Skip to main content
Top
Published in: Drugs & Aging 3/2010

01-03-2010 | Leading Article

Mitochondrial Dynamics in Alzheimer’s Disease

Opportunities for Future Treatment Strategies

Authors: David J. Bonda, Xinglong Wang, George Perry, Dr Mark A. Smith, Dr Xiongwei Zhu

Published in: Drugs & Aging | Issue 3/2010

Login to get access

Abstract

The complexities that underlie the cognitive impairment and neurodegeneration characteristic of Alzheimer’s disease (AD) have yet to be completely understood, although many factors in disease pathogenesis have been identified. Particularly important in disease development seem to be mitochondrial disturbances. As pivotal role players in cellular metabolism, mitochondria are pertinent to cell survival and thus any deviation from their operation is certainly fatal. In this review, we describe how the dynamic balance of mitochondrial fission and fusion in particular is a necessary aspect of cell proliferation and that, as the cell ages, such balance is inevitably compromised to yield a destructive environment in which the cell cannot exist. Evidence for such disturbance is abundant in AD. Specifically, the dynamic balance of fission and fusion in AD is greatly shifted toward fission, and, as a result, affected neurons contain abnormal mitochondria that are unable to meet the metabolic demands of the cell. Moreover, mitochondrial distribution in AD cells is perinuclear, with few metabolic organelles in the distal processes, where they are normally distributed in healthy cells and are needed for exocytosis, ion channel pumps, synaptic function and other activities. AD neurons are thus characterized by increases in reactive oxidative species and decreases in metabolic capability, and, notably, these changes are evident very early in AD progression. We therefore believe that oxidative stress and altered mitochondrial dynamics contribute to the precipitation of AD pathology and thus cognitive decline. These implications provide a window for therapeutic intervention (i.e. mitochondrial protection) that has the potential to significantly deter AD progression if adequately developed. Current treatment strategies under investigation are described in this review.
Literature
1.
2.
go back to reference Serretti A, Olgiati P, De Ronchi D. Genetics of Alzheimer’s disease: a rapidly evolving field. J Alzheimers Dis 2007 Aug; 12(1): 73–92PubMed Serretti A, Olgiati P, De Ronchi D. Genetics of Alzheimer’s disease: a rapidly evolving field. J Alzheimers Dis 2007 Aug; 12(1): 73–92PubMed
3.
go back to reference Rogaeva E, Kawarai T, George-Hyslop PS. Genetic complexity of Alzheimer’s disease: successes and challenges. J Alzheimers Dis 2006; 9(sn3 Suppl.): 381–7PubMed Rogaeva E, Kawarai T, George-Hyslop PS. Genetic complexity of Alzheimer’s disease: successes and challenges. J Alzheimers Dis 2006; 9(sn3 Suppl.): 381–7PubMed
4.
go back to reference Gustaw-Rothenberg KA, Siedlak SL, Bonda DJ, et al. Dissociated amyloid-β antibody levels as a serum bio-marker for the progression of Alzheimer’s disease: a population-based study. Exp Gerontol 2010; 45: 47–52PubMed Gustaw-Rothenberg KA, Siedlak SL, Bonda DJ, et al. Dissociated amyloid-β antibody levels as a serum bio-marker for the progression of Alzheimer’s disease: a population-based study. Exp Gerontol 2010; 45: 47–52PubMed
5.
go back to reference Iqbal K, Zaidi T, Thompson CH, et al. Alzheimer paired helical filaments: bulk isolation, solubility, and protein composition. Acta Neuropathol (Berl) 1984; 62(3): 167–77 Iqbal K, Zaidi T, Thompson CH, et al. Alzheimer paired helical filaments: bulk isolation, solubility, and protein composition. Acta Neuropathol (Berl) 1984; 62(3): 167–77
6.
go back to reference Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 1986 Jul; 83(13): 4913–7PubMed Grundke-Iqbal I, Iqbal K, Tung YC, et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 1986 Jul; 83(13): 4913–7PubMed
7.
go back to reference Mancuso M, Orsucci D, Siciliano G, et al. Mitochondria, mitochondrial DNA and Alzheimer’s disease: what comes first? Curr Alzheimer Res 2008 Oct; 5(5): 457–68PubMed Mancuso M, Orsucci D, Siciliano G, et al. Mitochondria, mitochondrial DNA and Alzheimer’s disease: what comes first? Curr Alzheimer Res 2008 Oct; 5(5): 457–68PubMed
8.
go back to reference Zhu X, Lee HG, Perry G, et al. Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 2007 Apr;1772(4): 494–502PubMed Zhu X, Lee HG, Perry G, et al. Alzheimer disease, the two-hit hypothesis: an update. Biochim Biophys Acta 2007 Apr;1772(4): 494–502PubMed
9.
go back to reference Wang X, Su B, Zheng L, et al. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem 2009 May; 109Suppl. 1: 153–9PubMed Wang X, Su B, Zheng L, et al. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem 2009 May; 109Suppl. 1: 153–9PubMed
10.
go back to reference Blass JP. The mitochondrial spiral: an adequate cause of dementia in the Alzheimer’s syndrome. Ann N Y Acad Sci 2000; 924: 170–83PubMed Blass JP. The mitochondrial spiral: an adequate cause of dementia in the Alzheimer’s syndrome. Ann N Y Acad Sci 2000; 924: 170–83PubMed
11.
go back to reference Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 2006; 22: 79–99PubMed Chan DC. Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 2006; 22: 79–99PubMed
12.
go back to reference Bleazard W, McCaffery JM, King EJ, et al. The dynaminrelated GTPase Dnm1 regulates mitochondrial fission in yeast. Nature Cell Biology 1999 Sep; 1(5): 298–304PubMed Bleazard W, McCaffery JM, King EJ, et al. The dynaminrelated GTPase Dnm1 regulates mitochondrial fission in yeast. Nature Cell Biology 1999 Sep; 1(5): 298–304PubMed
13.
go back to reference Sesaki H, Jensen RE. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 1999 Nov 15; 147(4): 699–706PubMed Sesaki H, Jensen RE. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 1999 Nov 15; 147(4): 699–706PubMed
14.
go back to reference Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008 Jan 23; 27(2): 433–46PubMed Twig G, Elorza A, Molina AJ, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 2008 Jan 23; 27(2): 433–46PubMed
15.
go back to reference Cheng X, Kanki T, Fukuoh A, et al. PDIP38 associates with proteins constituting the mitochondrial DNA nucleoid. J Biochem 2005 Dec; 138(6): 673–8PubMed Cheng X, Kanki T, Fukuoh A, et al. PDIP38 associates with proteins constituting the mitochondrial DNA nucleoid. J Biochem 2005 Dec; 138(6): 673–8PubMed
16.
go back to reference Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007 Aug 10; 130(3): 548–62PubMed Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007 Aug 10; 130(3): 548–62PubMed
17.
go back to reference Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 2001 Oct; 1(4): 515–25PubMed Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 2001 Oct; 1(4): 515–25PubMed
18.
go back to reference Lee YJ, Jeong SY, Karbowski M, et al. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 2004 Nov; 15(11): 5001–11PubMed Lee YJ, Jeong SY, Karbowski M, et al. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 2004 Nov; 15(11): 5001–11PubMed
19.
go back to reference Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 2005 Jul 15; 280(28): 26185–92PubMed Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 2005 Jul 15; 280(28): 26185–92PubMed
20.
go back to reference McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol 2006 Jul 25; 16(14): R551–60PubMed McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol 2006 Jul 25; 16(14): R551–60PubMed
21.
go back to reference Parone PA, James DI, Da Cruz S, et al. Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol Cell Biol 2006 Oct; 26(20): 7397–408PubMed Parone PA, James DI, Da Cruz S, et al. Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol Cell Biol 2006 Oct; 26(20): 7397–408PubMed
22.
go back to reference Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A 2006 Feb 21; 103(8): 2653–8PubMed Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A 2006 Feb 21; 103(8): 2653–8PubMed
23.
go back to reference Chen H, Detmer SA, Ewald AJ, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003 Jan 20; 160(2): 189–200PubMed Chen H, Detmer SA, Ewald AJ, et al. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 2003 Jan 20; 160(2): 189–200PubMed
24.
go back to reference Benard G, Bellance N, James D, et al. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007 Mar 1; 120 (Pt 5): 838–48PubMed Benard G, Bellance N, James D, et al. Mitochondrial bioenergetics and structural network organization. J Cell Sci 2007 Mar 1; 120 (Pt 5): 838–48PubMed
25.
go back to reference Parone PA, Da Cruz S, Tondera D, et al. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE 2008; 3(9): e3257PubMed Parone PA, Da Cruz S, Tondera D, et al. Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE 2008; 3(9): e3257PubMed
26.
go back to reference Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell 2006 Jun 30; 125(7): 1241–52PubMed Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell 2006 Jun 30; 125(7): 1241–52PubMed
27.
go back to reference Knott AB, Perkins G, Schwarzenbacher R, et al. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 2008 Jul; 9(7): 505–18PubMed Knott AB, Perkins G, Schwarzenbacher R, et al. Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 2008 Jul; 9(7): 505–18PubMed
28.
go back to reference Su B, Wang X, Zheng L, et al. Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta 2010; 1802: 135–42PubMed Su B, Wang X, Zheng L, et al. Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta 2010; 1802: 135–42PubMed
29.
go back to reference Smirnova E, Griparic L, Shurland DL, et al. Dynaminrelated protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 2001 Aug; 12(8): 2245–56PubMed Smirnova E, Griparic L, Shurland DL, et al. Dynaminrelated protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 2001 Aug; 12(8): 2245–56PubMed
30.
go back to reference James DI, Parone PA, Mattenberger Y, et al. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 2003 Sep 19; 278(38): 36373–9PubMed James DI, Parone PA, Mattenberger Y, et al. hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 2003 Sep 19; 278(38): 36373–9PubMed
31.
go back to reference Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 2004 Dec 15; 117 (Pt 26): 6535–46PubMed Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 2004 Dec 15; 117 (Pt 26): 6535–46PubMed
32.
go back to reference Zuchner S, Mersiyanova IV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 2004 May; 36(5): 449–51PubMed Zuchner S, Mersiyanova IV, Muglia M, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 2004 May; 36(5): 449–51PubMed
33.
go back to reference Cipolat S, Martins de Brito O, Dal Zilio B, et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 2004 Nov 9; 101(45): 15927–32PubMed Cipolat S, Martins de Brito O, Dal Zilio B, et al. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci U S A 2004 Nov 9; 101(45): 15927–32PubMed
34.
go back to reference Chang CR, Blackstone C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 2007 Jul 27; 282(30): 21583–7PubMed Chang CR, Blackstone C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem 2007 Jul 27; 282(30): 21583–7PubMed
35.
go back to reference Cribbs JT, Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 2007 Oct; 8(10): 939–44PubMed Cribbs JT, Strack S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep 2007 Oct; 8(10): 939–44PubMed
36.
go back to reference Harder Z, Zunino R, McBride H. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 2004 Feb 17; 14(4): 340–5PubMed Harder Z, Zunino R, McBride H. Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 2004 Feb 17; 14(4): 340–5PubMed
37.
go back to reference Karbowski M, Neutzner A, Youle RJ. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 2007 Jul 2; 178(1): 71–84PubMed Karbowski M, Neutzner A, Youle RJ. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J Cell Biol 2007 Jul 2; 178(1): 71–84PubMed
38.
go back to reference Meuer K, Suppanz IE, Lingor P, et al. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ 2007 Apr; 14(4): 651–61PubMed Meuer K, Suppanz IE, Lingor P, et al. Cyclin-dependent kinase 5 is an upstream regulator of mitochondrial fission during neuronal apoptosis. Cell Death Differ 2007 Apr; 14(4): 651–61PubMed
39.
go back to reference Taguchi N, Ishihara N, Jofuku A, et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 2007 Apr 13; 282(15): 11521–9PubMed Taguchi N, Ishihara N, Jofuku A, et al. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem 2007 Apr 13; 282(15): 11521–9PubMed
40.
go back to reference Cereghetti GM, Stangherlin A, Martins de Brito O, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 2008 Oct 14; 105(41): 15803–8PubMed Cereghetti GM, Stangherlin A, Martins de Brito O, et al. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc Natl Acad Sci U S A 2008 Oct 14; 105(41): 15803–8PubMed
41.
go back to reference Han XJ, Lu YF, Li SA, et al. CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 2008 Aug 11; 182(3): 573–85PubMed Han XJ, Lu YF, Li SA, et al. CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 2008 Aug 11; 182(3): 573–85PubMed
42.
go back to reference Cho DH, Nakamura T, Fang J, et al. S-nitrosylation of Drp 1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 2009 Apr 3; 324(923): 102–5PubMed Cho DH, Nakamura T, Fang J, et al. S-nitrosylation of Drp 1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 2009 Apr 3; 324(923): 102–5PubMed
43.
go back to reference Frazier AE, Kiu C, Stojanovski D, et al. Mitochondrial morphology and distribution in mammalian cells. Biol Chem 2006 Dec; 387(12): 1551–8PubMed Frazier AE, Kiu C, Stojanovski D, et al. Mitochondrial morphology and distribution in mammalian cells. Biol Chem 2006 Dec; 387(12): 1551–8PubMed
44.
go back to reference Smirnova E, Shurland DL, Ryazantsev SN, et al. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 1998 Oct 19; 143(2): 351–8PubMed Smirnova E, Shurland DL, Ryazantsev SN, et al. A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 1998 Oct 19; 143(2): 351–8PubMed
45.
go back to reference Griparic L, van der Wel NN, Orozco IJ, et al. Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 2004 Apr 30; 279(18): 18792–8PubMed Griparic L, van der Wel NN, Orozco IJ, et al. Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 2004 Apr 30; 279(18): 18792–8PubMed
46.
go back to reference Spinazzi M, Cazzola S, Bortolozzi M, et al. A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function. Hum Mol Genet 2008 Nov 1; 17(21): 3291–302PubMed Spinazzi M, Cazzola S, Bortolozzi M, et al. A novel deletion in the GTPase domain of OPA1 causes defects in mitochondrial morphology and distribution, but not in function. Hum Mol Genet 2008 Nov 1; 17(21): 3291–302PubMed
47.
go back to reference Kann O, Kovacs R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007 Feb; 292(2): C641–57PubMed Kann O, Kovacs R. Mitochondria and neuronal activity. Am J Physiol Cell Physiol 2007 Feb; 292(2): C641–57PubMed
48.
go back to reference Zhu X, Lee HG, Casadesus G, et al. Oxidative imbalance in Alzheimer’s disease. Mol Neurobiol 2005; 31(1–3): 205–17PubMed Zhu X, Lee HG, Casadesus G, et al. Oxidative imbalance in Alzheimer’s disease. Mol Neurobiol 2005; 31(1–3): 205–17PubMed
49.
go back to reference Ogawa O, Zhu X, Perry G, et al. Mitochondrial abnormalities and oxidative imbalance in neurodegenerative disease. Sci Aging Knowledge Environ 2002 Oct 16; 2002(41): pe16PubMed Ogawa O, Zhu X, Perry G, et al. Mitochondrial abnormalities and oxidative imbalance in neurodegenerative disease. Sci Aging Knowledge Environ 2002 Oct 16; 2002(41): pe16PubMed
50.
go back to reference Gibson GE, Sheu KF, Blass JP. Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 1998; 105(8-9): 855–70PubMed Gibson GE, Sheu KF, Blass JP. Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 1998; 105(8-9): 855–70PubMed
51.
go back to reference Chandrasekaran K, Giordano T, Brady DR, et al. Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Res Mol Brain Res 1994 Jul; 24(1-4): 336–40PubMed Chandrasekaran K, Giordano T, Brady DR, et al. Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Res Mol Brain Res 1994 Jul; 24(1-4): 336–40PubMed
52.
go back to reference Cottrell DA, Blakely EL, Johnson MA, et al. Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 2001 Jul 24; 57(2): 260–4PubMed Cottrell DA, Blakely EL, Johnson MA, et al. Mitochondrial enzyme-deficient hippocampal neurons and choroidal cells in AD. Neurology 2001 Jul 24; 57(2): 260–4PubMed
53.
go back to reference Maurer I, Zierz S, Moller HJ. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 2000 May-Jun; 21(3): 455–62PubMed Maurer I, Zierz S, Moller HJ. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging 2000 May-Jun; 21(3): 455–62PubMed
54.
go back to reference Nagy Z, Esiri MM, LeGris M, et al. Mitochondrial enzyme expression in the hippocampus in relation to Alzheimer-type pathology. Acta Neuropathol (Berl) 1999 Apr; 97(4): 346–54 Nagy Z, Esiri MM, LeGris M, et al. Mitochondrial enzyme expression in the hippocampus in relation to Alzheimer-type pathology. Acta Neuropathol (Berl) 1999 Apr; 97(4): 346–54
55.
go back to reference Parker Jr WD, Mahr NJ, Filley CM, et al. Reduced platelet cytochrome c oxidase activity in Alzheimer’s disease. Neurology 1994 Jun; 44(6): 1086–90PubMed Parker Jr WD, Mahr NJ, Filley CM, et al. Reduced platelet cytochrome c oxidase activity in Alzheimer’s disease. Neurology 1994 Jun; 44(6): 1086–90PubMed
56.
go back to reference Parker Jr WD, Parks J, Filley CM, et al. Electron transport chain defects in Alzheimer’s disease brain. Neurology 1994 Jun; 44(6): 1090–6PubMed Parker Jr WD, Parks J, Filley CM, et al. Electron transport chain defects in Alzheimer’s disease brain. Neurology 1994 Jun; 44(6): 1090–6PubMed
57.
go back to reference Coskun PE, Beal MF, Wallace DC. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 2004 Jul 20; 101(29): 10726–31PubMed Coskun PE, Beal MF, Wallace DC. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc Natl Acad Sci U S A 2004 Jul 20; 101(29): 10726–31PubMed
58.
go back to reference Keller JN, Guo Q, Holtsberg FW, et al. Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998 Jun 15; 18(12): 4439–50PubMed Keller JN, Guo Q, Holtsberg FW, et al. Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 1998 Jun 15; 18(12): 4439–50PubMed
59.
go back to reference Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 2001 May 1; 21(9): 3017–23PubMed Hirai K, Aliev G, Nunomura A, et al. Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 2001 May 1; 21(9): 3017–23PubMed
60.
go back to reference Wang X, Su B, Fujioka H, et al. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 2008 Aug; 173(2): 470–82PubMed Wang X, Su B, Fujioka H, et al. Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer’s disease patients. Am J Pathol 2008 Aug; 173(2): 470–82PubMed
61.
go back to reference Wang X, Su B, Smith MA, et al. Impaired balance of mitochondrial fission and fusion in susceptible neurons of Alzheimer disease [abstract]. Alzheimers Dement 2008; 4Suppl. 2: T645 Wang X, Su B, Smith MA, et al. Impaired balance of mitochondrial fission and fusion in susceptible neurons of Alzheimer disease [abstract]. Alzheimers Dement 2008; 4Suppl. 2: T645
62.
go back to reference Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002 Oct 25; 298(5594): 789–91PubMed Selkoe DJ. Alzheimer’s disease is a synaptic failure. Science 2002 Oct 25; 298(5594): 789–91PubMed
63.
go back to reference Sheehan JP, Swerdlow RH, Miller SW, et al. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J Neurosci 1997 Jun 15; 17(12): 4612–22PubMed Sheehan JP, Swerdlow RH, Miller SW, et al. Calcium homeostasis and reactive oxygen species production in cells transformed by mitochondria from individuals with sporadic Alzheimer’s disease. J Neurosci 1997 Jun 15; 17(12): 4612–22PubMed
64.
go back to reference Stowers RS, Megeath LJ, Gorska-Andrzejak J, et al. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 2002 Dec 19; 36(6): 1063–77PubMed Stowers RS, Megeath LJ, Gorska-Andrzejak J, et al. Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 2002 Dec 19; 36(6): 1063–77PubMed
65.
go back to reference Melov S. Modeling mitochondrial function in aging neurons. Trends Neurosci 2004 Oct; 27(10): 601–6PubMed Melov S. Modeling mitochondrial function in aging neurons. Trends Neurosci 2004 Oct; 27(10): 601–6PubMed
66.
go back to reference Guo X, Macleod GT, Wellington A, et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 2005 Aug 4; 47(3): 379–93PubMed Guo X, Macleod GT, Wellington A, et al. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 2005 Aug 4; 47(3): 379–93PubMed
67.
go back to reference Verstreken P, Ly CV, Venken KJ, et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005 Aug 4; 47(3): 365–78PubMed Verstreken P, Ly CV, Venken KJ, et al. Synaptic mitochondria are critical for mobilization of reserve pool vesicles at Drosophila neuromuscular junctions. Neuron 2005 Aug 4; 47(3): 365–78PubMed
68.
go back to reference Li Z, Okamoto K, Hayashi Y, et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 2004 Dec 17; 119(6): 873–87PubMed Li Z, Okamoto K, Hayashi Y, et al. The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 2004 Dec 17; 119(6): 873–87PubMed
69.
go back to reference Perry G, Smith MA. Is oxidative damage central to the pathogenesis of Alzheimer disease? Acta Neurol Belg 1998 Jun; 98(2): 175–9PubMed Perry G, Smith MA. Is oxidative damage central to the pathogenesis of Alzheimer disease? Acta Neurol Belg 1998 Jun; 98(2): 175–9PubMed
70.
go back to reference Nunomura A, Perry G, Pappolla MA, et al. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 2000 Nov; 59(11): 1011–7PubMed Nunomura A, Perry G, Pappolla MA, et al. Neuronal oxidative stress precedes amyloid-beta deposition in Down syndrome. J Neuropathol Exp Neurol 2000 Nov; 59(11): 1011–7PubMed
71.
go back to reference Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001 Aug; 60(8): 759–67PubMed Nunomura A, Perry G, Aliev G, et al. Oxidative damage is the earliest event in Alzheimer disease. J Neuropathol Exp Neurol 2001 Aug; 60(8): 759–67PubMed
72.
go back to reference Pratico D, Uryu K, Leight S, et al. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001 Jun 15; 21(12): 4183–7PubMed Pratico D, Uryu K, Leight S, et al. Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 2001 Jun 15; 21(12): 4183–7PubMed
73.
go back to reference Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease: the Alzheimer’s Disease Cooperative Study. N Engl J Med 1997 Apr 24; 336(17): 1216–22PubMed Sano M, Ernesto C, Thomas RG, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease: the Alzheimer’s Disease Cooperative Study. N Engl J Med 1997 Apr 24; 336(17): 1216–22PubMed
74.
go back to reference Stewart WF, Kawas C, Corrada M, et al. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 1997 Mar; 48(3): 626–32PubMed Stewart WF, Kawas C, Corrada M, et al. Risk of Alzheimer’s disease and duration of NSAID use. Neurology 1997 Mar; 48(3): 626–32PubMed
75.
go back to reference Odetti P, Angelini G, Dapino D, et al. Early glycoxidation damage in brains from Down’s syndrome. Biochem Biophys Res Commun 1998 Feb 24; 243(3): 849–51PubMed Odetti P, Angelini G, Dapino D, et al. Early glycoxidation damage in brains from Down’s syndrome. Biochem Biophys Res Commun 1998 Feb 24; 243(3): 849–51PubMed
76.
go back to reference Smith MA, Hirai K, Hsiao K, et al. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 1998 May; 70(5): 2212–5PubMed Smith MA, Hirai K, Hsiao K, et al. Amyloid-beta deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 1998 May; 70(5): 2212–5PubMed
77.
go back to reference Kontush A, Berndt C, Weber W, et al. Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic Biol Med 2001 Jan 1; 30(1): 119–28PubMed Kontush A, Berndt C, Weber W, et al. Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Radic Biol Med 2001 Jan 1; 30(1): 119–28PubMed
78.
go back to reference Atwood CS, Moir RD, Huang X, et al. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 1998 May 22; 273(21): 12817–26PubMed Atwood CS, Moir RD, Huang X, et al. Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 1998 May 22; 273(21): 12817–26PubMed
79.
go back to reference Cuajungco MP, Goldstein LE, Nunomura A, et al. Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem 2000 Jun 30; 275(26): 19439–42PubMed Cuajungco MP, Goldstein LE, Nunomura A, et al. Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem 2000 Jun 30; 275(26): 19439–42PubMed
80.
go back to reference Atwood CS, Smith MA, Martins RN, et al. Neuroin-flammatory environments promote amyloid-β deposition and posttranslational modification. In: Wood PL, editor. Neuroinflammation: mechanisms and management. 2nd ed. Totowa NJ): Humana Press Inc., 2003: 249–66 Atwood CS, Smith MA, Martins RN, et al. Neuroin-flammatory environments promote amyloid-β deposition and posttranslational modification. In: Wood PL, editor. Neuroinflammation: mechanisms and management. 2nd ed. Totowa NJ): Humana Press Inc., 2003: 249–66
81.
go back to reference Petersen RB, Nunomura A, Lee HG, et al. Signal transduction cascades associated with oxidative stress in Alzheimer’s disease. J Alzheimers Dis 2007 May; 11(2): 143–52PubMed Petersen RB, Nunomura A, Lee HG, et al. Signal transduction cascades associated with oxidative stress in Alzheimer’s disease. J Alzheimers Dis 2007 May; 11(2): 143–52PubMed
82.
go back to reference Castegna A, Aksenov M, Thongboonkerd V, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinaserelated protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 2002 Sep; 82(6): 1524–32PubMed Castegna A, Aksenov M, Thongboonkerd V, et al. Proteomic identification of oxidatively modified proteins in Alzheimer’s disease brain. Part II: dihydropyrimidinaserelated protein 2, alpha-enolase and heat shock cognate 71. J Neurochem 2002 Sep; 82(6): 1524–32PubMed
83.
go back to reference Paola D, Domenicotti C, Nitti M, et al. Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of betaI and betaII PKCs in NT2 cells. Biochem Biophys Res Commun 2000 Feb 16; 268(2): 642–6PubMed Paola D, Domenicotti C, Nitti M, et al. Oxidative stress induces increase in intracellular amyloid beta-protein production and selective activation of betaI and betaII PKCs in NT2 cells. Biochem Biophys Res Commun 2000 Feb 16; 268(2): 642–6PubMed
84.
go back to reference Li HL, Wang HH, Liu SJ, et al. Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 2007 Feb 27; 104(9): 3591–6PubMed Li HL, Wang HH, Liu SJ, et al. Phosphorylation of tau antagonizes apoptosis by stabilizing beta-catenin, a mechanism involved in Alzheimer’s neurodegeneration. Proc Natl Acad Sci U S A 2007 Feb 27; 104(9): 3591–6PubMed
85.
go back to reference Su B, Wang X, Nunomura A, et al. Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 2008 Dec; 5(6): 525–32PubMed Su B, Wang X, Nunomura A, et al. Oxidative stress signaling in Alzheimer’s disease. Curr Alzheimer Res 2008 Dec; 5(6): 525–32PubMed
86.
go back to reference Masters CL, Simms G, Weinman NA, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985 Jun; 82(12): 4245–9PubMed Masters CL, Simms G, Weinman NA, et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A 1985 Jun; 82(12): 4245–9PubMed
87.
go back to reference Wang X, Su B, Siedlak SL, et al. Amyloid-beta over-production causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 2008 Dec 9; 105(49): 19318–23PubMed Wang X, Su B, Siedlak SL, et al. Amyloid-beta over-production causes abnormal mitochondrial dynamics via differential modulation of mitochondrial fission/fusion proteins. Proc Natl Acad Sci U S A 2008 Dec 9; 105(49): 19318–23PubMed
88.
go back to reference De Vos KJ, Allan VJ, Grierson AJ, et al. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol 2005 Apr 12; 15(7): 678–83PubMed De Vos KJ, Allan VJ, Grierson AJ, et al. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol 2005 Apr 12; 15(7): 678–83PubMed
89.
go back to reference Sandebring A, Thomas KJ, Beilina A, et al. Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS ONE 2009;4(5): e5701PubMed Sandebring A, Thomas KJ, Beilina A, et al. Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PLoS ONE 2009;4(5): e5701PubMed
90.
go back to reference Ichishita R, Tanaka K, Sugiura Y, et al. An RNAi screen for mitochondrial proteins required to maintain the morphology of the organelle in Caenorhabditis elegans. J Biochem 2008 Apr; 143(4): 449–54PubMed Ichishita R, Tanaka K, Sugiura Y, et al. An RNAi screen for mitochondrial proteins required to maintain the morphology of the organelle in Caenorhabditis elegans. J Biochem 2008 Apr; 143(4): 449–54PubMed
91.
go back to reference Jendrach M, Mai S, Pohl S, et al. Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 2008 Sep; 8(4): 293–304PubMed Jendrach M, Mai S, Pohl S, et al. Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 2008 Sep; 8(4): 293–304PubMed
92.
go back to reference Frieden M, James D, Castelbou C, et al. Ca(2+) homeostasis during mitochondrial fragmentation and peri-nuclear clustering induced by hFis1. J Biol Chem 2004 May 21; 279(21): 22704–14PubMed Frieden M, James D, Castelbou C, et al. Ca(2+) homeostasis during mitochondrial fragmentation and peri-nuclear clustering induced by hFis1. J Biol Chem 2004 May 21; 279(21): 22704–14PubMed
93.
go back to reference Szabadkai G, Simoni AM, Chami M, et al. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 2004 Oct 8; 16(1): 59–68PubMed Szabadkai G, Simoni AM, Chami M, et al. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 2004 Oct 8; 16(1): 59–68PubMed
94.
go back to reference Lee S, Jeong SY, Lim WC, et al. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 2007 Aug 3; 282(31): 22977–83PubMed Lee S, Jeong SY, Lim WC, et al. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J Biol Chem 2007 Aug 3; 282(31): 22977–83PubMed
95.
go back to reference Castellani RJ, Moreira PI, Liu G, et al. Iron: the redox-active center of oxidative stress in Alzheimer disease. Neurochem Res 2007 Oct; 32(10): 1640–5PubMed Castellani RJ, Moreira PI, Liu G, et al. Iron: the redox-active center of oxidative stress in Alzheimer disease. Neurochem Res 2007 Oct; 32(10): 1640–5PubMed
96.
go back to reference Arosio P, Ingrassia R, Cavadini P. Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 2009 Jul; 1790(7): 589–99PubMed Arosio P, Ingrassia R, Cavadini P. Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim Biophys Acta 2009 Jul; 1790(7): 589–99PubMed
97.
go back to reference Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer’s disease: implications for mitochondrially targeted antioxidant therapeutics. J Biomed Biotechnol 2006; 2006(3): 31372PubMed Reddy PH. Mitochondrial oxidative damage in aging and Alzheimer’s disease: implications for mitochondrially targeted antioxidant therapeutics. J Biomed Biotechnol 2006; 2006(3): 31372PubMed
98.
go back to reference Aliev G, Liu J, Shenk JC, et al. Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats. J Cell Mol Med 2009; 13: 320–33PubMed Aliev G, Liu J, Shenk JC, et al. Neuronal mitochondrial amelioration by feeding acetyl-L-carnitine and lipoic acid to aged rats. J Cell Mol Med 2009; 13: 320–33PubMed
99.
go back to reference Shenk JC, Liu J, Fischbach K, et al. The effect of acetyl-L-carnitine and R-alpha-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer’s disease. J Neurol Sci 2009 Aug 15; 283(1-2): 199–206PubMed Shenk JC, Liu J, Fischbach K, et al. The effect of acetyl-L-carnitine and R-alpha-lipoic acid treatment in ApoE4 mouse as a model of human Alzheimer’s disease. J Neurol Sci 2009 Aug 15; 283(1-2): 199–206PubMed
100.
go back to reference Long J, Gao F, Tong L, et al. Mitochondrial decay in the brains of old rats: ameliorating effect of alpha-lipoic acid and acetyl-L-carnitine. Neurochem Res 2009 Apr; 34(4): 755–63PubMed Long J, Gao F, Tong L, et al. Mitochondrial decay in the brains of old rats: ameliorating effect of alpha-lipoic acid and acetyl-L-carnitine. Neurochem Res 2009 Apr; 34(4): 755–63PubMed
101.
go back to reference Liu J, Head E, Gharib AM, et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A 2002 Feb 19; 99(4): 2356–61PubMed Liu J, Head E, Gharib AM, et al. Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A 2002 Feb 19; 99(4): 2356–61PubMed
102.
go back to reference Liu J, Killilea DW, Ames BN. Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A 2002 Feb 19; 99(4): 1876–81PubMed Liu J, Killilea DW, Ames BN. Age-associated mitochondrial oxidative decay: improvement of carnitine acetyltransferase substrate-binding affinity and activity in brain by feeding old rats acetyl-L-carnitine and/or R-alpha-lipoic acid. Proc Natl Acad Sci U S A 2002 Feb 19; 99(4): 1876–81PubMed
103.
go back to reference Liu J, Atamna H, Kuratsune H, et al. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann N Y Acad Sci 2002 Apr; 959: 133–66PubMed Liu J, Atamna H, Kuratsune H, et al. Delaying brain mitochondrial decay and aging with mitochondrial antioxidants and metabolites. Ann N Y Acad Sci 2002 Apr; 959: 133–66PubMed
104.
go back to reference Liu J, Head E, Kuratsune H, et al. Comparison of the effects of L-carnitine and acetyl-L-carnitine on carnitine levels, ambulatory activity, and oxidative stress bio-markers in the brain of old rats. Ann N Y Acad Sci 2004 Nov; 1033: 117–31PubMed Liu J, Head E, Kuratsune H, et al. Comparison of the effects of L-carnitine and acetyl-L-carnitine on carnitine levels, ambulatory activity, and oxidative stress bio-markers in the brain of old rats. Ann N Y Acad Sci 2004 Nov; 1033: 117–31PubMed
105.
go back to reference Ames BN, Liu J. Delaying the mitochondrial decay of aging with acetylcarnitine. Ann N Y Acad Sci 2004 Nov; 1033: 108–16PubMed Ames BN, Liu J. Delaying the mitochondrial decay of aging with acetylcarnitine. Ann N Y Acad Sci 2004 Nov; 1033: 108–16PubMed
106.
go back to reference Milgram NW, Araujo JA, Hagen TM, et al. Acetyl-L-carnitine and alpha-lipoic acid supplementation of aged beagle dogs improves learning in two landmark discrimination tests. FASEB J 2007 Nov; 21(13): 3756–62PubMed Milgram NW, Araujo JA, Hagen TM, et al. Acetyl-L-carnitine and alpha-lipoic acid supplementation of aged beagle dogs improves learning in two landmark discrimination tests. FASEB J 2007 Nov; 21(13): 3756–62PubMed
Metadata
Title
Mitochondrial Dynamics in Alzheimer’s Disease
Opportunities for Future Treatment Strategies
Authors
David J. Bonda
Xinglong Wang
George Perry
Dr Mark A. Smith
Dr Xiongwei Zhu
Publication date
01-03-2010
Publisher
Springer International Publishing
Published in
Drugs & Aging / Issue 3/2010
Print ISSN: 1170-229X
Electronic ISSN: 1179-1969
DOI
https://doi.org/10.2165/11532140-000000000-00000

Other articles of this Issue 3/2010

Drugs & Aging 3/2010 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine