Skip to main content
Top
Published in: Drugs 6/2010

01-04-2010 | Leading Article

Current Challenges in Antimicrobial Chemotherapy

Focus on β-Lactamase Inhibition

Authors: Dr Carine Bebrone, Patricia Lassaux, Lionel Vercheval, Jean-Sébastien Sohier, Adrien Jehaes, Eric Sauvage, Moreno Galleni

Published in: Drugs | Issue 6/2010

Login to get access

Abstract

The use of the three classical β-lactamase inhibitors (clavulanic acid, tazobactam and sulbactam) in combination with β-lactam antibacterials is currently the most successful strategy to combat β-lactamase-mediated resistance. However, these inhibitors are efficient in inactivating only class A β-lactamases and the efficiency of the inhibitor/antibacterial combination can be compromised by several mechanisms, such as the production of naturally resistant class B or class D enzymes, the hyperproduction of AmpC or even the production of evolved inhibitor-resistant class A enzymes. Thus, there is an urgent need for the development of novel inhibitors. For serine active enzymes (classes A, C and D), derivatives of the β-lactam ring such as 6-β-halogenopenicillanates, β-lactam sulfones, penems and oxapenems, monobactams or trinems seem to be potential starting points to design efficient molecules (such as AM-112 and LK-157). Moreover, a promising non-β-lactam molecule, NXL-104, is now under clinical development. In contrast, an ideal inhibitor of metallo-β-lactamases (class B) remains to be found, despite the huge number of potential molecules already described (biphenyl tetrazoles, cysteinyl peptides, mercaptocarboxylates, succinic acid derivatives, etc.). The search for such an inhibitor is complicated by the absence of a covalent intermediate in their catalytic mechanisms and the fact that β-lactam derivatives often behave as substrates rather than as inhibitors. Currently, the most promising broad-spectrum inhibitors of class B enzymes are molecules presenting chelating groups (thiols, carboxylates, etc.) combined with an aromatic group.
This review describes all the types of molecules already tested as potential β-lactamase inhibitors and thus constitutes an update of the current status in β-lactamase inhibitor discovery.
Literature
1.
go back to reference Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980 May 16; 289(1036): 321–31PubMedCrossRef Ambler RP. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 1980 May 16; 289(1036): 321–31PubMedCrossRef
2.
go back to reference Jaurin B, Grundstrom T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci U S A 1981 Aug; 78(8): 4897–901PubMedCrossRef Jaurin B, Grundstrom T. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of beta-lactamases of the penicillinase type. Proc Natl Acad Sci U S A 1981 Aug; 78(8): 4897–901PubMedCrossRef
3.
go back to reference Ouellette M, Bissonnette L, Roy PH. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 beta-lactamase gene. Proc Natl Acad Sci U S A 1987 Nov; 84(21): 7378–82PubMedCrossRef Ouellette M, Bissonnette L, Roy PH. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 beta-lactamase gene. Proc Natl Acad Sci U S A 1987 Nov; 84(21): 7378–82PubMedCrossRef
4.
go back to reference Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010 Mar; 54(3): 969–76PubMedCrossRef Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother 2010 Mar; 54(3): 969–76PubMedCrossRef
5.
go back to reference Kelly JA, Dideberg O, Charlier P, et al. On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science 1986 Mar 21; 231(4744): 1429–31PubMedCrossRef Kelly JA, Dideberg O, Charlier P, et al. On the origin of bacterial resistance to penicillin: comparison of a beta-lactamase and a penicillin target. Science 1986 Mar 21; 231(4744): 1429–31PubMedCrossRef
6.
go back to reference Samraoui B, Sutton BJ, Todd RJ, et al. Tertiary structural similarity between a class A beta-lactamase and a penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase. Nature 1986 Mar 27–Apr 2; 320(6060): 378–80PubMedCrossRef Samraoui B, Sutton BJ, Todd RJ, et al. Tertiary structural similarity between a class A beta-lactamase and a penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase. Nature 1986 Mar 27–Apr 2; 320(6060): 378–80PubMedCrossRef
7.
go back to reference Joris B, Ghuysen JM, Dive G, et al. The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J 1988 Mar 1; 250(2): 313–24PubMed Joris B, Ghuysen JM, Dive G, et al. The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem J 1988 Mar 1; 250(2): 313–24PubMed
8.
go back to reference Joris B, Ledent P, Dideberg O, et al. Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob Agents Chemother 1991 Nov; 35(11): 2294–301PubMedCrossRef Joris B, Ledent P, Dideberg O, et al. Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin-recognizing proteins. Antimicrob Agents Chemother 1991 Nov; 35(11): 2294–301PubMedCrossRef
9.
go back to reference Tzouvelekis LS, Tzelepi E, Tassios PT, et al. CTX-M-type beta-lactamases: an emerging group of extended-spectrum enzymes. Int J Antimicrob Agents 2000 Mar; 14(2): 137–42PubMedCrossRef Tzouvelekis LS, Tzelepi E, Tassios PT, et al. CTX-M-type beta-lactamases: an emerging group of extended-spectrum enzymes. Int J Antimicrob Agents 2000 Mar; 14(2): 137–42PubMedCrossRef
10.
go back to reference Jacobs C, Joris B, Jamin M, et al. AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol 1995 Feb; 15(3): 553–9PubMedCrossRef Jacobs C, Joris B, Jamin M, et al. AmpD, essential for both beta-lactamase regulation and cell wall recycling, is a novel cytosolic N-acetylmuramyl-L-alanine amidase. Mol Microbiol 1995 Feb; 15(3): 553–9PubMedCrossRef
12.
go back to reference Bradford PA, Urban C, Mariano N, et al. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein. Antimicrob Agents Chemother 1997 Mar; 41(3): 563–9PubMed Bradford PA, Urban C, Mariano N, et al. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT-1, a plasmid-mediated AmpC beta-lactamase, and the foss of an outer membrane protein. Antimicrob Agents Chemother 1997 Mar; 41(3): 563–9PubMed
13.
go back to reference Ledent P, Raquet X, Joris B, et al. A comparative study of class-D beta-lactamases. Biochem J 1993 Jun 1; 292 (Pt 2): 555–62PubMed Ledent P, Raquet X, Joris B, et al. A comparative study of class-D beta-lactamases. Biochem J 1993 Jun 1; 292 (Pt 2): 555–62PubMed
14.
go back to reference Naas T, Sougakoff W, Casetta A, et al. Molecular characterization of OXA-20, a novel class D beta-lactamase, and its integron from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998 Aug; 42(8): 2074–83PubMed Naas T, Sougakoff W, Casetta A, et al. Molecular characterization of OXA-20, a novel class D beta-lactamase, and its integron from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998 Aug; 42(8): 2074–83PubMed
15.
go back to reference Bou G, Oliver A, Martinez-Beltran J. OXA-24, a novel class D beta-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother 2000 Jun; 44(6): 1556–61PubMedCrossRef Bou G, Oliver A, Martinez-Beltran J. OXA-24, a novel class D beta-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob Agents Chemother 2000 Jun; 44(6): 1556–61PubMedCrossRef
16.
go back to reference Golemi D, Maveyraud L, Vakulenko S, et al. Critical involvement of a carbamylated lysine in catalytic function of class D beta-lactamases. Proc Natl Acad Sci U S A 2001 Dec 4; 98(25): 14280–5PubMedCrossRef Golemi D, Maveyraud L, Vakulenko S, et al. Critical involvement of a carbamylated lysine in catalytic function of class D beta-lactamases. Proc Natl Acad Sci U S A 2001 Dec 4; 98(25): 14280–5PubMedCrossRef
17.
go back to reference Schneider KD, Bethel CR, Distler AM, et al. Mutation of the active site carboxy-lysine (K70) of OXA-1 beta-lactamase results in a deacylation-deficient enzyme. Biochemistry 2009 Jul 7; 48(26): 6136–45PubMedCrossRef Schneider KD, Bethel CR, Distler AM, et al. Mutation of the active site carboxy-lysine (K70) of OXA-1 beta-lactamase results in a deacylation-deficient enzyme. Biochemistry 2009 Jul 7; 48(26): 6136–45PubMedCrossRef
18.
go back to reference Daiyasu H, Osaka K, Ishino Y, et al. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett 2001 Aug 10; 503(1): 1–6PubMedCrossRef Daiyasu H, Osaka K, Ishino Y, et al. Expansion of the zinc metallo-hydrolase family of the beta-lactamase fold. FEBS Lett 2001 Aug 10; 503(1): 1–6PubMedCrossRef
19.
go back to reference Rasmussen BA, Gluzman Y, Tally FP. Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL 3636. Antimicrob Agents Chemother 1990 Aug; 34(8): 1590–2PubMedCrossRef Rasmussen BA, Gluzman Y, Tally FP. Cloning and sequencing of the class B beta-lactamase gene (ccrA) from Bacteroides fragilis TAL 3636. Antimicrob Agents Chemother 1990 Aug; 34(8): 1590–2PubMedCrossRef
20.
go back to reference Watanabe M, Iyobe S, Inoue M, et al. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991 Jan; 35(1): 147–51PubMedCrossRef Watanabe M, Iyobe S, Inoue M, et al. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991 Jan; 35(1): 147–51PubMedCrossRef
21.
go back to reference Osano E, Arakawa Y, Wacharotayankun R, et al. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother 1994 Jan; 38(1): 71–8PubMedCrossRef Osano E, Arakawa Y, Wacharotayankun R, et al. Molecular characterization of an enterobacterial metallo beta-lactamase found in a clinical isolate of Serratia marcescens that shows imipenem resistance. Antimicrob Agents Chemother 1994 Jan; 38(1): 71–8PubMedCrossRef
22.
go back to reference Rossolini GM, Franceschini N, Riccio ML, et al. Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B beta-lactamase showing a broad substrate profile. Biochem J 1998 May 15; 332 (Pt 1): 145–52PubMed Rossolini GM, Franceschini N, Riccio ML, et al. Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B beta-lactamase showing a broad substrate profile. Biochem J 1998 May 15; 332 (Pt 1): 145–52PubMed
23.
go back to reference Chen Y, Succi J, Tenover FC, et al. Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J Bacteriol 2003 Feb; 185(3): 823–30PubMedCrossRef Chen Y, Succi J, Tenover FC, et al. Beta-lactamase genes of the penicillin-susceptible Bacillus anthracis Sterne strain. J Bacteriol 2003 Feb; 185(3): 823–30PubMedCrossRef
24.
go back to reference Walsh F, Bracher S, Turner P, et al. Preferential selection of IMP and VIM metallo-beta-lactamases by imipenem in Pseudomonas aeruginosa. Chemotherapy 2007; 53(6): 407–9PubMedCrossRef Walsh F, Bracher S, Turner P, et al. Preferential selection of IMP and VIM metallo-beta-lactamases by imipenem in Pseudomonas aeruginosa. Chemotherapy 2007; 53(6): 407–9PubMedCrossRef
25.
go back to reference Galleni M, Lamotte-Brasseur J, Rossolini GM, et al. Standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 2001 Mar; 45(3): 660–3PubMedCrossRef Galleni M, Lamotte-Brasseur J, Rossolini GM, et al. Standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 2001 Mar; 45(3): 660–3PubMedCrossRef
26.
go back to reference Garau G, Garcia-Saez I, Bebrone C, et al. Update of the standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 2004 Jul; 48(7): 2347–9PubMedCrossRef Garau G, Garcia-Saez I, Bebrone C, et al. Update of the standard numbering scheme for class B beta-lactamases. Antimicrob Agents Chemother 2004 Jul; 48(7): 2347–9PubMedCrossRef
27.
go back to reference Frere JM, Galleni M, Bush K, et al. Is it necessary to change the classification of s betas-lactamases? J Antimicrob Chemother 2005 Jun; 55(6): 1051–3PubMedCrossRef Frere JM, Galleni M, Bush K, et al. Is it necessary to change the classification of s betas-lactamases? J Antimicrob Chemother 2005 Jun; 55(6): 1051–3PubMedCrossRef
28.
go back to reference Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007 Dec 15; 74(12): 1686–701PubMedCrossRef Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007 Dec 15; 74(12): 1686–701PubMedCrossRef
29.
go back to reference Reading C, Cole M. Clavulanic acid: a beta-lactamaseinhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 1977 May; 11(5): 852–7PubMedCrossRef Reading C, Cole M. Clavulanic acid: a beta-lactamaseinhibiting beta-lactam from Streptomyces clavuligerus. Antimicrob Agents Chemother 1977 May; 11(5): 852–7PubMedCrossRef
30.
go back to reference Neu HC, Fu KP. Clavulanic acid, a novel inhibitor of beta-lactamases. Antimicrob Agents Chemother 1978 Nov; 14(5): 650–5PubMedCrossRef Neu HC, Fu KP. Clavulanic acid, a novel inhibitor of beta-lactamases. Antimicrob Agents Chemother 1978 Nov; 14(5): 650–5PubMedCrossRef
31.
go back to reference Durkin JP, Viswanatha T. Clavulanic acid inhibition of beta-lactamase I from Bacillus cereus 569/H. J Antibiot (Tokyo) 1978 Nov; 31(11): 1162–9CrossRef Durkin JP, Viswanatha T. Clavulanic acid inhibition of beta-lactamase I from Bacillus cereus 569/H. J Antibiot (Tokyo) 1978 Nov; 31(11): 1162–9CrossRef
32.
go back to reference Marunaka T, Maniwa M, Matsushima E, et al. High-performance liquid chromatographic determination of a new beta-lactamase inhibitor and its metabolite in combination therapy with piperacillin in biological materials. J Chromatogr 1988 Sep 23; 431(1): 87–101PubMed Marunaka T, Maniwa M, Matsushima E, et al. High-performance liquid chromatographic determination of a new beta-lactamase inhibitor and its metabolite in combination therapy with piperacillin in biological materials. J Chromatogr 1988 Sep 23; 431(1): 87–101PubMed
33.
go back to reference Moosdeen F, Williams JD, Yamabe S. Antibacterial characteristics of YTR 830, a sulfone beta-lactamase inhibitor, compared with those of clavulanic acid and sulbactam. Antimicrob Agents Chemother 1988 Jun; 32(6): 925–7PubMedCrossRef Moosdeen F, Williams JD, Yamabe S. Antibacterial characteristics of YTR 830, a sulfone beta-lactamase inhibitor, compared with those of clavulanic acid and sulbactam. Antimicrob Agents Chemother 1988 Jun; 32(6): 925–7PubMedCrossRef
34.
go back to reference Moosdeen F, Williams J, Yamabe S. The activity of a sulphone beta-lactamase inhibitor, YTR 830. Chemioterapia 1987 Jun; 6 (2 Suppl.): 206–7PubMed Moosdeen F, Williams J, Yamabe S. The activity of a sulphone beta-lactamase inhibitor, YTR 830. Chemioterapia 1987 Jun; 6 (2 Suppl.): 206–7PubMed
35.
go back to reference Appelbaum PC, Jacobs MR, Spangler SK, et al. Comparative activity of beta-lactamase inhibitors YTR 830, clavulanate, and sulbactam combined with beta-lactams against beta-lactamase-producing anaerobes. Antimicrob Agents Chemother 1986 Nov; 30(5): 789–91PubMedCrossRef Appelbaum PC, Jacobs MR, Spangler SK, et al. Comparative activity of beta-lactamase inhibitors YTR 830, clavulanate, and sulbactam combined with beta-lactams against beta-lactamase-producing anaerobes. Antimicrob Agents Chemother 1986 Nov; 30(5): 789–91PubMedCrossRef
36.
go back to reference Aronoff SC, Jacobs MR, Labrozzi PH, et al. Synergy of amoxycillin combined with clavulanate and YTR 830 in experimental infections in mice. J Antimicrob Chemother 1986 Aug; 18(2): 271–6PubMedCrossRef Aronoff SC, Jacobs MR, Labrozzi PH, et al. Synergy of amoxycillin combined with clavulanate and YTR 830 in experimental infections in mice. J Antimicrob Chemother 1986 Aug; 18(2): 271–6PubMedCrossRef
37.
go back to reference Gutmann L, Kitzis MD, Yamabe S, et al. Comparative evaluation of a new beta-lactamase inhibitor, YTR 830, combined with different beta-lactam antibiotics against bacteria harboring known beta-lactamases. Antimicrob Agents Chemother 1986 May; 29(5): 955–7PubMedCrossRef Gutmann L, Kitzis MD, Yamabe S, et al. Comparative evaluation of a new beta-lactamase inhibitor, YTR 830, combined with different beta-lactam antibiotics against bacteria harboring known beta-lactamases. Antimicrob Agents Chemother 1986 May; 29(5): 955–7PubMedCrossRef
38.
go back to reference Totir MA, Cha J, Ishiwata A, et al. Why clinically used tazobactam and sulbactam are poor inhibitors of OXA-10 beta-lactamase: Raman crystallographic evidence. Biochemistry 2008 Apr 1; 47(13): 4094–101PubMedCrossRef Totir MA, Cha J, Ishiwata A, et al. Why clinically used tazobactam and sulbactam are poor inhibitors of OXA-10 beta-lactamase: Raman crystallographic evidence. Biochemistry 2008 Apr 1; 47(13): 4094–101PubMedCrossRef
39.
go back to reference Paukner S, Hesse L, Prezelj A, et al. In vitro activity of LK-157, a novel tricyclic carbapenem as broad-spectrum s betas-lactamase inhibitor. Antimicrob Agents Chemother 2009 Feb; 53(2): 505–11PubMedCrossRef Paukner S, Hesse L, Prezelj A, et al. In vitro activity of LK-157, a novel tricyclic carbapenem as broad-spectrum s betas-lactamase inhibitor. Antimicrob Agents Chemother 2009 Feb; 53(2): 505–11PubMedCrossRef
40.
go back to reference Buynak JD, Ghadachanda VR, Vogeti L, et al. Synthesis and evaluation of 3-(carboxymethylidene)- and 3-(carboxymethyl)penicillinates as inhibitors of beta-lactamase. J Org Chem 2005 May 27; 70(11): 4510–3PubMedCrossRef Buynak JD, Ghadachanda VR, Vogeti L, et al. Synthesis and evaluation of 3-(carboxymethylidene)- and 3-(carboxymethyl)penicillinates as inhibitors of beta-lactamase. J Org Chem 2005 May 27; 70(11): 4510–3PubMedCrossRef
41.
go back to reference Buynak JD, Chen H, Vogeti L, et al. Penicillin-derived inhibitors that simultaneously target both metallo- and serine-beta-lactamases. Bioorg Med Chem Lett 2004 Mar 8; 14(5): 1299–304PubMedCrossRef Buynak JD, Chen H, Vogeti L, et al. Penicillin-derived inhibitors that simultaneously target both metallo- and serine-beta-lactamases. Bioorg Med Chem Lett 2004 Mar 8; 14(5): 1299–304PubMedCrossRef
42.
go back to reference Buynak JD, Rao AS, Doppalapudi VR, et al. The synthesis and evaluation of 6-alkylidene-2’beta-substituted penam sulfones as beta-lactamase inhibitors. Bioorg Med Chem Lett 1999 Jul 19; 9(14): 1997–2002PubMedCrossRef Buynak JD, Rao AS, Doppalapudi VR, et al. The synthesis and evaluation of 6-alkylidene-2’beta-substituted penam sulfones as beta-lactamase inhibitors. Bioorg Med Chem Lett 1999 Jul 19; 9(14): 1997–2002PubMedCrossRef
43.
go back to reference Coleman K, Griffin DRJ, Page JWJ, et al. In vitro evaluation of BRL 42715, a novel beta-lactamase inhibitor. Antimicrob Agents Chemother 1989; 33: 1580–7PubMedCrossRef Coleman K, Griffin DRJ, Page JWJ, et al. In vitro evaluation of BRL 42715, a novel beta-lactamase inhibitor. Antimicrob Agents Chemother 1989; 33: 1580–7PubMedCrossRef
44.
go back to reference Nukaga M, Abe T, Venkatesan AM, et al. Inhibition of class A and class C beta-lactamases by penems: crystal-lographic structures of a novel 1,4-thiazepine intermediate. Biochemistry 2003 Nov 18; 42(45): 13152–9PubMedCrossRef Nukaga M, Abe T, Venkatesan AM, et al. Inhibition of class A and class C beta-lactamases by penems: crystal-lographic structures of a novel 1,4-thiazepine intermediate. Biochemistry 2003 Nov 18; 42(45): 13152–9PubMedCrossRef
45.
go back to reference Venkatesan AM, Agarwal A, Abe T, et al. Structure-activity relationship of 6-methylidene penems bearing 6,5 bicyclic heterocycles as broad-spectrum beta-lactamase inhibitors: evidence for 1,4-thiazepine intermediates with C7 R stereochemistry by computational methods. J Med Chem 2006 Jul 27; 49(15): 4623–37PubMedCrossRef Venkatesan AM, Agarwal A, Abe T, et al. Structure-activity relationship of 6-methylidene penems bearing 6,5 bicyclic heterocycles as broad-spectrum beta-lactamase inhibitors: evidence for 1,4-thiazepine intermediates with C7 R stereochemistry by computational methods. J Med Chem 2006 Jul 27; 49(15): 4623–37PubMedCrossRef
46.
go back to reference Weiss WJ, Petersen PJ, Murphy TM, et al. In vitro and in vivo activities of novel 6-methylidene penems as beta-lactamase inhibitors. Antimicrob Agents Chemother 2004 Dec; 48(12): 4589–96PubMedCrossRef Weiss WJ, Petersen PJ, Murphy TM, et al. In vitro and in vivo activities of novel 6-methylidene penems as beta-lactamase inhibitors. Antimicrob Agents Chemother 2004 Dec; 48(12): 4589–96PubMedCrossRef
47.
go back to reference Venkatesan AM, Agarwal A, Abe T, et al. 5,5,6-Fused tricycles bearing imidazole and pyrazole 6-methylidene penems as broad-spectrum inhibitors of beta-lactamases. Bioorg Med Chem 2008 Feb 15; 16(4): 1890–902PubMedCrossRef Venkatesan AM, Agarwal A, Abe T, et al. 5,5,6-Fused tricycles bearing imidazole and pyrazole 6-methylidene penems as broad-spectrum inhibitors of beta-lactamases. Bioorg Med Chem 2008 Feb 15; 16(4): 1890–902PubMedCrossRef
48.
go back to reference Jamieson CE, Lambert PA, Simpson IN. In vitro and in vivo activities of AM-112, a novel oxapenem. Antimicrob Agents Chemother 2003 May; 47(5): 1652–7PubMedCrossRef Jamieson CE, Lambert PA, Simpson IN. In vitro and in vivo activities of AM-112, a novel oxapenem. Antimicrob Agents Chemother 2003 May; 47(5): 1652–7PubMedCrossRef
49.
go back to reference Nishida K, Kunugita C, Uji T, et al. In vitro and in vivo activities of Syn2190, a novel beta-lactamase inhibitor. Antimicrob Agents Chemother 1999 Aug; 43(8): 1895–900PubMed Nishida K, Kunugita C, Uji T, et al. In vitro and in vivo activities of Syn2190, a novel beta-lactamase inhibitor. Antimicrob Agents Chemother 1999 Aug; 43(8): 1895–900PubMed
50.
go back to reference Grant EB, Guiadeen D, Baum EZ, et al. The synthesis and SAR of rhodanines as novel class C beta-lactamase inhibitors. Bioorg Med Chem Lett 2000 Oct 2; 10(19): 2179–82PubMedCrossRef Grant EB, Guiadeen D, Baum EZ, et al. The synthesis and SAR of rhodanines as novel class C beta-lactamase inhibitors. Bioorg Med Chem Lett 2000 Oct 2; 10(19): 2179–82PubMedCrossRef
51.
go back to reference Bonnefoy A, Dupuis-Hamelin C, Steier V, et al. In vitro activity of AVE1330A, an innovative broad-spectrum non-beta-lactam beta-lactamase inhibitor. J Antimicrob Chemother 2004 Aug; 54(2): 410–7PubMedCrossRef Bonnefoy A, Dupuis-Hamelin C, Steier V, et al. In vitro activity of AVE1330A, an innovative broad-spectrum non-beta-lactam beta-lactamase inhibitor. J Antimicrob Chemother 2004 Aug; 54(2): 410–7PubMedCrossRef
52.
go back to reference Philippon LN, Naas T, Bouthors AT, et al. OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1997 Oct; 41(10): 2188–95PubMed Philippon LN, Naas T, Bouthors AT, et al. OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa. Antimicrob Agents Chemother 1997 Oct; 41(10): 2188–95PubMed
53.
go back to reference Akova M, Yang YJ, Livermore DM. Interactions of tazobactam and clavulanate with inducibly-expressed and constitutively-expressed class-I beta-lactamases. J Antimicrob Chemother 1990; 25(2): 199–208PubMedCrossRef Akova M, Yang YJ, Livermore DM. Interactions of tazobactam and clavulanate with inducibly-expressed and constitutively-expressed class-I beta-lactamases. J Antimicrob Chemother 1990; 25(2): 199–208PubMedCrossRef
54.
go back to reference Prosperi-Meys C, Llabres G, de Seny D, et al. Interaction between class B beta-lactamases and suicide substrates of active-site serine beta-lactamases. FEBS Lett 1999 Jan 25; 443(2): 109–11PubMedCrossRef Prosperi-Meys C, Llabres G, de Seny D, et al. Interaction between class B beta-lactamases and suicide substrates of active-site serine beta-lactamases. FEBS Lett 1999 Jan 25; 443(2): 109–11PubMedCrossRef
55.
go back to reference Strateva T, Yordanov D. Pseudomonas aeruginosa: a phenomenon of bacterial resistance. J Med Microbiol 2009 Sep; 58 (Pt 9): 1133–48PubMedCrossRef Strateva T, Yordanov D. Pseudomonas aeruginosa: a phenomenon of bacterial resistance. J Med Microbiol 2009 Sep; 58 (Pt 9): 1133–48PubMedCrossRef
56.
go back to reference Martinez JL, Blazquez J, Vicente MF, et al. Influence of gene dosing on antibiotic resistance mediated by inactivating enzymes. J Chemother 1989 Jul; 1 (4 Suppl.): 265–6PubMedCrossRef Martinez JL, Blazquez J, Vicente MF, et al. Influence of gene dosing on antibiotic resistance mediated by inactivating enzymes. J Chemother 1989 Jul; 1 (4 Suppl.): 265–6PubMedCrossRef
57.
go back to reference Reguera JA, Baquero F, Perez-Diaz JC, et al. Factors determining resistance to beta-lactam combined with beta-lactamase inhibitors in Escherichia coli. J Antimicrob Chemother 1991 May; 27(5): 569–75PubMedCrossRef Reguera JA, Baquero F, Perez-Diaz JC, et al. Factors determining resistance to beta-lactam combined with beta-lactamase inhibitors in Escherichia coli. J Antimicrob Chemother 1991 May; 27(5): 569–75PubMedCrossRef
58.
go back to reference Xiang X, Shannon K, French G. Mechanism and stability of hyperproduction of the extended-spectrum beta-lactamase SHV-5 in Klebsiella pneumoniae. J Antimicrob Chemother 1997 Oct; 40(4): 525–32PubMedCrossRef Xiang X, Shannon K, French G. Mechanism and stability of hyperproduction of the extended-spectrum beta-lactamase SHV-5 in Klebsiella pneumoniae. J Antimicrob Chemother 1997 Oct; 40(4): 525–32PubMedCrossRef
59.
go back to reference Rice LB, Carias LL, Hujer AM, et al. High-level expression of chromosomally encoded SHV-1 beta-lactamase and an outer membrane protein change confer resistance to ceftazidime and piperacillin-tazobactam in a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother 2000 Feb; 44(2): 362–7PubMedCrossRef Rice LB, Carias LL, Hujer AM, et al. High-level expression of chromosomally encoded SHV-1 beta-lactamase and an outer membrane protein change confer resistance to ceftazidime and piperacillin-tazobactam in a clinical isolate of Klebsiella pneumoniae. Antimicrob Agents Chemother 2000 Feb; 44(2): 362–7PubMedCrossRef
60.
go back to reference Li XZ, Zhang L, Srikumar R, et al. Beta-lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998 Feb; 42(2): 399–403PubMed Li XZ, Zhang L, Srikumar R, et al. Beta-lactamase inhibitors are substrates for the multidrug efflux pumps of Pseudomonas aeruginosa. Antimicrob Agents Chemother 1998 Feb; 42(2): 399–403PubMed
61.
go back to reference Nakae T, Saito K, Nakajima A. Effect of sulbactam on anti-pseudomonal activity of beta-lactam antibiotics in cells producing various levels of the MexAB-OprM efflux pump and beta-lactamase. Microbiol Immunol 2000; 44(12): 997–1001PubMed Nakae T, Saito K, Nakajima A. Effect of sulbactam on anti-pseudomonal activity of beta-lactam antibiotics in cells producing various levels of the MexAB-OprM efflux pump and beta-lactamase. Microbiol Immunol 2000; 44(12): 997–1001PubMed
62.
go back to reference Livermore DM, Akova M, Wu PJ, et al. Clavulanate and beta-lactamase induction. J Antimicrob Chemother 1989 Nov; 24 Suppl. B: 23–33PubMedCrossRef Livermore DM, Akova M, Wu PJ, et al. Clavulanate and beta-lactamase induction. J Antimicrob Chemother 1989 Nov; 24 Suppl. B: 23–33PubMedCrossRef
63.
go back to reference Lister PD, Gardner VM, Sanders CC. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob Agents Chemother 1999 Apr; 43(4): 882–9PubMed Lister PD, Gardner VM, Sanders CC. Clavulanate induces expression of the Pseudomonas aeruginosa AmpC cephalosporinase at physiologically relevant concentrations and antagonizes the antibacterial activity of ticarcillin. Antimicrob Agents Chemother 1999 Apr; 43(4): 882–9PubMed
64.
go back to reference Henquell C, Chanal C, Sirot D, et al. Molecular characterization of nine different types of mutants among 107 inhibitor-resistant TEM beta-lactamases from clinical isolates of Escherichia coli. Antimicrob Agents Chemother 1995 Feb; 39(2): 427–30PubMedCrossRef Henquell C, Chanal C, Sirot D, et al. Molecular characterization of nine different types of mutants among 107 inhibitor-resistant TEM beta-lactamases from clinical isolates of Escherichia coli. Antimicrob Agents Chemother 1995 Feb; 39(2): 427–30PubMedCrossRef
65.
go back to reference Canica MM, Lu CY, Krishnamoorthy R, et al. Molecular diversity and evolution of blaTEM genes encoding beta-lactamases resistant to clavulanic acid in clinical E. coli. J Mol Evol 1997 Jan; 44(1): 57–65PubMedCrossRef Canica MM, Lu CY, Krishnamoorthy R, et al. Molecular diversity and evolution of blaTEM genes encoding beta-lactamases resistant to clavulanic acid in clinical E. coli. J Mol Evol 1997 Jan; 44(1): 57–65PubMedCrossRef
66.
go back to reference Knox JR. Extended-spectrum and inhibitor-resistant TEM-type beta-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob Agents Chemother 1995 Dec; 39(12): 2593–601PubMedCrossRef Knox JR. Extended-spectrum and inhibitor-resistant TEM-type beta-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob Agents Chemother 1995 Dec; 39(12): 2593–601PubMedCrossRef
67.
go back to reference Lahey Clinic. β-Lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes [online]. Available from URL: http://www.lahey.org/Studies/ [Accessed 2010 Feb 10] Lahey Clinic. β-Lactamase classification and amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant enzymes [online]. Available from URL: http://​www.​lahey.​org/​Studies/​ [Accessed 2010 Feb 10]
68.
go back to reference Chaibi EB, Sirot D, Paul G, et al. Inhibitor-resistant TEM beta-lactamases: phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother 1999 Apr; 43(4): 447–58PubMedCrossRef Chaibi EB, Sirot D, Paul G, et al. Inhibitor-resistant TEM beta-lactamases: phenotypic, genetic and biochemical characteristics. J Antimicrob Chemother 1999 Apr; 43(4): 447–58PubMedCrossRef
69.
go back to reference Blazquez J, Baquero MR, Canton R, et al. Characterization of a new TEM-type beta-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob Agents Chemother 1993 Oct; 37(10): 2059–63PubMedCrossRef Blazquez J, Baquero MR, Canton R, et al. Characterization of a new TEM-type beta-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob Agents Chemother 1993 Oct; 37(10): 2059–63PubMedCrossRef
70.
go back to reference Wong JS, Mohd Azri ZA, Subramaniam G, et al. Beta-lactam resistance phenotype determination in Escherichia coli isolates from University Malaya Medical Centre. Malays J Pathol 2003 Dec; 25(2): 113–9PubMed Wong JS, Mohd Azri ZA, Subramaniam G, et al. Beta-lactam resistance phenotype determination in Escherichia coli isolates from University Malaya Medical Centre. Malays J Pathol 2003 Dec; 25(2): 113–9PubMed
71.
go back to reference Kaye KS, Gold HS, Schwaber MJ, et al. Variety of beta-lactamases produced by amoxicillin-clavulanate-resistant Escherichia coli isolated in the northeastern United States. Antimicrob Agents Chemother 2004 May; 48(5): 1520–5PubMedCrossRef Kaye KS, Gold HS, Schwaber MJ, et al. Variety of beta-lactamases produced by amoxicillin-clavulanate-resistant Escherichia coli isolated in the northeastern United States. Antimicrob Agents Chemother 2004 May; 48(5): 1520–5PubMedCrossRef
72.
go back to reference Bradford PA, Bratu S, Urban C, et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis 2004 Jul 1; 39(1): 55–60PubMedCrossRef Bradford PA, Bratu S, Urban C, et al. Emergence of carbapenem-resistant Klebsiella species possessing the class A carbapenem-hydrolyzing KPC-2 and inhibitor-resistant TEM-30 beta-lactamases in New York City. Clin Infect Dis 2004 Jul 1; 39(1): 55–60PubMedCrossRef
73.
go back to reference Sirot D, Recule C, Chaibi EB, et al. A complex mutant of TEM-1 beta-lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate. Antimicrob Agents Chemother 1997 Jun; 41(6): 1322–5PubMed Sirot D, Recule C, Chaibi EB, et al. A complex mutant of TEM-1 beta-lactamase with mutations encountered in both IRT-4 and extended-spectrum TEM-15, produced by an Escherichia coli clinical isolate. Antimicrob Agents Chemother 1997 Jun; 41(6): 1322–5PubMed
74.
go back to reference Canton R, Morosini MI, de la Maza OM, et al. IRT and CMT beta-lactamases and inhibitor resistance. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 53–62PubMedCrossRef Canton R, Morosini MI, de la Maza OM, et al. IRT and CMT beta-lactamases and inhibitor resistance. Clin Microbiol Infect 2008 Jan; 14 Suppl. 1: 53–62PubMedCrossRef
75.
go back to reference Ishii Y, Galleni M, Ma L, et al. Biochemical characterisation of the CTX-M-14 beta-lactamase. Int J Antimicrob Agents 2007 Feb; 29(2): 159–64PubMedCrossRef Ishii Y, Galleni M, Ma L, et al. Biochemical characterisation of the CTX-M-14 beta-lactamase. Int J Antimicrob Agents 2007 Feb; 29(2): 159–64PubMedCrossRef
76.
go back to reference Ibuka AS, Ishii Y, Galleni M, et al. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Biochemistry 2003 Sep 16; 42(36): 10634–43PubMedCrossRef Ibuka AS, Ishii Y, Galleni M, et al. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Biochemistry 2003 Sep 16; 42(36): 10634–43PubMedCrossRef
77.
go back to reference Knott-Hunziker V, Orlek BS, Sammes PG, et al. 6 beta-Bromopenicillanic acid inactivates beta-lactamase I. Biochem J 1979 Jan 1; 177(1): 365–7PubMed Knott-Hunziker V, Orlek BS, Sammes PG, et al. 6 beta-Bromopenicillanic acid inactivates beta-lactamase I. Biochem J 1979 Jan 1; 177(1): 365–7PubMed
78.
go back to reference Knott-Hunziker V, Waley SG, Orlek BS, et al. Penicillinase active sites: labelling of serine-44 in beta-lactamase I by 6beta-bromopenicillanic acid. FEBS Lett 1979 Mar 1; 99(1): 59–61PubMedCrossRef Knott-Hunziker V, Waley SG, Orlek BS, et al. Penicillinase active sites: labelling of serine-44 in beta-lactamase I by 6beta-bromopenicillanic acid. FEBS Lett 1979 Mar 1; 99(1): 59–61PubMedCrossRef
79.
go back to reference Pratt RF, Loosemore MJ. 6-beta-Bromopenicillanic acid, a potent beta-lactamase inhibitor. Proc Natl Acad Sci U S A 1978 Sep; 75(9): 4145–9PubMedCrossRef Pratt RF, Loosemore MJ. 6-beta-Bromopenicillanic acid, a potent beta-lactamase inhibitor. Proc Natl Acad Sci U S A 1978 Sep; 75(9): 4145–9PubMedCrossRef
80.
go back to reference Frere JM, Kelly JA, Klein D, et al. Delta 2- and delta 3-cephalosporins, penicillinate and 6-unsubstituted penems: intrinsic reactivity and interaction with beta-lactamases and D-alanyl-D-alanine-cleaving serine peptidases. Biochem J 1982 Apr 1; 203(1): 223–34PubMed Frere JM, Kelly JA, Klein D, et al. Delta 2- and delta 3-cephalosporins, penicillinate and 6-unsubstituted penems: intrinsic reactivity and interaction with beta-lactamases and D-alanyl-D-alanine-cleaving serine peptidases. Biochem J 1982 Apr 1; 203(1): 223–34PubMed
81.
go back to reference Neu HC. β-Lactamase inhibitory activity of iodopenicillanate and bromopenicillanate. Antimicrob Agents Chemother 1983 Jan; 23(1): 63–6PubMedCrossRef Neu HC. β-Lactamase inhibitory activity of iodopenicillanate and bromopenicillanate. Antimicrob Agents Chemother 1983 Jan; 23(1): 63–6PubMedCrossRef
82.
go back to reference Sauvage E, Zervosen A, Dive G, et al. Structural basis of the inhibition of class A beta-lactamases and penicillin-binding proteins by 6-beta-iodopenicillanate. J Am Chem Soc 2009 Oct 28; 131(42): 15262–9PubMedCrossRef Sauvage E, Zervosen A, Dive G, et al. Structural basis of the inhibition of class A beta-lactamases and penicillin-binding proteins by 6-beta-iodopenicillanate. J Am Chem Soc 2009 Oct 28; 131(42): 15262–9PubMedCrossRef
83.
go back to reference Cierpucha M, Panfil I, Danh TT, et al. Synthesis of 3-Substituted-clavams: antifungal properties, DD-peptidase and beta-lactamase inhibition. J Antibiot (Tokyo) 2007 Oct; 60(10): 622–32CrossRef Cierpucha M, Panfil I, Danh TT, et al. Synthesis of 3-Substituted-clavams: antifungal properties, DD-peptidase and beta-lactamase inhibition. J Antibiot (Tokyo) 2007 Oct; 60(10): 622–32CrossRef
84.
go back to reference Knight GC, Waley SG. Inhibition of class C beta-lactamases by (1′R,6R)-6-(1′-hydroxy)benzylpenicillanic acid SS-dioxide. Biochem J 1985 Jan 15; 225(2): 435–9PubMed Knight GC, Waley SG. Inhibition of class C beta-lactamases by (1′R,6R)-6-(1′-hydroxy)benzylpenicillanic acid SS-dioxide. Biochem J 1985 Jan 15; 225(2): 435–9PubMed
85.
go back to reference Jones RN, Johnson DM. Comparative in vitro activity of apalcillin alone and combined with Ro 48–1220, a novel penam beta-lactamase inhibitor. Clin Microbiol Infect 1995 Feb; 1(2): 86–100PubMedCrossRef Jones RN, Johnson DM. Comparative in vitro activity of apalcillin alone and combined with Ro 48–1220, a novel penam beta-lactamase inhibitor. Clin Microbiol Infect 1995 Feb; 1(2): 86–100PubMedCrossRef
86.
go back to reference Richter HG, Angehrn P, Hubschwerlen C, et al. Design, synthesis, and evaluation of 2 beta-alkenyl penam sulfone acids as inhibitors of beta-lactamases. J Med Chem 1996 Sep 13; 39(19): 3712–22PubMedCrossRef Richter HG, Angehrn P, Hubschwerlen C, et al. Design, synthesis, and evaluation of 2 beta-alkenyl penam sulfone acids as inhibitors of beta-lactamases. J Med Chem 1996 Sep 13; 39(19): 3712–22PubMedCrossRef
87.
go back to reference Tzouvelekis LS, Gazouli M, Prinarakis EE, et al. Comparative evaluation of the inhibitory activities of the novel penicillanic acid sulfone Ro 48–1220 against beta-lactamases that belong to groups 1, 2b, and 2be. Antimicrob Agents Chemother 1997 Feb; 41(2): 475–7PubMed Tzouvelekis LS, Gazouli M, Prinarakis EE, et al. Comparative evaluation of the inhibitory activities of the novel penicillanic acid sulfone Ro 48–1220 against beta-lactamases that belong to groups 1, 2b, and 2be. Antimicrob Agents Chemother 1997 Feb; 41(2): 475–7PubMed
88.
go back to reference Bitha P, Li Z, Francisco GD, et al. 6-(1-Hydroxyalkyl) penam sulfone derivatives as inhibitors of class A and class C beta-lactamases I. Bioorg Med Chem Lett 1999 Apr 5; 9(7): 991–6PubMedCrossRef Bitha P, Li Z, Francisco GD, et al. 6-(1-Hydroxyalkyl) penam sulfone derivatives as inhibitors of class A and class C beta-lactamases I. Bioorg Med Chem Lett 1999 Apr 5; 9(7): 991–6PubMedCrossRef
89.
go back to reference Beharry Z, Chen H, Gadhachanda VR, et al. Evaluation of penicillin-based inhibitors of the class A and B beta-lactamases from Bacillus anthracis. Biochem Biophys Res Commun 2004 Jan 16; 313(3): 541–5PubMedCrossRef Beharry Z, Chen H, Gadhachanda VR, et al. Evaluation of penicillin-based inhibitors of the class A and B beta-lactamases from Bacillus anthracis. Biochem Biophys Res Commun 2004 Jan 16; 313(3): 541–5PubMedCrossRef
90.
go back to reference Crichlow GV, Nukaga M, Doppalapudi VR, et al. Inhibition of class C beta-lactamases: structure of a reaction intermediate with a cephem sulfone. Biochemistry 2001 May 29; 40(21): 6233–9PubMedCrossRef Crichlow GV, Nukaga M, Doppalapudi VR, et al. Inhibition of class C beta-lactamases: structure of a reaction intermediate with a cephem sulfone. Biochemistry 2001 May 29; 40(21): 6233–9PubMedCrossRef
91.
go back to reference Buynak JD, Doppalapudi VR, Rao AS, et al. The synthesis and evaluation of 2-substituted-7-(alkylidene)cephalosporin sulfones as beta-lactamase inhibitors. Bioorg Med Chem Lett 2000 May 1; 10(9): 847–51PubMedCrossRef Buynak JD, Doppalapudi VR, Rao AS, et al. The synthesis and evaluation of 2-substituted-7-(alkylidene)cephalosporin sulfones as beta-lactamase inhibitors. Bioorg Med Chem Lett 2000 May 1; 10(9): 847–51PubMedCrossRef
92.
go back to reference Buynak JD, Doppalapudi VR, Adam G. The synthesis and evaluation of 3-substituted-7-(alkylidene)cephalosporin sulfones as beta-lactamase inhibitors. Bioorg Med Chem Lett 2000 May 1; 10(9): 853–7PubMedCrossRef Buynak JD, Doppalapudi VR, Adam G. The synthesis and evaluation of 3-substituted-7-(alkylidene)cephalosporin sulfones as beta-lactamase inhibitors. Bioorg Med Chem Lett 2000 May 1; 10(9): 853–7PubMedCrossRef
93.
go back to reference Padayatti PS, Sheri A, Totir MA, et al. Rational design of a beta-lactamase inhibitor achieved via stabilization of the trans-enamine intermediate: 1.28 A crystal structure of wt SHV-1 complex with a penam sulfone. J Am Chem Soc 2006 Oct 11; 128(40): 13235–42PubMedCrossRef Padayatti PS, Sheri A, Totir MA, et al. Rational design of a beta-lactamase inhibitor achieved via stabilization of the trans-enamine intermediate: 1.28 A crystal structure of wt SHV-1 complex with a penam sulfone. J Am Chem Soc 2006 Oct 11; 128(40): 13235–42PubMedCrossRef
94.
go back to reference Helfand MS, Taracila MA, Totir MA, et al. Raman crystallographic studies of the intermediates formed by Ser130Gly SHV, a beta-lactamase that confers resistance to clinical inhibitors. Biochemistry 2007 Jul 24; 46(29): 8689–99PubMedCrossRef Helfand MS, Taracila MA, Totir MA, et al. Raman crystallographic studies of the intermediates formed by Ser130Gly SHV, a beta-lactamase that confers resistance to clinical inhibitors. Biochemistry 2007 Jul 24; 46(29): 8689–99PubMedCrossRef
95.
go back to reference Kalp M, Sheri A, Buynak JD, et al. Efficient inhibition of class A and class D beta-lactamases by Michaelis complexes. J Biol Chem 2007 Jul 27; 282(30): 21588–91PubMedCrossRef Kalp M, Sheri A, Buynak JD, et al. Efficient inhibition of class A and class D beta-lactamases by Michaelis complexes. J Biol Chem 2007 Jul 27; 282(30): 21588–91PubMedCrossRef
96.
go back to reference Pattanaik P, Bethel CR, Hujer AM, et al. Strategic design of an effective beta-lactamase inhibitor: LN-1-255, a 6-alkylidene-2′-substituted penicillin sulfone. J Biol Chem 2009 Jan 9; 284(2): 945–53PubMedCrossRef Pattanaik P, Bethel CR, Hujer AM, et al. Strategic design of an effective beta-lactamase inhibitor: LN-1-255, a 6-alkylidene-2′-substituted penicillin sulfone. J Biol Chem 2009 Jan 9; 284(2): 945–53PubMedCrossRef
97.
go back to reference Bethel CR, Distler AM, Ruszczycky MW, et al. Inhibition of OXA-1 beta-lactamase by penems. Antimicrob Agents Chemother 2008 Sep; 52(9): 3135–43PubMedCrossRef Bethel CR, Distler AM, Ruszczycky MW, et al. Inhibition of OXA-1 beta-lactamase by penems. Antimicrob Agents Chemother 2008 Sep; 52(9): 3135–43PubMedCrossRef
98.
go back to reference Perumal SK, Adediran SA, Pratt RF. Beta-ketophosphonates as beta-lactamase inhibitors: intramolecular cooperativity between the hydrophobic subsites of a class D beta-lactamase. Bioorg Med Chem 2008 Jul 15; 16(14): 6987–94PubMedCrossRef Perumal SK, Adediran SA, Pratt RF. Beta-ketophosphonates as beta-lactamase inhibitors: intramolecular cooperativity between the hydrophobic subsites of a class D beta-lactamase. Bioorg Med Chem 2008 Jul 15; 16(14): 6987–94PubMedCrossRef
99.
go back to reference Morandi S, Morandi F, Caselli E, et al. Structure-based optimization of cephalothin-analogue boronic acids as beta-lactamase inhibitors. Bioorg Med Chem 2008 Feb 1; 16(3): 1195–205PubMedCrossRef Morandi S, Morandi F, Caselli E, et al. Structure-based optimization of cephalothin-analogue boronic acids as beta-lactamase inhibitors. Bioorg Med Chem 2008 Feb 1; 16(3): 1195–205PubMedCrossRef
100.
go back to reference Chen Y, Shoichet B, Bonnet R. Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases. J Am Chem Soc 2005 Apr 20; 127(15): 5423–34PubMedCrossRef Chen Y, Shoichet B, Bonnet R. Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases. J Am Chem Soc 2005 Apr 20; 127(15): 5423–34PubMedCrossRef
101.
go back to reference Kumar S, Pearson AL, Pratt RF. Design, synthesis, and evaluation of alpha-ketoheterocycles as class C beta-lactamase inhibitors. Bioorg Med Chem 2001 Aug; 9(8): 2035–44PubMedCrossRef Kumar S, Pearson AL, Pratt RF. Design, synthesis, and evaluation of alpha-ketoheterocycles as class C beta-lactamase inhibitors. Bioorg Med Chem 2001 Aug; 9(8): 2035–44PubMedCrossRef
102.
go back to reference Powers RA, Morandi F, Shoichet BK. Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase. Structure 2002 Jul; 10(7): 1013–23PubMedCrossRef Powers RA, Morandi F, Shoichet BK. Structure-based discovery of a novel, noncovalent inhibitor of AmpC beta-lactamase. Structure 2002 Jul; 10(7): 1013–23PubMedCrossRef
103.
go back to reference Babaoglu K, Simeonov A, Irwin JJ, et al. Comprehensive mechanistic analysis of hits from high-throughput and docking screens against beta-lactamase. J Med Chem 2008 Apr 24; 51(8): 2502–11PubMedCrossRef Babaoglu K, Simeonov A, Irwin JJ, et al. Comprehensive mechanistic analysis of hits from high-throughput and docking screens against beta-lactamase. J Med Chem 2008 Apr 24; 51(8): 2502–11PubMedCrossRef
104.
go back to reference Nagano R, Adachi Y, Imamura H, et al. Carbapenem derivatives as potential inhibitors of various beta-lactamases, including class B metallo-beta-lactamases. Antimicrob Agents Chemother 1999 Oct; 43(10): 2497–503PubMed Nagano R, Adachi Y, Imamura H, et al. Carbapenem derivatives as potential inhibitors of various beta-lactamases, including class B metallo-beta-lactamases. Antimicrob Agents Chemother 1999 Oct; 43(10): 2497–503PubMed
105.
go back to reference Strynadka NC, Jensen SE, Johns K, et al. Structural and kinetic characterization of a beta-lactamase-inhibitor protein. Nature 1994 Apr 14; 368(6472): 657–60PubMedCrossRef Strynadka NC, Jensen SE, Johns K, et al. Structural and kinetic characterization of a beta-lactamase-inhibitor protein. Nature 1994 Apr 14; 368(6472): 657–60PubMedCrossRef
106.
go back to reference Huang W, Beharry Z, Zhang Z, et al. A broad-spectrum peptide inhibitor of beta-lactamase identified using phage display and peptide arrays. Protein Eng 2003 Nov; 16(11): 853–60PubMedCrossRef Huang W, Beharry Z, Zhang Z, et al. A broad-spectrum peptide inhibitor of beta-lactamase identified using phage display and peptide arrays. Protein Eng 2003 Nov; 16(11): 853–60PubMedCrossRef
107.
go back to reference Matagne A, Ledent P, Monnaie D, et al. Kinetic study of interaction between BRL 42715, beta-lactamases, and D-alanyl-D-alanine peptidases. Antimicrob Agents Chemother 1995 Jan; 39(1): 227–31PubMedCrossRef Matagne A, Ledent P, Monnaie D, et al. Kinetic study of interaction between BRL 42715, beta-lactamases, and D-alanyl-D-alanine peptidases. Antimicrob Agents Chemother 1995 Jan; 39(1): 227–31PubMedCrossRef
108.
go back to reference Coleman K, Griffin DR, Page JW, et al. In vitro evaluation of BRL 42715, a novel beta-lactamase inhibitor. Antimicrob Agents Chemother 1989 Sep; 33(9): 1580–7PubMedCrossRef Coleman K, Griffin DR, Page JW, et al. In vitro evaluation of BRL 42715, a novel beta-lactamase inhibitor. Antimicrob Agents Chemother 1989 Sep; 33(9): 1580–7PubMedCrossRef
109.
go back to reference Phillips OA, Czajkowski DP, Spevak P, et al. SYN-1012: a new beta-lactamase inhibitor of penem skeleton. J Antibiot (Tokyo) 1997 Apr; 50(4): 350–6CrossRef Phillips OA, Czajkowski DP, Spevak P, et al. SYN-1012: a new beta-lactamase inhibitor of penem skeleton. J Antibiot (Tokyo) 1997 Apr; 50(4): 350–6CrossRef
110.
go back to reference Venkatesan AM, Agarwal A, Abe T, et al. Novel imidazole substituted 6-methylidene-penems as broad-spectrum beta-lactamase inhibitors. Bioorg Med Chem 2004 Nov 15; 12(22): 5807–17PubMedCrossRef Venkatesan AM, Agarwal A, Abe T, et al. Novel imidazole substituted 6-methylidene-penems as broad-spectrum beta-lactamase inhibitors. Bioorg Med Chem 2004 Nov 15; 12(22): 5807–17PubMedCrossRef
111.
go back to reference Venkatesan AM, Gu Y, Dos Santos O, et al. Structureactivity relationship of 6-methylidene penems bearing tricyclic heterocycles as broad-spectrum beta-lactamase inhibitors: crystallographic structures show unexpected binding of 1, 4-thiazepine intermediates. J Med Chem 2004 Dec 16; 47(26): 6556–68PubMedCrossRef Venkatesan AM, Gu Y, Dos Santos O, et al. Structureactivity relationship of 6-methylidene penems bearing tricyclic heterocycles as broad-spectrum beta-lactamase inhibitors: crystallographic structures show unexpected binding of 1, 4-thiazepine intermediates. J Med Chem 2004 Dec 16; 47(26): 6556–68PubMedCrossRef
112.
go back to reference Toney JH, Fitzgerald PM, Grover-Sharma N, et al. Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase. Chem Biol 1998 Apr; 5(4): 185–96PubMedCrossRef Toney JH, Fitzgerald PM, Grover-Sharma N, et al. Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase. Chem Biol 1998 Apr; 5(4): 185–96PubMedCrossRef
113.
go back to reference Nauton L, Kahn R, Garau G, et al. Structural insights into the design of inhibitors for the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia. J Mol Biol 2008 Jan 4; 375(1): 257–69PubMedCrossRef Nauton L, Kahn R, Garau G, et al. Structural insights into the design of inhibitors for the L1 metallo-beta-lactamase from Stenotrophomonas maltophilia. J Mol Biol 2008 Jan 4; 375(1): 257–69PubMedCrossRef
114.
go back to reference Concha NO, Janson CA, Rowling P, et al. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 2000 Apr 18; 39(15): 4288–98PubMedCrossRef Concha NO, Janson CA, Rowling P, et al. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 2000 Apr 18; 39(15): 4288–98PubMedCrossRef
115.
go back to reference Toney JH, Hammond GG, Fitzgerald PM, et al. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-beta-lactamase. J Biol Chem 2001 Aug 24; 276(34): 31913–8PubMedCrossRef Toney JH, Hammond GG, Fitzgerald PM, et al. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-beta-lactamase. J Biol Chem 2001 Aug 24; 276(34): 31913–8PubMedCrossRef
116.
go back to reference Olsen L, Jost S, Adolph HW, et al. New leads of metallobeta-lactamase inhibitors from structure-based pharmacophore design. Bioorg Med Chem 2006 Apr 15; 14(8): 2627–35PubMedCrossRef Olsen L, Jost S, Adolph HW, et al. New leads of metallobeta-lactamase inhibitors from structure-based pharmacophore design. Bioorg Med Chem 2006 Apr 15; 14(8): 2627–35PubMedCrossRef
117.
go back to reference Payne DJ, Hueso-Rodriguez JA, Boyd H, et al. Identification of a series of tricyclic natural products as potent broad-spectrum inhibitors of metallo-beta-lactamases. Antimicrob Agents Chemother 2002 Jun; 46(6): 1880–6PubMedCrossRef Payne DJ, Hueso-Rodriguez JA, Boyd H, et al. Identification of a series of tricyclic natural products as potent broad-spectrum inhibitors of metallo-beta-lactamases. Antimicrob Agents Chemother 2002 Jun; 46(6): 1880–6PubMedCrossRef
118.
go back to reference Petersen PJ, Jones CH, Venkatesan AM, et al. Efficacy of piperacillin combined with the Penem s betas -lactamase inhibitor BLI-489 in murine models of systemic infection. Antimicrob Agents Chemother 2009 Apr; 53(4): 1698–700PubMedCrossRef Petersen PJ, Jones CH, Venkatesan AM, et al. Efficacy of piperacillin combined with the Penem s betas -lactamase inhibitor BLI-489 in murine models of systemic infection. Antimicrob Agents Chemother 2009 Apr; 53(4): 1698–700PubMedCrossRef
119.
go back to reference Petersen PJ, Jones CH, Venkatesan AM, et al. Establishment of in vitro susceptibility testing methodologies and comparative activities of piperacillin in combination with the penem beta-lactamase inhibitor BLI-489. Antimicrob Agents Chemother 2009 Feb; 53(2): 370–84PubMedCrossRef Petersen PJ, Jones CH, Venkatesan AM, et al. Establishment of in vitro susceptibility testing methodologies and comparative activities of piperacillin in combination with the penem beta-lactamase inhibitor BLI-489. Antimicrob Agents Chemother 2009 Feb; 53(2): 370–84PubMedCrossRef
120.
go back to reference Jamieson CE, Lambert PA, Simpson IN. In vitro activities of novel oxapenems, alone and in combination with ceftazidime, against gram-positive and gram-negative organisms. Antimicrob Agents Chemother 2003 Aug; 47(8): 2615–8PubMedCrossRef Jamieson CE, Lambert PA, Simpson IN. In vitro activities of novel oxapenems, alone and in combination with ceftazidime, against gram-positive and gram-negative organisms. Antimicrob Agents Chemother 2003 Aug; 47(8): 2615–8PubMedCrossRef
121.
go back to reference Bowker KE, Noel AR, Walsh TR, et al. Pharmacodynamics of ceftazidime plus the serine beta-lactamase inhibitor AM-112 against Escherichia coli containing TEM-1 and CTX-M-1 beta-lactamases. Antimicrob Agents Chemother 2004 Nov; 48(11): 4482–4PubMedCrossRef Bowker KE, Noel AR, Walsh TR, et al. Pharmacodynamics of ceftazidime plus the serine beta-lactamase inhibitor AM-112 against Escherichia coli containing TEM-1 and CTX-M-1 beta-lactamases. Antimicrob Agents Chemother 2004 Nov; 48(11): 4482–4PubMedCrossRef
123.
go back to reference Heinze-Krauss I, Angehrn P, Charnas RL, et al. Structure-based design of beta-lactamase inhibitors. 1. Synthesis and evaluation of bridged monobactams. J Med Chem 1998 Oct 8; 41(21): 3961–71PubMedCrossRef Heinze-Krauss I, Angehrn P, Charnas RL, et al. Structure-based design of beta-lactamase inhibitors. 1. Synthesis and evaluation of bridged monobactams. J Med Chem 1998 Oct 8; 41(21): 3961–71PubMedCrossRef
124.
go back to reference Livermore DM, Chen HY. Potentiation of beta-lactams against Pseudomonas aeruginosa strains by Ro 48-1256, a bridged monobactam inhibitor of AmpC beta-lactamases. J Antimicrob Chemother 1997 Sep; 40(3): 335–43PubMedCrossRef Livermore DM, Chen HY. Potentiation of beta-lactams against Pseudomonas aeruginosa strains by Ro 48-1256, a bridged monobactam inhibitor of AmpC beta-lactamases. J Antimicrob Chemother 1997 Sep; 40(3): 335–43PubMedCrossRef
125.
go back to reference Mourey L, Kotra LP, Bellettini J, et al. Inhibition of the broad spectrum nonmetallocarbapenamase of class A (NMC-A) beta-lactamase from Enterobacter cloacae by monocyclic beta-lactams. J Biol Chem 1999 Sep 3; 274(36): 25260–5PubMedCrossRef Mourey L, Kotra LP, Bellettini J, et al. Inhibition of the broad spectrum nonmetallocarbapenamase of class A (NMC-A) beta-lactamase from Enterobacter cloacae by monocyclic beta-lactams. J Biol Chem 1999 Sep 3; 274(36): 25260–5PubMedCrossRef
126.
go back to reference Bulychev A, O’Brien ME, Massova I, et al. Potent mechanism-based inhibition of the TEM-1 beta-lactamase by novel N-sulfonyloxy beta-lactams. J Am Chem Soc 1995 117: 5938–43CrossRef Bulychev A, O’Brien ME, Massova I, et al. Potent mechanism-based inhibition of the TEM-1 beta-lactamase by novel N-sulfonyloxy beta-lactams. J Am Chem Soc 1995 117: 5938–43CrossRef
127.
go back to reference Netzel TC, Jindani I, Hanson N, et al. The AmpC inhibitor, Syn2190, can be used to reveal extended-spectrum beta-lactamases in Escherichia coli. Diagn Microbiol Infect Dis 2007 Jul; 58(3): 345–8PubMedCrossRef Netzel TC, Jindani I, Hanson N, et al. The AmpC inhibitor, Syn2190, can be used to reveal extended-spectrum beta-lactamases in Escherichia coli. Diagn Microbiol Infect Dis 2007 Jul; 58(3): 345–8PubMedCrossRef
128.
go back to reference Danes C, Navia MM, Ruiz J, et al. Distribution of beta-lactamases in Acinetobacter baumannii clinical isolates and the effect of Syn 2190 (AmpC inhibitor) on the MICs of different beta-lactam antibiotics. J Antimicrob Chemother 2002 Aug; 50(2): 261–4PubMedCrossRef Danes C, Navia MM, Ruiz J, et al. Distribution of beta-lactamases in Acinetobacter baumannii clinical isolates and the effect of Syn 2190 (AmpC inhibitor) on the MICs of different beta-lactam antibiotics. J Antimicrob Chemother 2002 Aug; 50(2): 261–4PubMedCrossRef
129.
go back to reference Babini GS, Livermore DM. Effect of conalbumin on the activity of Syn 2190, a 1, 5 dihydroxy-4-pyridon monobactam inhibitor of AmpC beta-lactamases. J Antimicrob Chemother 2000 Jan; 45(1): 105–9PubMedCrossRef Babini GS, Livermore DM. Effect of conalbumin on the activity of Syn 2190, a 1, 5 dihydroxy-4-pyridon monobactam inhibitor of AmpC beta-lactamases. J Antimicrob Chemother 2000 Jan; 45(1): 105–9PubMedCrossRef
130.
go back to reference Plantan I, Selic L, Mesar T, et al. 4-Substituted trinems as broad spectrum beta-lactamase inhibitors: structure-based design, synthesis, and biological activity. J Med Chem 2007 Aug 23; 50(17): 4113–21PubMedCrossRef Plantan I, Selic L, Mesar T, et al. 4-Substituted trinems as broad spectrum beta-lactamase inhibitors: structure-based design, synthesis, and biological activity. J Med Chem 2007 Aug 23; 50(17): 4113–21PubMedCrossRef
131.
go back to reference Iglicar P, Legen I, Vilfan G, et al. Permeability of a novel beta-lactamase inhibitor LK-157 and its ester prodrugs across rat jejunum in vitro. J Pharm Pharmacol 2009 Sep; 61(9): 1211–8PubMed Iglicar P, Legen I, Vilfan G, et al. Permeability of a novel beta-lactamase inhibitor LK-157 and its ester prodrugs across rat jejunum in vitro. J Pharm Pharmacol 2009 Sep; 61(9): 1211–8PubMed
132.
go back to reference Pratt RF. Inhibition of a class C beta-lactamase by a specific phosphonate monoester. Science 1989 Nov 17; 246(4932): 917–9PubMedCrossRef Pratt RF. Inhibition of a class C beta-lactamase by a specific phosphonate monoester. Science 1989 Nov 17; 246(4932): 917–9PubMedCrossRef
133.
go back to reference Rahil J, Pratt RF. Phosphonate monoester inhibitors of class A beta-lactamases. Biochem J 1991 May 1; 275 (Pt 3): 793–5PubMed Rahil J, Pratt RF. Phosphonate monoester inhibitors of class A beta-lactamases. Biochem J 1991 May 1; 275 (Pt 3): 793–5PubMed
134.
go back to reference Rahil J, Pratt RF. Mechanism of inhibition of the class C beta-lactamase of Enterobacter cloacae P99 by phosphonate monoesters. Biochemistry 1992 Jun 30; 31(25): 5869–78PubMedCrossRef Rahil J, Pratt RF. Mechanism of inhibition of the class C beta-lactamase of Enterobacter cloacae P99 by phosphonate monoesters. Biochemistry 1992 Jun 30; 31(25): 5869–78PubMedCrossRef
135.
go back to reference Lobkovsky E, Billings EM, Moews PC, et al. Crystal-lographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog. Biochemistry 1994 Jun 7; 33(22): 6762–72PubMedCrossRef Lobkovsky E, Billings EM, Moews PC, et al. Crystal-lographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog. Biochemistry 1994 Jun 7; 33(22): 6762–72PubMedCrossRef
136.
go back to reference Kaur K, Lan MJ, Pratt RF. Mechanism of inhibition of the class C beta-lactamase of Enterobacter cloacae P99 by cyclic acyl phosph(on)ates: rescue by return. J Am Chem Soc 2001 Oct 31; 123(43): 10436–43PubMedCrossRef Kaur K, Lan MJ, Pratt RF. Mechanism of inhibition of the class C beta-lactamase of Enterobacter cloacae P99 by cyclic acyl phosph(on)ates: rescue by return. J Am Chem Soc 2001 Oct 31; 123(43): 10436–43PubMedCrossRef
137.
go back to reference Kaur K, Pratt RF. Mechanism of reaction of acyl phosph(on)ates with the beta-lactamase of Enterobacter cloacae P 99. Biochemistry 2001 Apr 17; 40(15): 4610–21PubMedCrossRef Kaur K, Pratt RF. Mechanism of reaction of acyl phosph(on)ates with the beta-lactamase of Enterobacter cloacae P 99. Biochemistry 2001 Apr 17; 40(15): 4610–21PubMedCrossRef
138.
go back to reference Li N, Rahil J, Wright ME, et al. Structure-activity studies of the inhibition of serine beta-lactamases by phosphonate monoesters. Bioorg Med Chem 1997 Sep; 5(9): 1783–8PubMedCrossRef Li N, Rahil J, Wright ME, et al. Structure-activity studies of the inhibition of serine beta-lactamases by phosphonate monoesters. Bioorg Med Chem 1997 Sep; 5(9): 1783–8PubMedCrossRef
139.
go back to reference Kaur K, Adediran SA, Lan MJ, et al. Inhibition of beta-lactamases by monocyclic acyl phosph(on)ates. Biochemistry 2003 Feb 18; 42(6): 1529–36PubMedCrossRef Kaur K, Adediran SA, Lan MJ, et al. Inhibition of beta-lactamases by monocyclic acyl phosph(on)ates. Biochemistry 2003 Feb 18; 42(6): 1529–36PubMedCrossRef
140.
go back to reference Adediran SA, Nukaga M, Baurin S, et al. Inhibition of class D beta-lactamases by acyl phosphates and phosphonates. Antimicrob Agents Chemother 2005 Oct; 49(10): 4410–2PubMedCrossRef Adediran SA, Nukaga M, Baurin S, et al. Inhibition of class D beta-lactamases by acyl phosphates and phosphonates. Antimicrob Agents Chemother 2005 Oct; 49(10): 4410–2PubMedCrossRef
141.
go back to reference Rawn JD, Lienhard GE. The binding of boronic acids to chymotrypsin. Biochemistry 1974 Jul 16; 13(15): 3124–30PubMedCrossRef Rawn JD, Lienhard GE. The binding of boronic acids to chymotrypsin. Biochemistry 1974 Jul 16; 13(15): 3124–30PubMedCrossRef
142.
go back to reference Kiener PA, Waley SG. Reversible inhibitors of penicillinases. Biochem J 1978 Jan 1; 169(1): 197–204PubMed Kiener PA, Waley SG. Reversible inhibitors of penicillinases. Biochem J 1978 Jan 1; 169(1): 197–204PubMed
143.
go back to reference Morandi F, Caselli E, Morandi S, et al. Nanomolar inhibitors of AmpC beta-lactamase. J Am Chem Soc 2003 Jan 22; 125(3): 685–95PubMedCrossRef Morandi F, Caselli E, Morandi S, et al. Nanomolar inhibitors of AmpC beta-lactamase. J Am Chem Soc 2003 Jan 22; 125(3): 685–95PubMedCrossRef
144.
go back to reference Wouters J, Fonze E, Vermeire M, et al. Crystal structure of Enterobacter cloacae 908R class C beta-lactamase bound to iodo-acetamido-phenyl boronic acid, a transition-state analogue. Cell Mol Life Sci 2003 Aug; 60(8): 1764–73PubMedCrossRef Wouters J, Fonze E, Vermeire M, et al. Crystal structure of Enterobacter cloacae 908R class C beta-lactamase bound to iodo-acetamido-phenyl boronic acid, a transition-state analogue. Cell Mol Life Sci 2003 Aug; 60(8): 1764–73PubMedCrossRef
145.
go back to reference Buzzoni V, Blazquez J, Ferrari S, et al. Aza-boronic acids as non-beta-lactam inhibitors of AmpC-beta-lactamase. Bioorg Med Chem Lett 2004 Aug 2; 14(15): 3979–83PubMedCrossRef Buzzoni V, Blazquez J, Ferrari S, et al. Aza-boronic acids as non-beta-lactam inhibitors of AmpC-beta-lactamase. Bioorg Med Chem Lett 2004 Aug 2; 14(15): 3979–83PubMedCrossRef
146.
go back to reference Delmas J, Chen Y, Prati F, et al. Structure and dynamics of CTX-M enzymes reveal insights into substrate accommodation by extended-spectrum beta-lactamases. J Mol Biol 2008 Jan 4; 375(1): 192–201PubMedCrossRef Delmas J, Chen Y, Prati F, et al. Structure and dynamics of CTX-M enzymes reveal insights into substrate accommodation by extended-spectrum beta-lactamases. J Mol Biol 2008 Jan 4; 375(1): 192–201PubMedCrossRef
147.
go back to reference Venturelli A, Tondi D, Cancian L, et al. Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy. J Med Chem 2007 Nov 15; 50(23): 5644–54PubMedCrossRef Venturelli A, Tondi D, Cancian L, et al. Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy. J Med Chem 2007 Nov 15; 50(23): 5644–54PubMedCrossRef
148.
go back to reference Pasteran FG, Otaegui L, Guerriero L, et al. Klebsiella pneumoniae Carbapenemase-2, Buenos Aires, Argentina. Emerg Infect Dis 2008 Jul; 14(7): 1178–80PubMedCrossRef Pasteran FG, Otaegui L, Guerriero L, et al. Klebsiella pneumoniae Carbapenemase-2, Buenos Aires, Argentina. Emerg Infect Dis 2008 Jul; 14(7): 1178–80PubMedCrossRef
149.
go back to reference Doi Y, Potoski BA, Adams-Haduch JM, et al. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type beta-lactamase by use of a boronic acid compound. J Clin Microbiol 2008 Dec; 46(12): 4083–6PubMedCrossRef Doi Y, Potoski BA, Adams-Haduch JM, et al. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type beta-lactamase by use of a boronic acid compound. J Clin Microbiol 2008 Dec; 46(12): 4083–6PubMedCrossRef
150.
go back to reference Tsakris A, Poulou A, Themeli-Digalaki K, et al. Use of boronic acid disk tests to detect extended-spectrum beta-lactamases in clinical isolates of KPC carbapenemase-possessing Enterobacteriaceae. J Clin Microbiol 2009 Nov; 47(11): 3420–6PubMedCrossRef Tsakris A, Poulou A, Themeli-Digalaki K, et al. Use of boronic acid disk tests to detect extended-spectrum beta-lactamases in clinical isolates of KPC carbapenemase-possessing Enterobacteriaceae. J Clin Microbiol 2009 Nov; 47(11): 3420–6PubMedCrossRef
151.
go back to reference Tsakris A, Kristo I, Poulou A, et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol 2009 Feb; 47(2): 362–7PubMedCrossRef Tsakris A, Kristo I, Poulou A, et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol 2009 Feb; 47(2): 362–7PubMedCrossRef
152.
go back to reference Pasteran F, Mendez T, Guerriero L, et al. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol 2009 Jun; 47(6): 1631–9PubMedCrossRef Pasteran F, Mendez T, Guerriero L, et al. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol 2009 Jun; 47(6): 1631–9PubMedCrossRef
153.
go back to reference Adediran SA, Pratt RF. Inhibition of serine beta-lactamases by vanadate-catechol complexes. Biochemistry 2008 Sep 9; 47(36): 9467–74PubMedCrossRef Adediran SA, Pratt RF. Inhibition of serine beta-lactamases by vanadate-catechol complexes. Biochemistry 2008 Sep 9; 47(36): 9467–74PubMedCrossRef
154.
go back to reference Wyrembak PN, Babaoglu K, Pelto RB, et al. O-aryloxycarbonyl hydroxamates: new beta-lactamase inhibitors that cross-link the active site. J Am Chem Soc 2007 Aug 8; 129(31): 9548–9PubMedCrossRef Wyrembak PN, Babaoglu K, Pelto RB, et al. O-aryloxycarbonyl hydroxamates: new beta-lactamase inhibitors that cross-link the active site. J Am Chem Soc 2007 Aug 8; 129(31): 9548–9PubMedCrossRef
155.
go back to reference Pelto RB, Pratt RF. Kinetics and mechanism of inhibition of a serine beta-lactamase by O-aryloxycarbonyl hydroxamates. Biochemistry 2008 Nov 18; 47(46): 12037–46PubMedCrossRef Pelto RB, Pratt RF. Kinetics and mechanism of inhibition of a serine beta-lactamase by O-aryloxycarbonyl hydroxamates. Biochemistry 2008 Nov 18; 47(46): 12037–46PubMedCrossRef
156.
go back to reference Ganta SR, Perumal S, Pagadala SR, et al. Approaches to the simultaneous inactivation of metallo- and serine-beta-lactamases. Bioorg Med Chem Lett 2009 Mar 15; 19(6): 1618–22PubMedCrossRef Ganta SR, Perumal S, Pagadala SR, et al. Approaches to the simultaneous inactivation of metallo- and serine-beta-lactamases. Bioorg Med Chem Lett 2009 Mar 15; 19(6): 1618–22PubMedCrossRef
157.
go back to reference Rudgers GW, Huang W, Palzkill T. Binding properties of a peptide derived from beta-lactamase inhibitory protein. Antimicrob Agents Chemother 2001 Dec; 45(12): 3279–86PubMedCrossRef Rudgers GW, Huang W, Palzkill T. Binding properties of a peptide derived from beta-lactamase inhibitory protein. Antimicrob Agents Chemother 2001 Dec; 45(12): 3279–86PubMedCrossRef
158.
go back to reference Conrath KE, Lauwereys M, Galleni M, et al. Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob Agents Chemother 2001 Oct; 45(10): 2807–12PubMedCrossRef Conrath KE, Lauwereys M, Galleni M, et al. Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae. Antimicrob Agents Chemother 2001 Oct; 45(10): 2807–12PubMedCrossRef
159.
go back to reference Frank R. SPOT-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 1992; 48: 9217–32CrossRef Frank R. SPOT-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 1992; 48: 9217–32CrossRef
160.
go back to reference Coates NJ, Gilpin ML, Gwynn MN, et al. SB-202742, a novel beta-lactamase inhibitor isolated from Spondias mombin. J Nat Prod 1994 May; 57(5): 654–7PubMedCrossRef Coates NJ, Gilpin ML, Gwynn MN, et al. SB-202742, a novel beta-lactamase inhibitor isolated from Spondias mombin. J Nat Prod 1994 May; 57(5): 654–7PubMedCrossRef
161.
go back to reference Gangoue-Pieboji J, Baurin S, Frere JM, et al. Screening of some medicinal plants from Cameroon for beta-lactamase inhibitory activity. Phytother Res 2007 Mar; 21(3): 284–7PubMedCrossRef Gangoue-Pieboji J, Baurin S, Frere JM, et al. Screening of some medicinal plants from Cameroon for beta-lactamase inhibitory activity. Phytother Res 2007 Mar; 21(3): 284–7PubMedCrossRef
162.
go back to reference Vinod NV, Shijina R, Dileep KV, et al. Inhibition of beta-lactamase by 1, 4-naphthalenedione from the plant Holoptelea integrifolia. Appl Biochem Biotechnol. Epub 2009 May 9 Vinod NV, Shijina R, Dileep KV, et al. Inhibition of beta-lactamase by 1, 4-naphthalenedione from the plant Holoptelea integrifolia. Appl Biochem Biotechnol. Epub 2009 May 9
163.
go back to reference Tanizawa K, Santoh K, Kanaoka Y. Diketene analogs as beta-lactamase inhibitor. Chem Pharm Bull (Tokyo) 1989 Mar; 37(3): 824–5CrossRef Tanizawa K, Santoh K, Kanaoka Y. Diketene analogs as beta-lactamase inhibitor. Chem Pharm Bull (Tokyo) 1989 Mar; 37(3): 824–5CrossRef
164.
go back to reference Bush K, Bonner DP, Sykes RB. Izumenolide: a novel beta-lactamase inhibitor produced by Micromonospora. II: biological properties. J Antibiot (Tokyo) 1980 Nov; 33(11): 1262–9CrossRef Bush K, Bonner DP, Sykes RB. Izumenolide: a novel beta-lactamase inhibitor produced by Micromonospora. II: biological properties. J Antibiot (Tokyo) 1980 Nov; 33(11): 1262–9CrossRef
165.
go back to reference Schenkein DP, Pratt RF. Phenylpropynal, a specific, irreversible, non-beta-lactam inhibitor of beta-lactamases. J Biol Chem 1980 Jan 10; 255(1): 45–8PubMed Schenkein DP, Pratt RF. Phenylpropynal, a specific, irreversible, non-beta-lactam inhibitor of beta-lactamases. J Biol Chem 1980 Jan 10; 255(1): 45–8PubMed
166.
go back to reference Tondi D, Morandi F, Bonnet R, et al. Structure-based optimization of a non-beta-lactam lead results in inhibitors that do not up-regulate beta-lactamase expression in cell culture. J Am Chem Soc 2005 Apr 6; 127(13): 4632–9PubMedCrossRef Tondi D, Morandi F, Bonnet R, et al. Structure-based optimization of a non-beta-lactam lead results in inhibitors that do not up-regulate beta-lactamase expression in cell culture. J Am Chem Soc 2005 Apr 6; 127(13): 4632–9PubMedCrossRef
167.
go back to reference Beck J, Vercheval L, Bebrone C, et al. Discovery of novel lipophilic inhibitors of OXA-10 enzyme (class D beta-lactamase) by screening amino analogs and homologs of citrate and isocitrate. Bioorg Med Chem Lett 2009 Jul 1; 19(13): 3593–7PubMedCrossRef Beck J, Vercheval L, Bebrone C, et al. Discovery of novel lipophilic inhibitors of OXA-10 enzyme (class D beta-lactamase) by screening amino analogs and homologs of citrate and isocitrate. Bioorg Med Chem Lett 2009 Jul 1; 19(13): 3593–7PubMedCrossRef
168.
go back to reference Stachyra T, Levasseur P, Pechereau MC, et al. In vitro activity of the s betas -lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother 2009 Aug; 64(2): 326–9PubMedCrossRef Stachyra T, Levasseur P, Pechereau MC, et al. In vitro activity of the s betas -lactamase inhibitor NXL104 against KPC-2 carbapenemase and Enterobacteriaceae expressing KPC carbapenemases. J Antimicrob Chemother 2009 Aug; 64(2): 326–9PubMedCrossRef
169.
go back to reference Livermore DM, Mushtaq S, Warner M, et al. NXL104 combinations versus Enterobacteriaceae with CTX-M extended-spectrum beta-lactamases and carbapenemases. J Antimicrob Chemother 2008 Nov; 62(5): 1053–6PubMedCrossRef Livermore DM, Mushtaq S, Warner M, et al. NXL104 combinations versus Enterobacteriaceae with CTX-M extended-spectrum beta-lactamases and carbapenemases. J Antimicrob Chemother 2008 Nov; 62(5): 1053–6PubMedCrossRef
170.
go back to reference Irwin JJ, Shoichet BK. ZINC: a free database of commercially available compounds for virtual screening. J Chem Inf Model 2005; 45: 177–82PubMedCrossRef Irwin JJ, Shoichet BK. ZINC: a free database of commercially available compounds for virtual screening. J Chem Inf Model 2005; 45: 177–82PubMedCrossRef
171.
go back to reference Teotico DG, Babaoglu K, Rocklin GJ, et al. Docking for fragment inhibitors of AmpC beta-lactamase. Proc Natl Acad Sci U S A 2009 May 5; 106(18): 7455–60PubMedCrossRef Teotico DG, Babaoglu K, Rocklin GJ, et al. Docking for fragment inhibitors of AmpC beta-lactamase. Proc Natl Acad Sci U S A 2009 May 5; 106(18): 7455–60PubMedCrossRef
172.
go back to reference Garau G, Bebrone C, Anne C, et al. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J Mol Biol 2005 Jan 28; 345(4): 785–95PubMedCrossRef Garau G, Bebrone C, Anne C, et al. A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. J Mol Biol 2005 Jan 28; 345(4): 785–95PubMedCrossRef
173.
go back to reference Bounaga S, Galleni M, Laws AP, et al. Cysteinyl peptide inhibitors of Bacillus cereus zinc beta-lactamase. Bioorg Med Chem 2001 Feb; 9(2): 503–10PubMedCrossRef Bounaga S, Galleni M, Laws AP, et al. Cysteinyl peptide inhibitors of Bacillus cereus zinc beta-lactamase. Bioorg Med Chem 2001 Feb; 9(2): 503–10PubMedCrossRef
174.
go back to reference Yamaguchi Y, Jin W, Matsunaga K, et al. Crystallographic investigation of the inhibition mode of a VIM-2 metallobeta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J Med Chem 2007 Dec 27; 50(26): 6647–53PubMedCrossRef Yamaguchi Y, Jin W, Matsunaga K, et al. Crystallographic investigation of the inhibition mode of a VIM-2 metallobeta-lactamase from Pseudomonas aeruginosa by a mercaptocarboxylate inhibitor. J Med Chem 2007 Dec 27; 50(26): 6647–53PubMedCrossRef
175.
go back to reference Mollard C, Moali C, Papamicael C, et al. Thiomandelic acid, a broad spectrum inhibitor of zinc beta-lactamases: kinetic and spectroscopic studies. J Biol Chem 2001 Nov 30; 276(48): 45015–23PubMedCrossRef Mollard C, Moali C, Papamicael C, et al. Thiomandelic acid, a broad spectrum inhibitor of zinc beta-lactamases: kinetic and spectroscopic studies. J Biol Chem 2001 Nov 30; 276(48): 45015–23PubMedCrossRef
176.
go back to reference Lienard BM, Garau G, Horsfall L, et al. Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Org Biomol Chem 2008 Jul 7; 6(13): 2282–94PubMedCrossRef Lienard BM, Garau G, Horsfall L, et al. Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols. Org Biomol Chem 2008 Jul 7; 6(13): 2282–94PubMedCrossRef
177.
go back to reference Horsfall LE, Garau G, Lienard BM, et al. Competitive inhibitors of the CphA metallo-beta-lactamase from Aeromonas hydrophila. Antimicrob Agents Chemother 2007 Jun; 51(6): 2136–42PubMedCrossRef Horsfall LE, Garau G, Lienard BM, et al. Competitive inhibitors of the CphA metallo-beta-lactamase from Aeromonas hydrophila. Antimicrob Agents Chemother 2007 Jun; 51(6): 2136–42PubMedCrossRef
178.
go back to reference Badarau A, Llinas A, Laws AP, et al. Inhibitors of metallobeta-lactamase generated from beta-lactam antibiotics. Biochemistry 2005 Jun 21; 44(24): 8578–89PubMedCrossRef Badarau A, Llinas A, Laws AP, et al. Inhibitors of metallobeta-lactamase generated from beta-lactam antibiotics. Biochemistry 2005 Jun 21; 44(24): 8578–89PubMedCrossRef
179.
go back to reference Minond D, Saldanha SA, Subramaniam P, et al. Inhibitors of VIM-2 by screening pharmacologically active and click-chemistry compound libraries. Bioorg Med Chem 2009 Jul 15; 17(14): 5027–37PubMedCrossRef Minond D, Saldanha SA, Subramaniam P, et al. Inhibitors of VIM-2 by screening pharmacologically active and click-chemistry compound libraries. Bioorg Med Chem 2009 Jul 15; 17(14): 5027–37PubMedCrossRef
180.
go back to reference Lienard BM, Huting R, Lassaux P, et al. Dynamic combinatorial mass spectrometry leads to metallo-beta-lactamase inhibitors. J Med Chem 2008 Feb 14; 51(3): 684–8PubMedCrossRef Lienard BM, Huting R, Lassaux P, et al. Dynamic combinatorial mass spectrometry leads to metallo-beta-lactamase inhibitors. J Med Chem 2008 Feb 14; 51(3): 684–8PubMedCrossRef
181.
go back to reference Moali C, Anne C, Lamotte-Brasseur J, et al. Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis. Chem Biol 2003 Apr; 10(4): 319–29PubMedCrossRef Moali C, Anne C, Lamotte-Brasseur J, et al. Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis. Chem Biol 2003 Apr; 10(4): 319–29PubMedCrossRef
182.
go back to reference Park H, Merz Jr KM. Force field design and molecular dynamics simulations of the carbapenem- and cephamycin-resistant dinuclear zinc metallo-beta-lactamase from Bacteroides fragilis and its complex with a biphenyl tetrazole inhibitor. J Med Chem 2005 Mar 10; 48(5): 1630–7PubMedCrossRef Park H, Merz Jr KM. Force field design and molecular dynamics simulations of the carbapenem- and cephamycin-resistant dinuclear zinc metallo-beta-lactamase from Bacteroides fragilis and its complex with a biphenyl tetrazole inhibitor. J Med Chem 2005 Mar 10; 48(5): 1630–7PubMedCrossRef
183.
go back to reference Scrofani SD, Chung J, Huntley JJ, et al. NMR characterization of the metallo-beta-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: role of an active-site loop. Biochemistry 1999 Nov 2; 38(44): 14507–14PubMedCrossRef Scrofani SD, Chung J, Huntley JJ, et al. NMR characterization of the metallo-beta-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: role of an active-site loop. Biochemistry 1999 Nov 2; 38(44): 14507–14PubMedCrossRef
184.
go back to reference Huntley JJ, Scrofani SD, Osborne MJ, et al. Dynamics of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. Biochemistry 2000 Nov 7; 39(44): 13356–64PubMedCrossRef Huntley JJ, Scrofani SD, Osborne MJ, et al. Dynamics of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. Biochemistry 2000 Nov 7; 39(44): 13356–64PubMedCrossRef
185.
go back to reference Park H, Brothers EN, Merz Jr KM. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. J Am Chem Soc 2005 Mar 30; 127(12): 4232–41PubMedCrossRef Park H, Brothers EN, Merz Jr KM. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis. J Am Chem Soc 2005 Mar 30; 127(12): 4232–41PubMedCrossRef
186.
go back to reference Payne DJ, Du W, Bateson JH. β-Lactamase epidemiology and the utility of established and novel β-lactamase inhibitors. Exp Opin Invest Drugs 2000 Feb; 9(2): 247–61CrossRef Payne DJ, Du W, Bateson JH. β-Lactamase epidemiology and the utility of established and novel β-lactamase inhibitors. Exp Opin Invest Drugs 2000 Feb; 9(2): 247–61CrossRef
187.
go back to reference Sun Q, Law A, Crowder MW, et al. Homo-cysteinyl peptide inhibitors of the L1 metallo-beta-lactamase, and SAR as determined by combinatorial library synthesis. Bioorg Med Chem Lett 2006 Oct 1; 16(19): 5169–75PubMedCrossRef Sun Q, Law A, Crowder MW, et al. Homo-cysteinyl peptide inhibitors of the L1 metallo-beta-lactamase, and SAR as determined by combinatorial library synthesis. Bioorg Med Chem Lett 2006 Oct 1; 16(19): 5169–75PubMedCrossRef
188.
go back to reference Antony J, Piquemal JP, Gresh N. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-beta-lactamase by polarizable molecular mechanics: validation on model binding sites by quantum chemistry. J Comput Chem 2005 Aug; 26(11): 1131–47PubMedCrossRef Antony J, Piquemal JP, Gresh N. Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-beta-lactamase by polarizable molecular mechanics: validation on model binding sites by quantum chemistry. J Comput Chem 2005 Aug; 26(11): 1131–47PubMedCrossRef
189.
go back to reference Antony J, Gresh N, Olsen L, et al. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics. J Comput Chem 2002 Oct; 23(13): 1281–96PubMedCrossRef Antony J, Gresh N, Olsen L, et al. Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics. J Comput Chem 2002 Oct; 23(13): 1281–96PubMedCrossRef
190.
go back to reference Garcia-Saez I, Hopkins J, Papamicael C, et al. The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril. J Biol Chem 2003 Jun 27; 278(26): 23868–73PubMedCrossRef Garcia-Saez I, Hopkins J, Papamicael C, et al. The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril. J Biol Chem 2003 Jun 27; 278(26): 23868–73PubMedCrossRef
191.
go back to reference Garcia-Saez I, Mercuri PS, Papamicael C, et al. Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-beta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril. J Mol Biol 2003 Jan 24; 325(4): 651–60PubMedCrossRef Garcia-Saez I, Mercuri PS, Papamicael C, et al. Three-dimensional structure of FEZ-1, a monomeric subclass B3 metallo-beta-lactamase from Fluoribacter gormanii, in native form and in complex with D-captopril. J Mol Biol 2003 Jan 24; 325(4): 651–60PubMedCrossRef
192.
go back to reference Damblon C, Jensen M, Ababou A, et al. The inhibitor thiomandelic acid binds to both metal ions in metallobeta-lactamase and induces positive cooperativity in metal binding. J Biol Chem 2003 Aug 1; 278(31): 29240–51PubMedCrossRef Damblon C, Jensen M, Ababou A, et al. The inhibitor thiomandelic acid binds to both metal ions in metallobeta-lactamase and induces positive cooperativity in metal binding. J Biol Chem 2003 Aug 1; 278(31): 29240–51PubMedCrossRef
193.
go back to reference Selevsek N, Tholey A, Heinzle E, et al. Studies on ternary metallo-beta lactamase-inhibitor complexes using electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 2006 Jul; 17(7): 1000–4PubMedCrossRef Selevsek N, Tholey A, Heinzle E, et al. Studies on ternary metallo-beta lactamase-inhibitor complexes using electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 2006 Jul; 17(7): 1000–4PubMedCrossRef
194.
go back to reference Moloughney JG, D Thomas J, Toney JH. Novel IMP-1 metallo-beta-lactamase inhibitors can reverse meropenem resistance in Escherichia coli expressing IMP-1. FEMS Microbiol Lett 2005 Feb 1; 243(1): 65–71PubMedCrossRef Moloughney JG, D Thomas J, Toney JH. Novel IMP-1 metallo-beta-lactamase inhibitors can reverse meropenem resistance in Escherichia coli expressing IMP-1. FEMS Microbiol Lett 2005 Feb 1; 243(1): 65–71PubMedCrossRef
195.
go back to reference Bebrone C, Anne C, De Vriendt K, et al. Dramatic broadening of the substrate profile of the Aeromonas hydrophila CphA metallo-beta-lactamase by site-directed mutagenesis. J Biol Chem 2005 Aug 5; 280(31): 28195–202PubMedCrossRef Bebrone C, Anne C, De Vriendt K, et al. Dramatic broadening of the substrate profile of the Aeromonas hydrophila CphA metallo-beta-lactamase by site-directed mutagenesis. J Biol Chem 2005 Aug 5; 280(31): 28195–202PubMedCrossRef
196.
go back to reference Sanchez PA, Toney JH, Thomas JD, et al. A sensitive coupled HPLC/electrospray mass spectrometry assay for SPM-1 metallo-beta-lactamase inhibitors. Assay Drug Dev Technol 2009 Apr; 7(2): 170–9PubMedCrossRef Sanchez PA, Toney JH, Thomas JD, et al. A sensitive coupled HPLC/electrospray mass spectrometry assay for SPM-1 metallo-beta-lactamase inhibitors. Assay Drug Dev Technol 2009 Apr; 7(2): 170–9PubMedCrossRef
197.
go back to reference Sanschagrin F, Levesque RC. A specific peptide inhibitor of the class B metallo-beta-lactamase L-1 from Stenotrophomonas maltophilia identified using phage display. J Antimicrob Chemother 2005 Feb; 55(2): 252–5PubMedCrossRef Sanschagrin F, Levesque RC. A specific peptide inhibitor of the class B metallo-beta-lactamase L-1 from Stenotrophomonas maltophilia identified using phage display. J Antimicrob Chemother 2005 Feb; 55(2): 252–5PubMedCrossRef
Metadata
Title
Current Challenges in Antimicrobial Chemotherapy
Focus on β-Lactamase Inhibition
Authors
Dr Carine Bebrone
Patricia Lassaux
Lionel Vercheval
Jean-Sébastien Sohier
Adrien Jehaes
Eric Sauvage
Moreno Galleni
Publication date
01-04-2010
Publisher
Springer International Publishing
Published in
Drugs / Issue 6/2010
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.2165/11318430-000000000-00000

Other articles of this Issue 6/2010

Drugs 6/2010 Go to the issue

Adis Drug Evaluation

Levobupivacaine

Adis Drug Evaluation

Strontium Ranelate