef Liu J, Johnson TV, Lin J, et al. T cell independent mechanism for copolymer-1-induced neuroprotection. Eur J Immunol 2007 Nov; 37(11): 3143–54PubMedCrossRef
83.
go back to reference Azoulay D, Vachapova V, Shihman B, et al. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 2005 Oct; 167(1–2): 215–8PubMedCrossRef Azoulay D, Vachapova V, Shihman B, et al. Lower brain-derived neurotrophic factor in serum of relapsing remitting MS: reversal by glatiramer acetate. J Neuroimmunol 2005 Oct; 167(1–2): 215–8PubMedCrossRef
84.
go back to reference Filippi M, Rovaris M, Rocca MA, et al. Glatiramer acetate reduces the proportion of new MS lesions evolving into ‘black holes’. Neurology 2001 Aug 28; 57(4): 731–3PubMedCrossRef Filippi M, Rovaris M, Rocca MA, et al. Glatiramer acetate reduces the proportion of new MS lesions evolving into ‘black holes’. Neurology 2001 Aug 28; 57(4): 731–3PubMedCrossRef
85.
go back to reference Khan O, Shen Y, Bao F, et al. Long-term study of brain 1H-MRS study in multiple sclerosis: effect of glatiramer acetate therapy on axonal metabolic function and feasibility of long-Term H-MRS monitoring in multiple sclerosis. J Neuroimaging 2008 Jul; 18(3): 314–9PubMedCrossRef Khan O, Shen Y, Bao F, et al. Long-term study of brain 1H-MRS study in multiple sclerosis: effect of glatiramer acetate therapy on axonal metabolic function and feasibility of long-Term H-MRS monitoring in multiple sclerosis. J Neuroimaging 2008 Jul; 18(3): 314–9PubMedCrossRef
86.
go back to reference Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 2002 Sep; 3(9): 705–14PubMedCrossRef Franklin RJ. Why does remyelination fail in multiple sclerosis? Nat Rev Neurosci 2002 Sep; 3(9): 705–14PubMedCrossRef
87.
go back to reference Lalive PH, Paglinawan R, Biollaz G, et al. TGF-beta-treated microglia induce oligodendrocyte precursor cell chemotaxis through the HGF-c-Met pathway. Eur J Immunol 2005 Mar; 35(3): 727–37PubMedCrossRef Lalive PH, Paglinawan R, Biollaz G, et al. TGF-beta-treated microglia induce oligodendrocyte precursor cell chemotaxis through the HGF-c-Met pathway. Eur J Immunol 2005 Mar; 35(3): 727–37PubMedCrossRef
88.
go back to reference Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. N Engl J Med 2000; 343(13): 938–52PubMedCrossRef Noseworthy JH, Lucchinetti C, Rodriguez M, et al. Multiple sclerosis. N Engl J Med 2000; 343(13): 938–52PubMedCrossRef
89.
go back to reference Wolinsky JS. The diagnosis of primary progressive multiple sclerosis. J Neurol Sci 2003 Feb 15; 206(2): 145–52PubMedCrossRef Wolinsky JS. The diagnosis of primary progressive multiple sclerosis. J Neurol Sci 2003 Feb 15; 206(2): 145–52PubMedCrossRef
90.
go back to reference Wolinsky JS, Narayana PA, O’Connor P, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol 2007 Jan; 61(1): 14–24PubMedCrossRef Wolinsky JS, Narayana PA, O’Connor P, et al. Glatiramer acetate in primary progressive multiple sclerosis: results of a multinational, multicenter, double-blind, placebo-controlled trial. Ann Neurol 2007 Jan; 61(1): 14–24PubMedCrossRef
91.
go back to reference Butovsky O, Koronyo-Hamaoui M, Kunis G, et al. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A 2006 Aug 1; 103(31): 11784–9PubMedCrossRef Butovsky O, Koronyo-Hamaoui M, Kunis G, et al. Glatiramer acetate fights against Alzheimer’s disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci U S A 2006 Aug 1; 103(31): 11784–9PubMedCrossRef
92.
go back to reference Frenkel D, Maron R, Burt DS, et al. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 2005 Sep; 115(9): 2423–33PubMedCrossRef Frenkel D, Maron R, Burt DS, et al. Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears beta-amyloid in a mouse model of Alzheimer disease. J Clin Invest 2005 Sep; 115(9): 2423–33PubMedCrossRef
93.
go back to reference Benner EJ, Mosley RL, Destache CJ, et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 2004 Jun 22; 101(25): 9435–40PubMedCrossRef Benner EJ, Mosley RL, Destache CJ, et al. Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson’s disease. Proc Natl Acad Sci U S A 2004 Jun 22; 101(25): 9435–40PubMedCrossRef
94.
go back to reference Angelov DN, Waibel S, Guntinas-Lichius O, et al. Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2003 Apr 15; 100(8): 4790–5PubMedCrossRef Angelov DN, Waibel S, Guntinas-Lichius O, et al. Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A 2003 Apr 15; 100(8): 4790–5PubMedCrossRef
95.
go back to reference Aharoni R, Kayhan B, Arnon R. Therapeutic effect of the immunomodulator glatiramer acetate on trinitrobenzene sulfonic acid-induced experimental colitis. Inflamm Bowel Dis 2005 Feb; 11(2): 106–15PubMedCrossRef Aharoni R, Kayhan B, Arnon R. Therapeutic effect of the immunomodulator glatiramer acetate on trinitrobenzene sulfonic acid-induced experimental colitis. Inflamm Bowel Dis 2005 Feb; 11(2): 106–15PubMedCrossRef
96.
go back to reference Aharoni R, Sonego H, Brenner O, et al. The therapeutic effect of glatiramer acetate in a murine model of inflammatory bowel disease is mediated by anti-inflammatory T-cells. Immunol Lett 2007 Oct 15; 112(2): 110–9PubMedCrossRef Aharoni R, Sonego H, Brenner O, et al. The therapeutic effect of glatiramer acetate in a murine model of inflammatory bowel disease is mediated by anti-inflammatory T-cells. Immunol Lett 2007 Oct 15; 112(2): 110–9PubMedCrossRef
97.
go back to reference Neesse A, Michl P, Kunsch S, et al. Glatiramer acetate: a novel therapeutic approach in Crohn’s disease? Inflamm Bowel Dis 2009 Jan; 15(1): 156–7PubMedCrossRef Neesse A, Michl P, Kunsch S, et al. Glatiramer acetate: a novel therapeutic approach in Crohn’s disease? Inflamm Bowel Dis 2009 Jan; 15(1): 156–7PubMedCrossRef
98.
go back to reference Zheng B, Switzer K, Marinova E, et al. Exacerbation of autoimmune arthritis by copolymer-I through promoting type 1 immune response and autoantibody production. Autoimmunity 2008 Aug; 41(5): 363–71PubMedCrossRef Zheng B, Switzer K, Marinova E, et al. Exacerbation of autoimmune arthritis by copolymer-I through promoting type 1 immune response and autoantibody production. Autoimmunity 2008 Aug; 41(5): 363–71PubMedCrossRef
99.
go back to reference Borel P, Benkhoucha M, Weber MS, et al. Glatiramer acetate treatment does not modify the clinical course of (NZB × BXSB)F1 lupus murine model. Int Immunol 2008 Oct; 20(10): 1313–9PubMedCrossRef Borel P, Benkhoucha M, Weber MS, et al. Glatiramer acetate treatment does not modify the clinical course of (NZB × BXSB)F1 lupus murine model. Int Immunol 2008 Oct; 20(10): 1313–9PubMedCrossRef
Metadata
Title
Glatiramer Acetate in the Treatment of Multiple Sclerosis
Emerging Concepts Regarding its Mechanism of Action
Authors
Patrice H. Lalive
Oliver Neuhaus
Mahdia Benkhoucha
Danielle Burger
Reinhard Hohlfeld
Scott S. Zamvil
Dr Martin S. Weber
Publication date
01-05-2011
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 5/2011
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/11588120-000000000-00000

Other articles of this Issue 5/2011

CNS Drugs 5/2011 Go to the issue