Skip to main content
Top
Published in: CNS Drugs 2/2010

01-02-2010 | Review Article

Progress and Promise of Attention-Deficit Hyperactivity Disorder Pharmacogenetics

Authors: Tanya E. Froehlich, James J. McGough, Dr Mark A. Stein

Published in: CNS Drugs | Issue 2/2010

Login to get access

Abstract

One strategy for understanding variability in attention-deficit hyperactivity disorder (ADHD) medication response, and therefore redressing the current trial-and-error approach to ADHD medication management, is to identify genetic moderators of treatment. This article summarizes ADHD pharmacogenetic investigative efforts to date, which have primarily focused on short-term response to methylphenidate and largely been limited by modest sample sizes. The most well studied genes include the dopamine transporter and dopamine D4 receptor, with additional genes that have been significantly associated with stimulant medication response including the adrenergic α2A-receptor, catechol-O-methyltransferase, D5 receptor, noradrenaline (norepinephrine) transporter protein 1 and synaptosomal-associated protein 25 kDa.
Unfortunately, results of current ADHD pharmacogenetic studies have not been entirely consistent, possibly due to differences in study design, medication dosing regimens and outcome measures. Future directions for ADHD pharmacogenetics investigations may include examination of drug-metabolizing enzymes and a wider range of stimulant and non-stimulant medications. In addition, researchers are increasingly interested in going beyond the individual candidate gene approach to investigate gene-gene interactions or pathways, effect modification by additional environmental exposures and whole genome approaches. Advancements in ADHD pharmacogenetics will be facilitated by multi-site collaborations to obtain larger sample sizes using standardized protocols. Although ADHD pharmacogenetic efforts are still in a relatively early stage, their potential clinical applications may include the development of treatment efficacy and adverse effect prediction algorithms that incorporate the interplay of genetic and environmental factors, as well as the development of novel ADHD treatments.
Literature
1.
go back to reference Prince JB. Pharmacotherapy of attention-deficit hyper-activity disorder in children and adolescents: update on new stimulant preparations, atomoxetine, and novel treatments. Child Adolesc Psychiatr Clin N Am 2006 Jan; 15(1): 13–50PubMedCrossRef Prince JB. Pharmacotherapy of attention-deficit hyper-activity disorder in children and adolescents: update on new stimulant preparations, atomoxetine, and novel treatments. Child Adolesc Psychiatr Clin N Am 2006 Jan; 15(1): 13–50PubMedCrossRef
2.
go back to reference Faraone SV, Biederman J, Spencer TJ, et al. Comparing the efficacy of medications for ADHD using meta-analysis. Med Gen Med 2006; 8(4): 4 Faraone SV, Biederman J, Spencer TJ, et al. Comparing the efficacy of medications for ADHD using meta-analysis. Med Gen Med 2006; 8(4): 4
3.
go back to reference Charach A, Ickowicz A, Schachar R. Stimulant treatment over five years: adherence, effectiveness, and adverse effects. J Am Acad Child Adolesc Psychiatry 2004 May; 43(5): 559–67PubMedCrossRef Charach A, Ickowicz A, Schachar R. Stimulant treatment over five years: adherence, effectiveness, and adverse effects. J Am Acad Child Adolesc Psychiatry 2004 May; 43(5): 559–67PubMedCrossRef
4.
go back to reference National Institute of Mental Health. National Institute of Mental Health Multimodal Treatment Study of ADHD follow-up: 24-month outcomes of treatment strategies for attention-deficit/hyperactivity disorder. Pediatrics 2004 Apr; 113(4): 754–61CrossRef National Institute of Mental Health. National Institute of Mental Health Multimodal Treatment Study of ADHD follow-up: 24-month outcomes of treatment strategies for attention-deficit/hyperactivity disorder. Pediatrics 2004 Apr; 113(4): 754–61CrossRef
5.
go back to reference Katusic SK, Barbaresi WJ, Colligan RC, et al. Psychostimulant treatment and risk for substance abuse among young adults with a history of attention-deficit/hyperactivity disorder: a population-based, birth cohort study. J Child Adolesc Psychopharmacol 2005 Oct; 15(5): 764–76PubMedCrossRef Katusic SK, Barbaresi WJ, Colligan RC, et al. Psychostimulant treatment and risk for substance abuse among young adults with a history of attention-deficit/hyperactivity disorder: a population-based, birth cohort study. J Child Adolesc Psychopharmacol 2005 Oct; 15(5): 764–76PubMedCrossRef
6.
go back to reference Barbaresi WJ, Katusic SK, Colligan RC, et al. Modifiers of long-term school outcomes for children with attention-deficit/hyperactivity disorder: does treatment with stimulant medication make a difference? Results from a population-based study. J Dev Behav Ped 2007 Aug; 28(4): 274–86CrossRef Barbaresi WJ, Katusic SK, Colligan RC, et al. Modifiers of long-term school outcomes for children with attention-deficit/hyperactivity disorder: does treatment with stimulant medication make a difference? Results from a population-based study. J Dev Behav Ped 2007 Aug; 28(4): 274–86CrossRef
7.
go back to reference Lowe N, Barry E, Gill M, et al. An overview of the pharmacogenetics and molecular genetics of ADHD. Curr Pharmacogen 2006; 4: 231–43CrossRef Lowe N, Barry E, Gill M, et al. An overview of the pharmacogenetics and molecular genetics of ADHD. Curr Pharmacogen 2006; 4: 231–43CrossRef
8.
go back to reference Faraone SV, Biederman J. Neurobiology of attention-deficit hyperactivity disorder. Biol Psychiatry 1998 Nov 15; 44(10): 951–8PubMedCrossRef Faraone SV, Biederman J. Neurobiology of attention-deficit hyperactivity disorder. Biol Psychiatry 1998 Nov 15; 44(10): 951–8PubMedCrossRef
9.
go back to reference Faraone SV, Perlis RH, Doyle AE, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005 Jun 1; 57(11): 1313–23PubMedCrossRef Faraone SV, Perlis RH, Doyle AE, et al. Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 2005 Jun 1; 57(11): 1313–23PubMedCrossRef
10.
go back to reference Weber WW. Pharmacogenetics. New York: Oxford Press,1997 Weber WW. Pharmacogenetics. New York: Oxford Press,1997
11.
go back to reference Phillips KA, Veenstra DL, Sadee W. Implications of the genetics revolution for health services research: pharma-cogenomics and improvements in drug therapy. Health Serv Res 2000 Dec; 35(5 Pt 3): 128–40PubMed Phillips KA, Veenstra DL, Sadee W. Implications of the genetics revolution for health services research: pharma-cogenomics and improvements in drug therapy. Health Serv Res 2000 Dec; 35(5 Pt 3): 128–40PubMed
12.
go back to reference Aitchison KJ, Gill M. Pharmacogenetics in the postgenomic era. In: Plomin R, Devries J, Craig I, et al., editors. Behavioral genetics in the postgenomic era. Washington, DC: American Psychological Association, 2003 Aitchison KJ, Gill M. Pharmacogenetics in the postgenomic era. In: Plomin R, Devries J, Craig I, et al., editors. Behavioral genetics in the postgenomic era. Washington, DC: American Psychological Association, 2003
13.
go back to reference Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999 Oct 15; 286(5439): 487–91PubMedCrossRef Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999 Oct 15; 286(5439): 487–91PubMedCrossRef
14.
go back to reference Staddon S, Arranz MJ, Mancama D, et al. Clinical applicationsof pharmacogenetics in psychiatry. Psycho- pharmacology 2002 Jun; 162(1): 18–23 Staddon S, Arranz MJ, Mancama D, et al. Clinical applicationsof pharmacogenetics in psychiatry. Psycho- pharmacology 2002 Jun; 162(1): 18–23
15.
go back to reference Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 1998 Jul; 94(1): 127–52PubMedCrossRef Solanto MV. Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration. Behav Brain Res 1998 Jul; 94(1): 127–52PubMedCrossRef
16.
go back to reference Eisenberg J, Mei-Tal G, Steinberg A, et al. Haplotype relative risk study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD): association of the high-enzyme activity Val allele with ADHD impulsive-hyperactive phenotype. Am J Med Genet 1999 Oct 15; 88(5): 497–502PubMedCrossRef Eisenberg J, Mei-Tal G, Steinberg A, et al. Haplotype relative risk study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD): association of the high-enzyme activity Val allele with ADHD impulsive-hyperactive phenotype. Am J Med Genet 1999 Oct 15; 88(5): 497–502PubMedCrossRef
17.
go back to reference Qian Q, Wang Y, Zhou R, et al. Family-based and case-control association studies of catechol-O-methyltransferase in attention deficit hyperactivity disorder suggest genetic sexual dimorphism. Am J Med Genet B Neuro-psychiatr Genet 2003 Apr 1; 118(1): 103–9CrossRef Qian Q, Wang Y, Zhou R, et al. Family-based and case-control association studies of catechol-O-methyltransferase in attention deficit hyperactivity disorder suggest genetic sexual dimorphism. Am J Med Genet B Neuro-psychiatr Genet 2003 Apr 1; 118(1): 103–9CrossRef
18.
go back to reference Roman T, Schmitz M, Polanczyk GV, et al. Is the alpha-2A adrenergic receptor gene (ADRA2A) associated with attention-deficit/hyperactivity disorder? Am J Med Genet B Neuropsychiatr Genet 2003 Jul 1; 120(1): 116–20CrossRef Roman T, Schmitz M, Polanczyk GV, et al. Is the alpha-2A adrenergic receptor gene (ADRA2A) associated with attention-deficit/hyperactivity disorder? Am J Med Genet B Neuropsychiatr Genet 2003 Jul 1; 120(1): 116–20CrossRef
19.
go back to reference Roman T, Polanczyk GV, Zeni C, et al. Further evidence of the involvement of alpha-2A-adrenergic receptor gene (ADRA2A) in inattentive dimensional scores of attention-deficit/hyperactivity disorder. Mol Psychiatry 2006 Jan; 11(1): 8–10PubMedCrossRef Roman T, Polanczyk GV, Zeni C, et al. Further evidence of the involvement of alpha-2A-adrenergic receptor gene (ADRA2A) in inattentive dimensional scores of attention-deficit/hyperactivity disorder. Mol Psychiatry 2006 Jan; 11(1): 8–10PubMedCrossRef
20.
go back to reference Schmitz M, Denardin D, Silva TL, et al. Association between alpha-2a-adrenergic receptor gene and ADHDinattentive type. Biol Psychiatry 2006 Nov 15; 60(10): 1028–33PubMedCrossRef Schmitz M, Denardin D, Silva TL, et al. Association between alpha-2a-adrenergic receptor gene and ADHDinattentive type. Biol Psychiatry 2006 Nov 15; 60(10): 1028–33PubMedCrossRef
21.
go back to reference Bobb AJ, Addington AM, Sidransky E, et al. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatr Genet 2005 Apr 5; 134(1): 67–72 Bobb AJ, Addington AM, Sidransky E, et al. Support for association between ADHD and two candidate genes: NET1 and DRD1. Am J Med Genet B Neuropsychiatr Genet 2005 Apr 5; 134(1): 67–72
22.
go back to reference Kim CH, Hahn MK, Joung Y, et al. A polymorphism in the norepinephrine transporter gene alters promoter activity and is associated with attention-deficit hyperactivity disorder. Proc Natl Acad Sci U S A 2006 Dec 12; 103(50): 19164–9PubMedCrossRef Kim CH, Hahn MK, Joung Y, et al. A polymorphism in the norepinephrine transporter gene alters promoter activity and is associated with attention-deficit hyperactivity disorder. Proc Natl Acad Sci U S A 2006 Dec 12; 103(50): 19164–9PubMedCrossRef
23.
go back to reference McGough JJ. Attention-deficit/hyperactivity disorder pharmacogenomics. Biol Psychiatry 2005 Jun 1; 57(11): 1367–73PubMedCrossRef McGough JJ. Attention-deficit/hyperactivity disorder pharmacogenomics. Biol Psychiatry 2005 Jun 1; 57(11): 1367–73PubMedCrossRef
24.
go back to reference Polanczyk G, Zeni C, Genro JP, et al. Association of the adrenergic alpha2A receptor gene with methylphenidate improvement of inattentive symptoms in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 2007 Feb; 64(2): 218–24PubMedCrossRef Polanczyk G, Zeni C, Genro JP, et al. Association of the adrenergic alpha2A receptor gene with methylphenidate improvement of inattentive symptoms in children and adolescents with attention-deficit/hyperactivity disorder. Arch Gen Psychiatry 2007 Feb; 64(2): 218–24PubMedCrossRef
25.
go back to reference da Silva TL, Pianca TG, Roman T, et al. Adrenergic alpha2A receptor gene and response to methylphenidate in attention-deficit/hyperactivity disorder-predominantly inattentive type. J Neural Transm 2008; 115(2): 341–5PubMedCrossRef da Silva TL, Pianca TG, Roman T, et al. Adrenergic alpha2A receptor gene and response to methylphenidate in attention-deficit/hyperactivity disorder-predominantly inattentive type. J Neural Transm 2008; 115(2): 341–5PubMedCrossRef
26.
go back to reference Kereszturi E, Tarnok Z, Bognar E, et al. Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. Am J Med Genet B Neuropsychiatr Genet 2008 Jan 23; 147B(8): 1431–5PubMedCrossRef Kereszturi E, Tarnok Z, Bognar E, et al. Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. Am J Med Genet B Neuropsychiatr Genet 2008 Jan 23; 147B(8): 1431–5PubMedCrossRef
27.
go back to reference Stein MA, Waldman ID, Sarampote CS, et al. Dopamine transporter genotype and methylphenidate dose responsein children with ADHD. Neuropsychopharmacology 2005 Jul; 30(7): 1374–82PubMed Stein MA, Waldman ID, Sarampote CS, et al. Dopamine transporter genotype and methylphenidate dose responsein children with ADHD. Neuropsychopharmacology 2005 Jul; 30(7): 1374–82PubMed
28.
go back to reference McGough J, McCracken J, Swanson J, et al. Pharmacogenetics of methylphenidate response in preschoolers with ADHD. J Am Acad Child Adolesc Psychiatry 2006 Nov; 45(11): 1314–22PubMedCrossRef McGough J, McCracken J, Swanson J, et al. Pharmacogenetics of methylphenidate response in preschoolers with ADHD. J Am Acad Child Adolesc Psychiatry 2006 Nov; 45(11): 1314–22PubMedCrossRef
29.
go back to reference Joober R, Grizenko N, Sengupta S, et al. Dopamine transporter 3′-UTR VNTR genotype and ADHD: a pharmaco-behavioural genetic study with methylphenidate. Neuropsychopharmacology 2007 Jun; 32(6): 1370–6PubMedCrossRef Joober R, Grizenko N, Sengupta S, et al. Dopamine transporter 3′-UTR VNTR genotype and ADHD: a pharmaco-behavioural genetic study with methylphenidate. Neuropsychopharmacology 2007 Jun; 32(6): 1370–6PubMedCrossRef
30.
go back to reference Winsberg BG, Comings DE. Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J Am Acad Child Adolesc Psychiatry 1999 Dec; 38(12): 1474–7PubMedCrossRef Winsberg BG, Comings DE. Association of the dopamine transporter gene (DAT1) with poor methylphenidate response. J Am Acad Child Adolesc Psychiatry 1999 Dec; 38(12): 1474–7PubMedCrossRef
31.
go back to reference Roman T, Szobot C, Martins S, et al. Dopamine transporter gene and response to methylphenidate in attention-deficit/hyperactivity disorder. Pharmacogenetics 2002 Aug; 12(6): 497–9PubMedCrossRef Roman T, Szobot C, Martins S, et al. Dopamine transporter gene and response to methylphenidate in attention-deficit/hyperactivity disorder. Pharmacogenetics 2002 Aug; 12(6): 497–9PubMedCrossRef
32.
go back to reference Kirley A, Lowe N, Hawi Z, et al. Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am J Med Genet B Neuropsychiatr Genet 2003 Aug 15; 121(1): 50–4CrossRef Kirley A, Lowe N, Hawi Z, et al. Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am J Med Genet B Neuropsychiatr Genet 2003 Aug 15; 121(1): 50–4CrossRef
33.
go back to reference Cheon KA, Ryu YH, Kim JW, et al. The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur Neuropsycho-pharmacol 2005 Jan; 15(1): 95–101CrossRef Cheon KA, Ryu YH, Kim JW, et al. The homozygosity for 10-repeat allele at dopamine transporter gene and dopamine transporter density in Korean children with attention deficit hyperactivity disorder: relating to treatment response to methylphenidate. Eur Neuropsycho-pharmacol 2005 Jan; 15(1): 95–101CrossRef
34.
go back to reference Langley K, Turic D, Peirce TR, et al. No support for association between the dopamine transporter (DAT1) gene and ADHD. Am J Med Genet B Neuropsychiatr Genet 2005 Nov 5; 139(1): 7–10 Langley K, Turic D, Peirce TR, et al. No support for association between the dopamine transporter (DAT1) gene and ADHD. Am J Med Genet B Neuropsychiatr Genet 2005 Nov 5; 139(1): 7–10
35.
go back to reference van der Meulen EM, Bakker SC, Pauls DL, et al. High sibling correlation on methylphenidate response but no association with DAT1-10R homozygosity in Dutch sib-pairs with ADHD. J Child Psychol Psychiatry 2005 Oct; 46(10): 1074–80PubMedCrossRef van der Meulen EM, Bakker SC, Pauls DL, et al. High sibling correlation on methylphenidate response but no association with DAT1-10R homozygosity in Dutch sib-pairs with ADHD. J Child Psychol Psychiatry 2005 Oct; 46(10): 1074–80PubMedCrossRef
36.
go back to reference Bellgrove MA, Barry E, Johnson KA, et al. Spatial attentional bias as a marker of genetic risk, symptom severity, and stimulant response in ADHD. Neuropsycho-pharmacology 2008 Nov 28; 33: 2536–45CrossRef Bellgrove MA, Barry E, Johnson KA, et al. Spatial attentional bias as a marker of genetic risk, symptom severity, and stimulant response in ADHD. Neuropsycho-pharmacology 2008 Nov 28; 33: 2536–45CrossRef
37.
go back to reference Zeni CP, Guimaraes AP, Polanczyk GV, et al. No significant association between response to methylphenidate and genes of the dopaminergic and serotonergic systems in a sample of Brazilian children with attention-deficit/ hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2007 Apr 5; 144(3): 391–4 Zeni CP, Guimaraes AP, Polanczyk GV, et al. No significant association between response to methylphenidate and genes of the dopaminergic and serotonergic systems in a sample of Brazilian children with attention-deficit/ hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2007 Apr 5; 144(3): 391–4
38.
go back to reference Purper-Ouakil D, Wohl M, Orejarena S, et al. Pharmaco-genetics of methylphenidate response in attention deficit/ hyperactivity disorder: association with the dopamine transporter gene (SLC6A3). Am J Med Genet B Neuropsychiatr Genet 2008 Jun 18; 147B(8): 1425–30PubMedCrossRef Purper-Ouakil D, Wohl M, Orejarena S, et al. Pharmaco-genetics of methylphenidate response in attention deficit/ hyperactivity disorder: association with the dopamine transporter gene (SLC6A3). Am J Med Genet B Neuropsychiatr Genet 2008 Jun 18; 147B(8): 1425–30PubMedCrossRef
39.
go back to reference Tharoor H, Lobos EA, Todd RD, et al. Association of dopamine, serotonin, and nicotinic gene polymorphisms with methylphenidate response in ADHD. Am J Med Genet B Neuropsychiatr Genet 2008 Jun 5; 147B(4): 527–30PubMedCrossRef Tharoor H, Lobos EA, Todd RD, et al. Association of dopamine, serotonin, and nicotinic gene polymorphisms with methylphenidate response in ADHD. Am J Med Genet B Neuropsychiatr Genet 2008 Jun 5; 147B(4): 527–30PubMedCrossRef
40.
go back to reference Tahir E, Yazgan Y, Cirakoglu B, et al. Association and linkage of DRD4 and DRD5 with attention deficit hyperactivity disorder (ADHD) in a sample of Turkish children. Mol Psychiatry 2000 Jul; 5(4): 396–404PubMedCrossRef Tahir E, Yazgan Y, Cirakoglu B, et al. Association and linkage of DRD4 and DRD5 with attention deficit hyperactivity disorder (ADHD) in a sample of Turkish children. Mol Psychiatry 2000 Jul; 5(4): 396–404PubMedCrossRef
41.
go back to reference Seeger G, Schloss P, Schmidt MH. Marker gene polymorphisms in hyperkinetic disorder: predictors of clinical response to treatment with methylphenidate? Neurosci Lett 2001 Nov 2; 313(1–2): 45–8PubMedCrossRef Seeger G, Schloss P, Schmidt MH. Marker gene polymorphisms in hyperkinetic disorder: predictors of clinical response to treatment with methylphenidate? Neurosci Lett 2001 Nov 2; 313(1–2): 45–8PubMedCrossRef
42.
go back to reference Hamarman S, Fossella J, Ulger C, et al. Dopamine receptor 4 (DRD4) 7-repeat allele predicts methylphenidate dose response in children with attention deficit hyperactivity disorder: a pharmacogenetic study. J Child Adolesc Psychopharmacol 2004; 14(4): 564–74PubMedCrossRef Hamarman S, Fossella J, Ulger C, et al. Dopamine receptor 4 (DRD4) 7-repeat allele predicts methylphenidate dose response in children with attention deficit hyperactivity disorder: a pharmacogenetic study. J Child Adolesc Psychopharmacol 2004; 14(4): 564–74PubMedCrossRef
43.
go back to reference Cheon KA, Kim BN, Cho SC. Association of 4-repeat allele of the dopamine D4 receptor gene exon III polymorphism and response to methylphenidate treatment in Korean ADHD children. Neuropsychopharmacology 2007 Jun; 32(6): 1377–83PubMedCrossRef Cheon KA, Kim BN, Cho SC. Association of 4-repeat allele of the dopamine D4 receptor gene exon III polymorphism and response to methylphenidate treatment in Korean ADHD children. Neuropsychopharmacology 2007 Jun; 32(6): 1377–83PubMedCrossRef
44.
go back to reference Yang L, Wang YF, Li J, et al. Association of norepine- phrine transporter gene with methylphenidate response. J Am Acad Child Adolesc Psychiatry 2004 Sep; 43(9): 1154–8PubMedCrossRef Yang L, Wang YF, Li J, et al. Association of norepine- phrine transporter gene with methylphenidate response. J Am Acad Child Adolesc Psychiatry 2004 Sep; 43(9): 1154–8PubMedCrossRef
45.
go back to reference Mick E, Biederman J, Spencer T, et al. Absence of association with DAT1 polymorphism and response to methylphenidate in a sample of adults with ADHD. Am J Med Genet B Neuropsychiatr Genet 2006 Dec 5; 141(8): 890–4 Mick E, Biederman J, Spencer T, et al. Absence of association with DAT1 polymorphism and response to methylphenidate in a sample of adults with ADHD. Am J Med Genet B Neuropsychiatr Genet 2006 Dec 5; 141(8): 890–4
46.
go back to reference Kooij JS, Boonstra AM, Vermeulen SH, et al. Response to methylphenidate in adults with ADHD is associated with a polymorphism in SLC6A3 (DAT1). Am J Med Genet B Neuropsychiatr Genet 2008 Mar 5; 147B(2): 201–8PubMedCrossRef Kooij JS, Boonstra AM, Vermeulen SH, et al. Response to methylphenidate in adults with ADHD is associated with a polymorphism in SLC6A3 (DAT1). Am J Med Genet B Neuropsychiatr Genet 2008 Mar 5; 147B(2): 201–8PubMedCrossRef
47.
go back to reference Polanczyk G, Faraone SV, Bau CH, et al. The impact of individual and methodological factors in the variability of response to methylphenidate in ADHD pharmacogenetic studies from four different continents. Am J Med Genet B Neuropsychiatr Genet 2008 Dec 5; 147B(8): 1419–24PubMedCrossRef Polanczyk G, Faraone SV, Bau CH, et al. The impact of individual and methodological factors in the variability of response to methylphenidate in ADHD pharmacogenetic studies from four different continents. Am J Med Genet B Neuropsychiatr Genet 2008 Dec 5; 147B(8): 1419–24PubMedCrossRef
48.
go back to reference Jorgensen A, Alfirevic A. Pharmacogenetics and pharma-cogenomics: adverse drug reactions. Pharmacogenomics 2008 Oct; 9(10): 1397–401PubMedCrossRef Jorgensen A, Alfirevic A. Pharmacogenetics and pharma-cogenomics: adverse drug reactions. Pharmacogenomics 2008 Oct; 9(10): 1397–401PubMedCrossRef
49.
go back to reference Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogen J 2007 Apr; 7(2): 99–111CrossRef Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogen J 2007 Apr; 7(2): 99–111CrossRef
50.
go back to reference Volkow ND, Fowler JS, Wang G, et al. Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 2002; 6Suppl. 1: S31–43PubMed Volkow ND, Fowler JS, Wang G, et al. Mechanism of action of methylphenidate: insights from PET imaging studies. J Atten Disord 2002; 6Suppl. 1: S31–43PubMed
51.
go back to reference Melega WP, Williams AE, Schmitz DA, et al. Pharmaco-kinetic and pharmacodynamic analysis of the actions of D-amphetamine and D-methamphetamine on the dopamine terminal. J Pharmacol Exper Ther 1995 Jul; 274(1): 90–6 Melega WP, Williams AE, Schmitz DA, et al. Pharmaco-kinetic and pharmacodynamic analysis of the actions of D-amphetamine and D-methamphetamine on the dopamine terminal. J Pharmacol Exper Ther 1995 Jul; 274(1): 90–6
52.
go back to reference Cook Jr EH, Stein MA, Krasowski MD, et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 1995 Apr; 56(4): 993–8PubMed Cook Jr EH, Stein MA, Krasowski MD, et al. Association of attention-deficit disorder and the dopamine transporter gene. Am J Hum Genet 1995 Apr; 56(4): 993–8PubMed
53.
go back to reference VanNess SH, Owens MJ, Kilts CD. The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet 2005; 6: 55PubMedCrossRef VanNess SH, Owens MJ, Kilts CD. The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density. BMC Genet 2005; 6: 55PubMedCrossRef
54.
go back to reference Brookes K, Xu X, Chen W, et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 2006 Oct; 11(10): 934–53PubMedCrossRef Brookes K, Xu X, Chen W, et al. The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 2006 Oct; 11(10): 934–53PubMedCrossRef
55.
go back to reference Asherson P, Brookes K, Franke B, et al. Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. Am J Psychiatry 2007 Apr; 164(4): 674–7PubMedCrossRef Asherson P, Brookes K, Franke B, et al. Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD. Am J Psychiatry 2007 Apr; 164(4): 674–7PubMedCrossRef
56.
go back to reference Brookes KJ, Mill J, Guindalini C, et al. A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy. Arch Gen Psychiatry 2006 Jan; 63(1): 74–81PubMedCrossRef Brookes KJ, Mill J, Guindalini C, et al. A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy. Arch Gen Psychiatry 2006 Jan; 63(1): 74–81PubMedCrossRef
57.
go back to reference Lott DC, Kim SJ, Cook Jr EH, et al. Dopamine transporter gene associated with diminished subjective response to amphetamine. Neuropsychopharmacology 2005 Mar; 30(3): 602–9PubMedCrossRef Lott DC, Kim SJ, Cook Jr EH, et al. Dopamine transporter gene associated with diminished subjective response to amphetamine. Neuropsychopharmacology 2005 Mar; 30(3): 602–9PubMedCrossRef
58.
go back to reference Heckers S, Konradi C. Synaptic function and biochemical neuroanatomy. In: Martin A, Scahill L, Charney DS, et al., editors. Pediatric psychopharmacology: principles and practice. New York: Oxford University Press, 2003: 20–32 Heckers S, Konradi C. Synaptic function and biochemical neuroanatomy. In: Martin A, Scahill L, Charney DS, et al., editors. Pediatric psychopharmacology: principles and practice. New York: Oxford University Press, 2003: 20–32
59.
go back to reference Asghari V, Sanyal S, Buchwaldt S, et al. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 1995 Sep; 65(3): 1157–65PubMedCrossRef Asghari V, Sanyal S, Buchwaldt S, et al. Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J Neurochem 1995 Sep; 65(3): 1157–65PubMedCrossRef
60.
go back to reference Van Tol HH, Wu CM, Guan HC, et al. Multiple dopamine D4 receptor variants in the human population. Nature 1992 Jul 9; 358(6382): 149–52PubMedCrossRef Van Tol HH, Wu CM, Guan HC, et al. Multiple dopamine D4 receptor variants in the human population. Nature 1992 Jul 9; 358(6382): 149–52PubMedCrossRef
61.
go back to reference Sallee FR, Newcorn J, Allen AJ, et al. Pharmacogenetics of atomoxetine: relevance of DRD4. Scientific proceedings of the 51st Annual Meeting of the American Academy of Child and Adolescent Psychiatry; 2004 Oct 21; Washington, DC: 28 Sallee FR, Newcorn J, Allen AJ, et al. Pharmacogenetics of atomoxetine: relevance of DRD4. Scientific proceedings of the 51st Annual Meeting of the American Academy of Child and Adolescent Psychiatry; 2004 Oct 21; Washington, DC: 28
62.
go back to reference Nestler EJ, Hyman SE, Malenka RC. Molecular neuro-pharmacology: a foundation for clinical neuroscience. New York: The McGraw-Hill Companies, Inc., 2001 Nestler EJ, Hyman SE, Malenka RC. Molecular neuro-pharmacology: a foundation for clinical neuroscience. New York: The McGraw-Hill Companies, Inc., 2001
63.
go back to reference Arnsten AF, Dudley AG. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 2005 Apr 22; 1(1): 2PubMedCrossRef Arnsten AF, Dudley AG. Methylphenidate improves prefrontal cortical cognitive function through alpha2 adrenoceptor and dopamine D1 receptor actions: relevance to therapeutic effects in attention deficit hyperactivity disorder. Behav Brain Funct 2005 Apr 22; 1(1): 2PubMedCrossRef
64.
go back to reference Andrews GD, Lavin A. Methylphenidate increases cortical excitability via activation of alpha-2 noradrenergic receptors. Neuropsychopharmacology 2006 Mar; 31(3): 594–601PubMedCrossRef Andrews GD, Lavin A. Methylphenidate increases cortical excitability via activation of alpha-2 noradrenergic receptors. Neuropsychopharmacology 2006 Mar; 31(3): 594–601PubMedCrossRef
65.
go back to reference Lario S, Calls J, Cases A, et al. MspI identifies a biallelic polymorphism in the promoter region of the alpha 2A-adrenergic receptor gene. Clin Genet 1997 Feb; 51(2): 129–30PubMedCrossRef Lario S, Calls J, Cases A, et al. MspI identifies a biallelic polymorphism in the promoter region of the alpha 2A-adrenergic receptor gene. Clin Genet 1997 Feb; 51(2): 129–30PubMedCrossRef
66.
go back to reference Deupree JD, Smith SD, Kratochvil CJ, et al. Possible involvement of alpha-2A adrenergic receptors in attention deficit hyperactivity disorder: radioligand binding and polymorphism studies. Am J Med Genet B Neuro-psychiatr Genet 2006 Dec 5; 141B(8): 877–84CrossRef Deupree JD, Smith SD, Kratochvil CJ, et al. Possible involvement of alpha-2A adrenergic receptors in attention deficit hyperactivity disorder: radioligand binding and polymorphism studies. Am J Med Genet B Neuro-psychiatr Genet 2006 Dec 5; 141B(8): 877–84CrossRef
67.
go back to reference Lachman HM, Papolos DF, Saito T, et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996 Jun; 6(3): 243–50PubMedCrossRef Lachman HM, Papolos DF, Saito T, et al. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996 Jun; 6(3): 243–50PubMedCrossRef
68.
go back to reference Cheuk DK, Wong V. Meta-analysis of association between a catechol-O-methyltransferase gene polymorphism and attention deficit hyperactivity disorder. Behav Genet 2006 Sep;36(5):651–9PubMedCrossRef Cheuk DK, Wong V. Meta-analysis of association between a catechol-O-methyltransferase gene polymorphism and attention deficit hyperactivity disorder. Behav Genet 2006 Sep;36(5):651–9PubMedCrossRef
69.
go back to reference Mattay VS, Goldberg TE, Fera F, et al. Catechol-O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 2003 May 13; 100(10): 6186–91PubMedCrossRef Mattay VS, Goldberg TE, Fera F, et al. Catechol-O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 2003 May 13; 100(10): 6186–91PubMedCrossRef
70.
go back to reference Holmes A, Hollon TR, Gleason TC, et al. Behavioral characterization of dopamine D5 receptor null mutant mice. Behav Neurosci 2001 Oct; 115(5): 1129–44PubMedCrossRef Holmes A, Hollon TR, Gleason TC, et al. Behavioral characterization of dopamine D5 receptor null mutant mice. Behav Neurosci 2001 Oct; 115(5): 1129–44PubMedCrossRef
71.
go back to reference Lowe N, Kirley A, Hawi Z, et al. Joint analysis of the DRD5 marker concludes association with attention-deficit/hyperactivity disorder confined to the predominantly inattentive and combined subtypes. Am J Hum Genet 2004 Feb; 74(2): 348–56PubMedCrossRef Lowe N, Kirley A, Hawi Z, et al. Joint analysis of the DRD5 marker concludes association with attention-deficit/hyperactivity disorder confined to the predominantly inattentive and combined subtypes. Am J Hum Genet 2004 Feb; 74(2): 348–56PubMedCrossRef
72.
go back to reference Maher BS, Marazita ML, Ferrell RE, et al. Dopamine system genes and attention deficit hyperactivity disorder: a meta-analysis. Psychiatr Genet 2002 Dec; 12(4): 207–15PubMedCrossRef Maher BS, Marazita ML, Ferrell RE, et al. Dopamine system genes and attention deficit hyperactivity disorder: a meta-analysis. Psychiatr Genet 2002 Dec; 12(4): 207–15PubMedCrossRef
73.
go back to reference Li D, Sham PC, Owen MJ, et al. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 2006 Jul 15; 15(14): 2276–84PubMedCrossRef Li D, Sham PC, Owen MJ, et al. Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 2006 Jul 15; 15(14): 2276–84PubMedCrossRef
74.
go back to reference Berridge CW, Devilbiss DM, Andrzejewski ME, et al. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 2006 Nov 15; 60(10): 1111–20PubMedCrossRef Berridge CW, Devilbiss DM, Andrzejewski ME, et al. Methylphenidate preferentially increases catecholamine neurotransmission within the prefrontal cortex at low doses that enhance cognitive function. Biol Psychiatry 2006 Nov 15; 60(10): 1111–20PubMedCrossRef
75.
go back to reference Michelson D, Faries D, Wernicke J, et al. Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, dose-response study. Pediatrics 2001 Nov; 108(5): E83PubMedCrossRef Michelson D, Faries D, Wernicke J, et al. Atomoxetine in the treatment of children and adolescents with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, dose-response study. Pediatrics 2001 Nov; 108(5): E83PubMedCrossRef
76.
go back to reference Forero DA, Arboleda GH, Vasuez R, et al. Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. J Psychiatry Neurosci 2009; 34(5): 361–6PubMed Forero DA, Arboleda GH, Vasuez R, et al. Candidate genes involved in neural plasticity and the risk for attention-deficit hyperactivity disorder: a meta-analysis of 8 common variants. J Psychiatry Neurosci 2009; 34(5): 361–6PubMed
77.
go back to reference Dlugos A, Freitag C, Hohoff C, et al. Norepinephrine transporter gene variation modulates acute response to D-amphetamine. Biol Psychiatry 2007 Jun 1; 61(11): 1296–305PubMedCrossRef Dlugos A, Freitag C, Hohoff C, et al. Norepinephrine transporter gene variation modulates acute response to D-amphetamine. Biol Psychiatry 2007 Jun 1; 61(11): 1296–305PubMedCrossRef
78.
go back to reference Schiavo G, Stenbeck G, Rothman JE, et al. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc Natl Acad Sci U S A 1997 Feb 4; 94(3): 997–1001PubMedCrossRef Schiavo G, Stenbeck G, Rothman JE, et al. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc Natl Acad Sci U S A 1997 Feb 4; 94(3): 997–1001PubMedCrossRef
79.
go back to reference Barr CL, Feng Y, Wigg K, et al. Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 2000 Jul; 5(4): 405–9PubMedCrossRef Barr CL, Feng Y, Wigg K, et al. Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 2000 Jul; 5(4): 405–9PubMedCrossRef
80.
go back to reference Brophy K, Hawi Z, Kirley A, et al. Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population. Mol Psychiatry 2002; 7(8): 913–7PubMedCrossRef Brophy K, Hawi Z, Kirley A, et al. Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population. Mol Psychiatry 2002; 7(8): 913–7PubMedCrossRef
81.
go back to reference Kustanovich V, Merriman B, McGough J, et al. Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 2003 Mar; 8(3): 309–15PubMedCrossRef Kustanovich V, Merriman B, McGough J, et al. Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 2003 Mar; 8(3): 309–15PubMedCrossRef
82.
go back to reference Mill J, Curran S, Kent L, et al. Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet 2002 Apr 8; 114(3): 269–71PubMedCrossRef Mill J, Curran S, Kent L, et al. Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. Am J Med Genet 2002 Apr 8; 114(3): 269–71PubMedCrossRef
83.
go back to reference Wilson MC. Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2000 Jan; 24(1): 51–7PubMedCrossRef Wilson MC. Coloboma mouse mutant as an animal model of hyperkinesis and attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2000 Jan; 24(1): 51–7PubMedCrossRef
84.
go back to reference Polanczyk G, Zeni C, Genro JP, et al. Attention-deficit/ hyperactivity disorder: advancing on pharmacogenomics. Pharmacogenomics 2005 Apr; 6(3): 225–34PubMedCrossRef Polanczyk G, Zeni C, Genro JP, et al. Attention-deficit/ hyperactivity disorder: advancing on pharmacogenomics. Pharmacogenomics 2005 Apr; 6(3): 225–34PubMedCrossRef
85.
go back to reference Sun Z, Murry DJ, Sanghani SP, et al. Methylphenidate is stereoselectively hydrolyzed by human carboxylesterase CES1 A1. J Pharmacol Exper Ther 2004 Aug; 310(2): 469–76CrossRef Sun Z, Murry DJ, Sanghani SP, et al. Methylphenidate is stereoselectively hydrolyzed by human carboxylesterase CES1 A1. J Pharmacol Exper Ther 2004 Aug; 310(2): 469–76CrossRef
86.
go back to reference Zhu HJ, Patrick KS, Yuan HJ, et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet 2008 Jun; 82(6): 1241–8PubMedCrossRef Zhu HJ, Patrick KS, Yuan HJ, et al. Two CES1 gene mutations lead to dysfunctional carboxylesterase 1 activity in man: clinical significance and molecular basis. Am J Hum Genet 2008 Jun; 82(6): 1241–8PubMedCrossRef
87.
go back to reference Dring LG, Smith RL, Williams RT. The metabolic fate of amphetamine in man and other species. Biochemical J 1970 Feb; 116(3): 425–35 Dring LG, Smith RL, Williams RT. The metabolic fate of amphetamine in man and other species. Biochemical J 1970 Feb; 116(3): 425–35
88.
go back to reference Markowitz JS, Patrick KS. Pharmacokinetic and pharma-codynamic drug interactions in the treatment of attention-deficit hyperactivity disorder. Clin Pharmacokinet 2001; 40(10): 753–72PubMedCrossRef Markowitz JS, Patrick KS. Pharmacokinetic and pharma-codynamic drug interactions in the treatment of attention-deficit hyperactivity disorder. Clin Pharmacokinet 2001; 40(10): 753–72PubMedCrossRef
89.
go back to reference Meyer UA, Zanger UM. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 1997; 37: 269–96PubMedCrossRef Meyer UA, Zanger UM. Molecular mechanisms of genetic polymorphisms of drug metabolism. Annu Rev Pharmacol Toxicol 1997; 37: 269–96PubMedCrossRef
90.
go back to reference McGough JJ, Biederman J, Greenhill LL, et al. Pharma-cokinetics of SLI381 (ADDERALL XR) an extended release formulation of Adderall. J Am Acad Child Adolesc Psychiatry 2003; 42(6): 684–91PubMedCrossRef McGough JJ, Biederman J, Greenhill LL, et al. Pharma-cokinetics of SLI381 (ADDERALL XR) an extended release formulation of Adderall. J Am Acad Child Adolesc Psychiatry 2003; 42(6): 684–91PubMedCrossRef
91.
go back to reference Wandel C, Witte JS, Hall JM, et al. CYP3A activity in African American and European American men: population differences and functional effect of the CYP3 A4* 1 B5′-promoter region polymorphism. Clin Pharmacol Ther 2000 Jul; 68(1): 82–91PubMedCrossRef Wandel C, Witte JS, Hall JM, et al. CYP3A activity in African American and European American men: population differences and functional effect of the CYP3 A4* 1 B5′-promoter region polymorphism. Clin Pharmacol Ther 2000 Jul; 68(1): 82–91PubMedCrossRef
92.
go back to reference Michelson D, Read HA, Ruff DD, et al. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry 2007 Feb; 46(2): 242–51PubMedCrossRef Michelson D, Read HA, Ruff DD, et al. CYP2D6 and clinical response to atomoxetine in children and adolescents with ADHD. J Am Acad Child Adolesc Psychiatry 2007 Feb; 46(2): 242–51PubMedCrossRef
93.
go back to reference Waldman ID, Gizer IR. The genetics of attention deficit hyperactivity disorder. Clin Psychol Rev 2006 Aug; 26(4): 396–432PubMedCrossRef Waldman ID, Gizer IR. The genetics of attention deficit hyperactivity disorder. Clin Psychol Rev 2006 Aug; 26(4): 396–432PubMedCrossRef
94.
go back to reference Friedel S, Saar K, Sauer S, et al. Association and linkage of allelic variants of the dopamine transporter gene in ADHD. Mol Psychiatry 2007 Oct; 12(10): 923–33PubMedCrossRef Friedel S, Saar K, Sauer S, et al. Association and linkage of allelic variants of the dopamine transporter gene in ADHD. Mol Psychiatry 2007 Oct; 12(10): 923–33PubMedCrossRef
95.
go back to reference Van der Meulen EM, Bakker SC, Pauls DL, et al. A genome-widequantitative trait locus analysis on methylphenidate response rate in Dutch sibpairs with attention-deficit/ hyperactivity disorder. 16th World Congress of the International Association for Child and Adolescent Psychiatry and Allied Professions; 2004 Aug 22–26; Berlin Van der Meulen EM, Bakker SC, Pauls DL, et al. A genome-widequantitative trait locus analysis on methylphenidate response rate in Dutch sibpairs with attention-deficit/ hyperactivity disorder. 16th World Congress of the International Association for Child and Adolescent Psychiatry and Allied Professions; 2004 Aug 22–26; Berlin
96.
go back to reference Mick E, Neale B, Middleton FA, et al. Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsych Genet 2008 Sep; 147B: 7412–4 Mick E, Neale B, Middleton FA, et al. Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsych Genet 2008 Sep; 147B: 7412–4
97.
go back to reference Pelham WE, Millich R. Individual differences in response to Ritalin in class work and social behavior. In: Greenhill L, Osman B, editors. Ritalin: theory and patient management. New York: Mary Ann Liebert, 1991 Pelham WE, Millich R. Individual differences in response to Ritalin in class work and social behavior. In: Greenhill L, Osman B, editors. Ritalin: theory and patient management. New York: Mary Ann Liebert, 1991
98.
go back to reference Brody AL, Mandelkern MA, Olmstead RE, et al. Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch Gen Psychiatry 2006 Jul; 63(7): 808–16PubMedCrossRef Brody AL, Mandelkern MA, Olmstead RE, et al. Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch Gen Psychiatry 2006 Jul; 63(7): 808–16PubMedCrossRef
99.
go back to reference Li S, Kim KY, Kim JH, et al. Chronic nicotine and smoking treatment increases dopamine transporter mRNA expression in the rat midbrain. Neurosci Lett 2004 Jun 3; 363(1): 29–32PubMedCrossRef Li S, Kim KY, Kim JH, et al. Chronic nicotine and smoking treatment increases dopamine transporter mRNA expression in the rat midbrain. Neurosci Lett 2004 Jun 3; 363(1): 29–32PubMedCrossRef
100.
go back to reference Gerasimov MR, Franceschi M, Volkow ND, et al. Synergistic interactions between nicotine and cocaine or methylphenidate depend on the dose of dopamine transporter inhibitor. Synapse 2000 Dec 15; 38(4): 432–7PubMedCrossRef Gerasimov MR, Franceschi M, Volkow ND, et al. Synergistic interactions between nicotine and cocaine or methylphenidate depend on the dose of dopamine transporter inhibitor. Synapse 2000 Dec 15; 38(4): 432–7PubMedCrossRef
101.
go back to reference Weinshilboum RM, Wang L. Pharmacogenetics and pharmacogenomics: development, science, and translation. Annu Rev Genom Human Genet 2006; 7: 223–45CrossRef Weinshilboum RM, Wang L. Pharmacogenetics and pharmacogenomics: development, science, and translation. Annu Rev Genom Human Genet 2006; 7: 223–45CrossRef
102.
go back to reference ADHD Molecular Genetics Network Annual International Meeting; 2006 Oct 8–10; Brussels ADHD Molecular Genetics Network Annual International Meeting; 2006 Oct 8–10; Brussels
103.
go back to reference ADHD Molecular Genetics Network Annual International Meeting; 2008 Dec 5–7; Sanibel Island (FL) ADHD Molecular Genetics Network Annual International Meeting; 2008 Dec 5–7; Sanibel Island (FL)
104.
go back to reference Pliszka SR, Crismon ML, Hughes CW, et al. The Texas Children’s Medication Algorithm Project: revision of the algorithm for pharmacotherapy of attention-deficit/ hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2006 Jun; 45(6): 642–57PubMedCrossRef Pliszka SR, Crismon ML, Hughes CW, et al. The Texas Children’s Medication Algorithm Project: revision of the algorithm for pharmacotherapy of attention-deficit/ hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 2006 Jun; 45(6): 642–57PubMedCrossRef
105.
go back to reference McGough JJ, Biederman J, Wigal SB, et al. Long-term tolerability and effectiveness of once-daily mixed amphetamine salts (Adderall XR) in children with ADHD. J Am Acad Child Adolesc Psychiatry 2005 Jun; 44(6): 530–8PubMedCrossRef McGough JJ, Biederman J, Wigal SB, et al. Long-term tolerability and effectiveness of once-daily mixed amphetamine salts (Adderall XR) in children with ADHD. J Am Acad Child Adolesc Psychiatry 2005 Jun; 44(6): 530–8PubMedCrossRef
106.
go back to reference Wilens T, Pelham W, Stein M, et al. ADHD treatment with once-daily OROS methylphenidate: interim 12-month results from a long-term open-label study. J Am Acad Child Adolesc Psychiatry 2003 Apr; 42(4): 424–33PubMedCrossRef Wilens T, Pelham W, Stein M, et al. ADHD treatment with once-daily OROS methylphenidate: interim 12-month results from a long-term open-label study. J Am Acad Child Adolesc Psychiatry 2003 Apr; 42(4): 424–33PubMedCrossRef
107.
go back to reference Wigal T, Greenhill L, Chuang S, et al. Safety and tolerability of methylphenidate in preschool children with ADHD. J Am Acad Child Adolesc Psychiatry 2006 Nov; 45(11): 1294–303PubMedCrossRef Wigal T, Greenhill L, Chuang S, et al. Safety and tolerability of methylphenidate in preschool children with ADHD. J Am Acad Child Adolesc Psychiatry 2006 Nov; 45(11): 1294–303PubMedCrossRef
Metadata
Title
Progress and Promise of Attention-Deficit Hyperactivity Disorder Pharmacogenetics
Authors
Tanya E. Froehlich
James J. McGough
Dr Mark A. Stein
Publication date
01-02-2010
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 2/2010
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/11530290-000000000-00000

Other articles of this Issue 2/2010

CNS Drugs 2/2010 Go to the issue