Skip to main content
Top
Published in: Drugs 8/2010

01-05-2010 | Leading Article

Matrix Metalloproteinase Inhibitors

A Critical Appraisal of Design Principles and Proposed Therapeutic Utility

Authors: Dr György Dormán, Sándor Cseh, István Hajdú, László Barna, Dénes Kónya, Krisztina Kupai, László Kovács, Péter Ferdinandy

Published in: Drugs | Issue 8/2010

Login to get access

Abstract

Matrix metalloproteinases (MMPs) play an important role in tissue remodelling associated with various physiological and pathological processes, such as morphogenesis, angiogenesis, tissue repair, arthritis, chronic heart failure, chronic obstructive pulmonary disease, chronic inflammation and cancer metastasis. As a result, MMPs are considered to be viable drug targets in the therapy of these diseases. Despite the high therapeutic potential of MMP inhibitors (MMPIs), all clinical trials have failed to date, except for doxycycline for periodontal disease. This can be attributed to (i) poor selectivity of the MMPIs, (ii) poor target validation for the targeted therapy and (iii) poorly defined predictive preclinical animal models for safety and efficacy. Lessons from previous failures, such as recent discoveries of oxidative/nitrosative activation and phosphorylation of MMPs, as well as novel non-matrix related intra- and extracellular targets of MMP, give new hope for MMPI development for both chronic and acute diseases. In this article we critically review the major structural determinants of the selectivity and the milestones of past design efforts of MMPIs where 2-/3-dimensional structure-based methods were intensively applied. We also analyse the in vitro screening and preclinical/clinical pharmacology approaches, with particular emphasis on drawing conclusions on how to overcome efficacy and safety problems through better target validation and design of preclinical studies.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gross J, Lapiere CM. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A 1962; 48: 1014–22PubMedCrossRef Gross J, Lapiere CM. Collagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci U S A 1962; 48: 1014–22PubMedCrossRef
2.
go back to reference Li NG, Shi ZH, Tang YP, et al. Selective matrix metalloproteinase inhibitors for cancer. Curr Med Chem 2009; 16: 3805–27CrossRef Li NG, Shi ZH, Tang YP, et al. Selective matrix metalloproteinase inhibitors for cancer. Curr Med Chem 2009; 16: 3805–27CrossRef
3.
go back to reference Peterson JT. The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors. Cardiovasc Res 2006; 69: 677–87PubMedCrossRef Peterson JT. The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors. Cardiovasc Res 2006; 69: 677–87PubMedCrossRef
4.
go back to reference Johnson AR, Pavlovsky AG, Ortwine DF, et al. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J Biol Chem 2007; 282: 27781–91PubMedCrossRef Johnson AR, Pavlovsky AG, Ortwine DF, et al. Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J Biol Chem 2007; 282: 27781–91PubMedCrossRef
5.
go back to reference Renkiewicz R, Qiu L, Lesch C, et al. Broad-spectrum matrix metalloproteinase inhibitor marimastat-induced musculoskeletal side effects in rats. Arthritis Rheum 2003; 48: 1742–9PubMedCrossRef Renkiewicz R, Qiu L, Lesch C, et al. Broad-spectrum matrix metalloproteinase inhibitor marimastat-induced musculoskeletal side effects in rats. Arthritis Rheum 2003; 48: 1742–9PubMedCrossRef
6.
go back to reference Dorman G, Kocsis-Szommer K, Spadoni C, et al. MMP inhibitors in cardiac diseases: an update. Recent Pat Cardiovasc Drug Discov 2007; 2: 186–94PubMedCrossRef Dorman G, Kocsis-Szommer K, Spadoni C, et al. MMP inhibitors in cardiac diseases: an update. Recent Pat Cardiovasc Drug Discov 2007; 2: 186–94PubMedCrossRef
7.
go back to reference Chow AK, Cena J, Schulz R. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 2007; 152: 189–205PubMedCrossRef Chow AK, Cena J, Schulz R. Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol 2007; 152: 189–205PubMedCrossRef
8.
go back to reference Aureli L, Gioia M, Cerbara I, et al. Structural bases for substrate and inhibitor recognition by matrix metalloproteinases. Curr Med Chem 2008; 15: 2192–222PubMedCrossRef Aureli L, Gioia M, Cerbara I, et al. Structural bases for substrate and inhibitor recognition by matrix metalloproteinases. Curr Med Chem 2008; 15: 2192–222PubMedCrossRef
9.
go back to reference Yiotakis A, Dive V. Third-generation MMP inhibitors: recent advances in the development of highly selective inhibitors. In: Edwards D, Høyer-Hansen G, Blasi F, et al., editors. The cancer degradome: proteases and cancer biology. New York: Springer Science + Business Media, 2008: 811–25CrossRef Yiotakis A, Dive V. Third-generation MMP inhibitors: recent advances in the development of highly selective inhibitors. In: Edwards D, Høyer-Hansen G, Blasi F, et al., editors. The cancer degradome: proteases and cancer biology. New York: Springer Science + Business Media, 2008: 811–25CrossRef
10.
go back to reference Netzel-Arnett S, Sang QX, Moore WG, et al. Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Biochemistry 1993; 32: 6427–32PubMedCrossRef Netzel-Arnett S, Sang QX, Moore WG, et al. Comparative sequence specificities of human 72- and 92-kDa gelatinases (type IV collagenases) and PUMP (matrilysin). Biochemistry 1993; 32: 6427–32PubMedCrossRef
11.
go back to reference Lukacova V, Zhang Y, Mackov M, et al. Similarity of binding sites of human matrix metalloproteinases. J Biol Chem 2004; 279(14): 14194–200PubMedCrossRef Lukacova V, Zhang Y, Mackov M, et al. Similarity of binding sites of human matrix metalloproteinases. J Biol Chem 2004; 279(14): 14194–200PubMedCrossRef
12.
go back to reference Pirard B. Insight into the structural determinants for selective inhibition of matrix metalloproteinases. Drug Discov Today 2007 Aug; 12(15–16): 640–6PubMedCrossRef Pirard B. Insight into the structural determinants for selective inhibition of matrix metalloproteinases. Drug Discov Today 2007 Aug; 12(15–16): 640–6PubMedCrossRef
13.
go back to reference Pirard B, Matter H. Matrix metalloproteinase target family landscape: a chemometrical approach to ligand selectivity based on protein binding site analysis. J Med Chem 2006; 49(1): 51–69PubMedCrossRef Pirard B, Matter H. Matrix metalloproteinase target family landscape: a chemometrical approach to ligand selectivity based on protein binding site analysis. J Med Chem 2006; 49(1): 51–69PubMedCrossRef
14.
go back to reference Lukacova V, Khandelwal A, Zhang Y, et al. Selectivity and affinity of matrix metalloproteinase inhibitors. In: Naidoo KJ, Brady J, Field MJ, et al., editors. Modelling molecular structure and reactivity in biological systems. London: Royal Society of Chemistry, 2006: 193–205 Lukacova V, Khandelwal A, Zhang Y, et al. Selectivity and affinity of matrix metalloproteinase inhibitors. In: Naidoo KJ, Brady J, Field MJ, et al., editors. Modelling molecular structure and reactivity in biological systems. London: Royal Society of Chemistry, 2006: 193–205
15.
go back to reference Pochetti G, Montanari R, Gege C, et al. Extra binding region induced by non-zinc chelating inhibitors into the S(1)t’ subsite of matrix metalloproteinase 8 (MMP-8). J Med Chem 2009; 52(4): 1040–9PubMedCrossRef Pochetti G, Montanari R, Gege C, et al. Extra binding region induced by non-zinc chelating inhibitors into the S(1)t’ subsite of matrix metalloproteinase 8 (MMP-8). J Med Chem 2009; 52(4): 1040–9PubMedCrossRef
16.
go back to reference Engel CK, Pirard B, Schimanski S, et al. Structural basis for the highly selective inhibition of MMP-13. Chem Biol 2005 Feb; 12(2): 181–9PubMedCrossRef Engel CK, Pirard B, Schimanski S, et al. Structural basis for the highly selective inhibition of MMP-13. Chem Biol 2005 Feb; 12(2): 181–9PubMedCrossRef
17.
go back to reference Papp A, Szommer T, Barna L, et al. Enhanced hit-to-lead process using bioanalogous lead evolution and chemogenomics: application in designing selective matrix metalloprotease inhibitors. Expert Opin Drug Discov 2007; 2(5): 1–17CrossRef Papp A, Szommer T, Barna L, et al. Enhanced hit-to-lead process using bioanalogous lead evolution and chemogenomics: application in designing selective matrix metalloprotease inhibitors. Expert Opin Drug Discov 2007; 2(5): 1–17CrossRef
18.
go back to reference Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem 2007; 15: 2223–68PubMedCrossRef Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem 2007; 15: 2223–68PubMedCrossRef
19.
go back to reference Fisher JF, Mobashery S. Recent advances in MMP inhibitor design. Cancer Metastasis Rev 2006 Mar; 25(1): 115–36PubMedCrossRef Fisher JF, Mobashery S. Recent advances in MMP inhibitor design. Cancer Metastasis Rev 2006 Mar; 25(1): 115–36PubMedCrossRef
20.
go back to reference Jacobsen FE, Lewis JA, Cohen SM. The design of inhibitors for medicinally relevant metalloproteins. Chem Med Chem 2007 Feb; 2(2): 152–71PubMed Jacobsen FE, Lewis JA, Cohen SM. The design of inhibitors for medicinally relevant metalloproteins. Chem Med Chem 2007 Feb; 2(2): 152–71PubMed
21.
go back to reference Hajduk PJ, Sheppard G, Nettesheim D, et al. Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMR. J Am Chem Soc 1997; 119: 5818–27CrossRef Hajduk PJ, Sheppard G, Nettesheim D, et al. Discovery of potent nonpeptide inhibitors of stromelysin using SAR by NMR. J Am Chem Soc 1997; 119: 5818–27CrossRef
22.
go back to reference Nordström H, Gossas T, Hämäläinen M, et al. Identification of MMP-12 inhibitors by using biosensor-based screening of a fragment library. J Med Chem 2008 Jun 26; 51(12): 3449–59PubMedCrossRef Nordström H, Gossas T, Hämäläinen M, et al. Identification of MMP-12 inhibitors by using biosensor-based screening of a fragment library. J Med Chem 2008 Jun 26; 51(12): 3449–59PubMedCrossRef
23.
go back to reference Takahashi K, Ikura M, Habashita H, et al. Novel matrix metalloproteinase inhibitors: generation of lead compounds by the in silico fragment-based approach. Bioorg Med Chem 2005 Jul 15; 13(14): 4527–43PubMedCrossRef Takahashi K, Ikura M, Habashita H, et al. Novel matrix metalloproteinase inhibitors: generation of lead compounds by the in silico fragment-based approach. Bioorg Med Chem 2005 Jul 15; 13(14): 4527–43PubMedCrossRef
24.
go back to reference Puerta DT, Griffin MO, Lewis JA, et al. Heterocyclic zincbinding groups for use in next-generation matrix metalloproteinase inhibitors: potency, toxicity, and reactivity. J Biol Inorg Chem 2006 Mar; 11(2): 131–8PubMedCrossRef Puerta DT, Griffin MO, Lewis JA, et al. Heterocyclic zincbinding groups for use in next-generation matrix metalloproteinase inhibitors: potency, toxicity, and reactivity. J Biol Inorg Chem 2006 Mar; 11(2): 131–8PubMedCrossRef
25.
go back to reference Jacobsen FE, Lewis JA, Cohen SM. A new role for old ligands: discerning chelators for zinc metalloproteinases. J Am Chem Soc 2006 Mar 15; 128(10): 3156–7PubMedCrossRef Jacobsen FE, Lewis JA, Cohen SM. A new role for old ligands: discerning chelators for zinc metalloproteinases. J Am Chem Soc 2006 Mar 15; 128(10): 3156–7PubMedCrossRef
26.
go back to reference Agrawal A, Romero-Perez D, Jacobsen JA, et al. Zincbinding groups modulate selective inhibition of MMPs. Chem Med Chem 2008 May; 3(5): 812–20PubMed Agrawal A, Romero-Perez D, Jacobsen JA, et al. Zincbinding groups modulate selective inhibition of MMPs. Chem Med Chem 2008 May; 3(5): 812–20PubMed
27.
go back to reference Marimastat: BB 2516, TA 2516. Drugs R D 2003; 4 (3): 198-203 Marimastat: BB 2516, TA 2516. Drugs R D 2003; 4 (3): 198-203
28.
go back to reference Winding B, NicAmhlaoibh R, Misander H, et al. Synthetic matrix metalloproteinase inhibitors inhibit growth of established breast cancer osteolytic lesions and prolong survival in mice. Clin Cancer Res 2002 Jun; 8: 1932–9PubMed Winding B, NicAmhlaoibh R, Misander H, et al. Synthetic matrix metalloproteinase inhibitors inhibit growth of established breast cancer osteolytic lesions and prolong survival in mice. Clin Cancer Res 2002 Jun; 8: 1932–9PubMed
29.
go back to reference De B, Natchus MG, Cheng M, et al. The next generation of MMP inhibitors: design and synthesis. Ann N Y Acad Sci 1999; 878: 40–60PubMedCrossRef De B, Natchus MG, Cheng M, et al. The next generation of MMP inhibitors: design and synthesis. Ann N Y Acad Sci 1999; 878: 40–60PubMedCrossRef
30.
go back to reference Scatena R. Prinomastat, a hydroxamate-based matrix metalloproteinase inhibitor: a novel pharmacological approach for tissue remodelling-related diseases. Expert Opin Investig Drugs 2000 Sep; 9(9): 2159–65PubMedCrossRef Scatena R. Prinomastat, a hydroxamate-based matrix metalloproteinase inhibitor: a novel pharmacological approach for tissue remodelling-related diseases. Expert Opin Investig Drugs 2000 Sep; 9(9): 2159–65PubMedCrossRef
31.
go back to reference Johnson JL, Fritsche-Danielson R, Behrendt M, et al. Effect of broad-spectrum matrix metalloproteinase inhibition on atherosclerotic plaque stability. Cardiovasc Res 2006 Aug 1; 71(3): 586–95PubMedCrossRef Johnson JL, Fritsche-Danielson R, Behrendt M, et al. Effect of broad-spectrum matrix metalloproteinase inhibition on atherosclerotic plaque stability. Cardiovasc Res 2006 Aug 1; 71(3): 586–95PubMedCrossRef
32.
go back to reference Hu Y, Xiang JS, DiGrandi MJ, et al. Potent, selective, and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. Bioorg Med Chem 2005; 13: 6629–44PubMedCrossRef Hu Y, Xiang JS, DiGrandi MJ, et al. Potent, selective, and orally bioavailable matrix metalloproteinase-13 inhibitors for the treatment of osteoarthritis. Bioorg Med Chem 2005; 13: 6629–44PubMedCrossRef
33.
go back to reference Wada CK. The evolution of the matrix metalloproteinase inhibitor drug discovery program at Abbott laboratories. Curr Top Med Chem 2004; 4: 1255–67PubMedCrossRef Wada CK. The evolution of the matrix metalloproteinase inhibitor drug discovery program at Abbott laboratories. Curr Top Med Chem 2004; 4: 1255–67PubMedCrossRef
34.
go back to reference Naglich JG, Jure-Kunkel M, Gupta E, et al. Inhibition of angiogenesis and metastasis in two murine models by the matrix metalloproteinase inhibitor, BMS-275291. Cancer Res 2001; 61: 8480–5PubMed Naglich JG, Jure-Kunkel M, Gupta E, et al. Inhibition of angiogenesis and metastasis in two murine models by the matrix metalloproteinase inhibitor, BMS-275291. Cancer Res 2001; 61: 8480–5PubMed
35.
go back to reference Gatto C, Rieppi M, Borsotti P, et al. BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin Cancer Res 1999; 5: 3603–7PubMed Gatto C, Rieppi M, Borsotti P, et al. BAY 12-9566, a novel inhibitor of matrix metalloproteinases with antiangiogenic activity. Clin Cancer Res 1999; 5: 3603–7PubMed
36.
go back to reference Lee M, Bernardo MM, Meroueh SO, et al. Synthesis of chiral 2-(4-phenoxy phenylsulfonylmethyl) thiiranes as selective gelatinase inhibitors. Org Lett 2005; 7: 4463–5PubMedCrossRef Lee M, Bernardo MM, Meroueh SO, et al. Synthesis of chiral 2-(4-phenoxy phenylsulfonylmethyl) thiiranes as selective gelatinase inhibitors. Org Lett 2005; 7: 4463–5PubMedCrossRef
37.
go back to reference Grams F, Brandstetter H, D’Alo S, et al. Pyrimidine-2,4,6-triones: a new effective and selective class of matrix metalloproteinase inhibitors. Biol Chem 2001; 382: 1277–85PubMedCrossRef Grams F, Brandstetter H, D’Alo S, et al. Pyrimidine-2,4,6-triones: a new effective and selective class of matrix metalloproteinase inhibitors. Biol Chem 2001; 382: 1277–85PubMedCrossRef
38.
go back to reference Dive V, Georgiadis D, Matziari M, et al. Phosphinic peptides as zinc metalloproteinase inhibitors. Cell Mol Life Sci 2004; 61: 2010–9PubMedCrossRef Dive V, Georgiadis D, Matziari M, et al. Phosphinic peptides as zinc metalloproteinase inhibitors. Cell Mol Life Sci 2004; 61: 2010–9PubMedCrossRef
39.
go back to reference Pochetti G, Gavuzzo E, Campestre C, et al. Structural insight into the stereoselective inhibition of MMP-8 by enantiomeric sulfonamide phosphonates. J Med Chem 2006; 49: 923–31PubMedCrossRef Pochetti G, Gavuzzo E, Campestre C, et al. Structural insight into the stereoselective inhibition of MMP-8 by enantiomeric sulfonamide phosphonates. J Med Chem 2006; 49: 923–31PubMedCrossRef
40.
go back to reference Salo T, Soini Y, Oiva J, et al. Chemically modified tetracyclines (CMT-3 and CMT-8) enable control of the pathologic remodellation of human aortic valve stenosis via MMP-9 and VEGF inhibition. Int J Cardiol 2006 Aug 28; 111(3): 358–64PubMedCrossRef Salo T, Soini Y, Oiva J, et al. Chemically modified tetracyclines (CMT-3 and CMT-8) enable control of the pathologic remodellation of human aortic valve stenosis via MMP-9 and VEGF inhibition. Int J Cardiol 2006 Aug 28; 111(3): 358–64PubMedCrossRef
41.
go back to reference Breuer E, Frant J, Reich R. Recent non-hydroxamate matrix metalloproteinase inhibitors. Expert Opin Ther Patents 2005; 15: 253–69CrossRef Breuer E, Frant J, Reich R. Recent non-hydroxamate matrix metalloproteinase inhibitors. Expert Opin Ther Patents 2005; 15: 253–69CrossRef
42.
go back to reference Dublanchet AC, Ducrot P, Andrianjara C, et al. Structure-based design and synthesis of novel non-zinc chelating MMP-12 inhibitors. Bioorg Med Chem Lett 2005 Aug 15; 15(16): 3787–90PubMedCrossRef Dublanchet AC, Ducrot P, Andrianjara C, et al. Structure-based design and synthesis of novel non-zinc chelating MMP-12 inhibitors. Bioorg Med Chem Lett 2005 Aug 15; 15(16): 3787–90PubMedCrossRef
43.
go back to reference Lombard C, Saulnier J, Wallach J. Assays of matrix metalloproteinases (MMPs) activities: a review. Biochimie 2005; 87: 265–72PubMedCrossRef Lombard C, Saulnier J, Wallach J. Assays of matrix metalloproteinases (MMPs) activities: a review. Biochimie 2005; 87: 265–72PubMedCrossRef
44.
go back to reference Cheng XC, Fang H, Xu WF. Advances in assays of matrix metalloproteinases (MMPs) and their inhibitors. J Enzyme Inhib Med Chem 2008; 23(2): 154–67PubMedCrossRef Cheng XC, Fang H, Xu WF. Advances in assays of matrix metalloproteinases (MMPs) and their inhibitors. J Enzyme Inhib Med Chem 2008; 23(2): 154–67PubMedCrossRef
45.
go back to reference Lauer-Fields JL, Minond D, Chase PS, et al. High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate. Bioorg Med Chem 2009; 17: 990–1005PubMedCrossRef Lauer-Fields JL, Minond D, Chase PS, et al. High throughput screening of potentially selective MMP-13 exosite inhibitors utilizing a triple-helical FRET substrate. Bioorg Med Chem 2009; 17: 990–1005PubMedCrossRef
46.
go back to reference Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 2007; 6: 211–9PubMedCrossRef Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov 2007; 6: 211–9PubMedCrossRef
47.
go back to reference Saghatelian A, Jessani N, Joseph A, et al. Activity-based probes for the proteomic profiling of metalloproteases. Proc Natl Acad Sci U S A 2004; 101: 10000–5PubMedCrossRef Saghatelian A, Jessani N, Joseph A, et al. Activity-based probes for the proteomic profiling of metalloproteases. Proc Natl Acad Sci U S A 2004; 101: 10000–5PubMedCrossRef
48.
go back to reference Chan EWS, Chattopadhaya S, Panicker RC, et al. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J Am Chem Soc 2004; 126: 14435–46PubMedCrossRef Chan EWS, Chattopadhaya S, Panicker RC, et al. Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases. J Am Chem Soc 2004; 126: 14435–46PubMedCrossRef
49.
go back to reference Fingleton B. Matrix metalloproteinases as valid clinical targets. Curr Pharm Des 2007; 13(3): 333–46PubMedCrossRef Fingleton B. Matrix metalloproteinases as valid clinical targets. Curr Pharm Des 2007; 13(3): 333–46PubMedCrossRef
50.
go back to reference Fingleton B. MMPs as therapeutic targets: still a viable option? Semin Cell Dev Biol 2008 Feb; 19(1): 61–8PubMedCrossRef Fingleton B. MMPs as therapeutic targets: still a viable option? Semin Cell Dev Biol 2008 Feb; 19(1): 61–8PubMedCrossRef
51.
go back to reference Turk B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 2006 Sep; 5(9): 785–99PubMedCrossRef Turk B. Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 2006 Sep; 5(9): 785–99PubMedCrossRef
53.
go back to reference Fingleton B. MMP inhibitor clinical trials: the past, present, and future. In: Edwards D, Høyer-Hansen G, Blasi F, et al., editors. The cancer degradome: proteases and cancer biology. New York: Springer Science+Business Media, 2008: 759–85CrossRef Fingleton B. MMP inhibitor clinical trials: the past, present, and future. In: Edwards D, Høyer-Hansen G, Blasi F, et al., editors. The cancer degradome: proteases and cancer biology. New York: Springer Science+Business Media, 2008: 759–85CrossRef
54.
go back to reference Krzeski P, Buckland-Wright C, Balint G, et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res Ther 2007; 9: R109PubMedCrossRef Krzeski P, Buckland-Wright C, Balint G, et al. Development of musculoskeletal toxicity without clear benefit after administration of PG-116800, a matrix metalloproteinase inhibitor, to patients with knee osteoarthritis: a randomized, 12-month, double-blind, placebo-controlled study. Arthritis Res Ther 2007; 9: R109PubMedCrossRef
55.
go back to reference Steward WP, Thomas AL. Marimastat: the clinical development of a matrix metalloproteinase inhibitor. Expert Opin Investig Drugs 2000; 9: 2913–22PubMedCrossRef Steward WP, Thomas AL. Marimastat: the clinical development of a matrix metalloproteinase inhibitor. Expert Opin Investig Drugs 2000; 9: 2913–22PubMedCrossRef
56.
go back to reference Pharmaceutical R&D pipeline news. Pharmaprojects, 2009 database. London: Informa UK Ltd, 2009 Pharmaceutical R&D pipeline news. Pharmaprojects, 2009 database. London: Informa UK Ltd, 2009
57.
go back to reference Thabet MM, Huizinga TW. Drug evaluation: apratastat, a novel TACE/MMP inhibitor for rheumatoid arthritis. Curr Opin Investig Drugs 2006 Nov; 7(11): 1014–9PubMed Thabet MM, Huizinga TW. Drug evaluation: apratastat, a novel TACE/MMP inhibitor for rheumatoid arthritis. Curr Opin Investig Drugs 2006 Nov; 7(11): 1014–9PubMed
58.
go back to reference Scrip Daily Online 2000 Mar 30; S00659818 [PharmaProjects database] Scrip Daily Online 2000 Mar 30; S00659818 [PharmaProjects database]
59.
go back to reference Eatock M, Cassidy J, Johnson J, et al. A dose-finding and pharmacokinetic study of the matrix metalloproteinase inhibitor MMI270 (previously termed CGS27023A) with 5-FU and folinic acid. Cancer Chemother Pharmacol 2005 Jan; 55(1): 39–46PubMedCrossRef Eatock M, Cassidy J, Johnson J, et al. A dose-finding and pharmacokinetic study of the matrix metalloproteinase inhibitor MMI270 (previously termed CGS27023A) with 5-FU and folinic acid. Cancer Chemother Pharmacol 2005 Jan; 55(1): 39–46PubMedCrossRef
60.
go back to reference Saloni S, Chan D. Licensing highlights. IDrugs 2005; 8:172–7 Saloni S, Chan D. Licensing highlights. IDrugs 2005; 8:172–7
61.
go back to reference Wielockx B, Libert C, Wilson C. Matrilysin (matrix metalloproteinase-7): a new promising drug target in cancer and inflammation? Cytokine Growth Factor Rev 2004; 15:111–5PubMedCrossRef Wielockx B, Libert C, Wilson C. Matrilysin (matrix metalloproteinase-7): a new promising drug target in cancer and inflammation? Cytokine Growth Factor Rev 2004; 15:111–5PubMedCrossRef
62.
go back to reference Hudson MP, Armstrong PW, Ruzyllo W, et al. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J Am Coll Cardiol 2006; 48: 15–20PubMedCrossRef Hudson MP, Armstrong PW, Ruzyllo W, et al. Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J Am Coll Cardiol 2006; 48: 15–20PubMedCrossRef
63.
go back to reference van Beusekom HM, Post MJ, Whelan DM, et al. Metalloproteinase inhibition by batimastat does not reduce neointimal thickening in stented atherosclerotic porcine femoral arteries. Cardiovasc Radiat Med 2003; 4: 186–91PubMedCrossRef van Beusekom HM, Post MJ, Whelan DM, et al. Metalloproteinase inhibition by batimastat does not reduce neointimal thickening in stented atherosclerotic porcine femoral arteries. Cardiovasc Radiat Med 2003; 4: 186–91PubMedCrossRef
64.
go back to reference Araujo CM, Rando GA, Mauro MF, et al. Batimastateluting stent implantation for the treatment of coronary artery disease: results of the Brazilian pilot study. Arq Bras Cardiol 2005; 84: 256–60PubMed Araujo CM, Rando GA, Mauro MF, et al. Batimastateluting stent implantation for the treatment of coronary artery disease: results of the Brazilian pilot study. Arq Bras Cardiol 2005; 84: 256–60PubMed
65.
go back to reference Ferdinandy P. Peroxynitrite: just an oxidative/nitrosative stressor or a physiological regulator as well? Br J Pharmacol 2006; 148: 1–3PubMedCrossRef Ferdinandy P. Peroxynitrite: just an oxidative/nitrosative stressor or a physiological regulator as well? Br J Pharmacol 2006; 148: 1–3PubMedCrossRef
66.
go back to reference Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 2003; 138: 532–43PubMedCrossRef Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 2003; 138: 532–43PubMedCrossRef
67.
go back to reference Schulz R. Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu Rev Pharmacol Toxicol 2007; 47: 211–42PubMedCrossRef Schulz R. Intracellular targets of matrix metalloproteinase-2 in cardiac disease: rationale and therapeutic approaches. Annu Rev Pharmacol Toxicol 2007; 47: 211–42PubMedCrossRef
68.
go back to reference Csonka C, Csont T, Onody A, et al. Preconditioning decreases ischemia/reperfusion-induced peroxynitrite formation. Biochem Biophys Res Commun 2001; 285: 1217–9PubMedCrossRef Csonka C, Csont T, Onody A, et al. Preconditioning decreases ischemia/reperfusion-induced peroxynitrite formation. Biochem Biophys Res Commun 2001; 285: 1217–9PubMedCrossRef
69.
go back to reference Lalu M, Csonka C, Giricz Z, et al. Preconditioning decreases ischemia/reperfusion-induced release and activation of matrix metalloproteinase-2. Biochem Biophys Res Commun 2002; 296: 937–41PubMedCrossRef Lalu M, Csonka C, Giricz Z, et al. Preconditioning decreases ischemia/reperfusion-induced release and activation of matrix metalloproteinase-2. Biochem Biophys Res Commun 2002; 296: 937–41PubMedCrossRef
70.
go back to reference Cheung PY, Sawicki G, Wozniak M, et al. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 2000; 101: 1833–9PubMedCrossRef Cheung PY, Sawicki G, Wozniak M, et al. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 2000; 101: 1833–9PubMedCrossRef
71.
go back to reference Giricz Z, Lalu MM, Csonka C, et al. Hyperlipidemia attenuates the infarct size-limiting effect of ischemic preconditioning: role of matrix metalloproteinase-2 inhibition. J Pharmacol Exp Ther 2006; 316: 154–61PubMedCrossRef Giricz Z, Lalu MM, Csonka C, et al. Hyperlipidemia attenuates the infarct size-limiting effect of ischemic preconditioning: role of matrix metalloproteinase-2 inhibition. J Pharmacol Exp Ther 2006; 316: 154–61PubMedCrossRef
72.
go back to reference Gao CQ, Sawicki G, Suarez-Pinzon WL, et al. Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res 2003; 57: 426–33PubMedCrossRef Gao CQ, Sawicki G, Suarez-Pinzon WL, et al. Matrix metalloproteinase-2 mediates cytokine-induced myocardial contractile dysfunction. Cardiovasc Res 2003; 57: 426–33PubMedCrossRef
73.
go back to reference Sariahmetoglu M, Crawford BD, Leon H, et al. Regulation of matrix metalloproteinase-2 (MMP-2) activity by phosphorylation. FASEB J 2007; 21: 2486–95PubMedCrossRef Sariahmetoglu M, Crawford BD, Leon H, et al. Regulation of matrix metalloproteinase-2 (MMP-2) activity by phosphorylation. FASEB J 2007; 21: 2486–95PubMedCrossRef
74.
go back to reference Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 2007; 59: 418–58PubMedCrossRef Ferdinandy P, Schulz R, Baxter GF. Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 2007; 59: 418–58PubMedCrossRef
75.
go back to reference Kandasamy AD, Schulz R. Glycogen synthase kinase-3b is activated by matrix metalloproteinase-2 mediated proteolysis in cardiomyoblasts. Cardiovasc Res 2009 Sep 1; 83(4): 698–706PubMedCrossRef Kandasamy AD, Schulz R. Glycogen synthase kinase-3b is activated by matrix metalloproteinase-2 mediated proteolysis in cardiomyoblasts. Cardiovasc Res 2009 Sep 1; 83(4): 698–706PubMedCrossRef
76.
go back to reference Bereczki E, Gonda S, Csont T, et al. Overexpression of biglycan in the heart of transgenic mice: an antibody microarray study. J Proteome Res 2007; 6: 854–61PubMedCrossRef Bereczki E, Gonda S, Csont T, et al. Overexpression of biglycan in the heart of transgenic mice: an antibody microarray study. J Proteome Res 2007; 6: 854–61PubMedCrossRef
77.
78.
go back to reference Overall CM, Kleifeld O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006; 6: 227–39PubMedCrossRef Overall CM, Kleifeld O. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat Rev Cancer 2006; 6: 227–39PubMedCrossRef
79.
go back to reference Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002; 295: 2387–92PubMedCrossRef Coussens LM, Fingleton B, Matrisian LM. Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science 2002; 295: 2387–92PubMedCrossRef
80.
go back to reference Curino AC, Engelholm LH, Yamada SS, et al. Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. J Cell Biol 2005; 169: 977–85PubMedCrossRef Curino AC, Engelholm LH, Yamada SS, et al. Intracellular collagen degradation mediated by uPARAP/Endo180 is a major pathway of extracellular matrix turnover during malignancy. J Cell Biol 2005; 169: 977–85PubMedCrossRef
81.
go back to reference Wagenaar-Miller RA, Engelholm LH, Gavard J, et al. Complementary roles of intracellular and pericellular collagen degradation pathways in vivo. Mol Cell Biol 2007; 27: 6309–22PubMedCrossRef Wagenaar-Miller RA, Engelholm LH, Gavard J, et al. Complementary roles of intracellular and pericellular collagen degradation pathways in vivo. Mol Cell Biol 2007; 27: 6309–22PubMedCrossRef
82.
go back to reference Yang E, Boire A, Agarwal A, et al. Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Res 2009; 69: 6223–31PubMedCrossRef Yang E, Boire A, Agarwal A, et al. Blockade of PAR1 signaling with cell-penetrating pepducins inhibits Akt survival pathways in breast cancer cells and suppresses tumor survival and metastasis. Cancer Res 2009; 69: 6223–31PubMedCrossRef
Metadata
Title
Matrix Metalloproteinase Inhibitors
A Critical Appraisal of Design Principles and Proposed Therapeutic Utility
Authors
Dr György Dormán
Sándor Cseh
István Hajdú
László Barna
Dénes Kónya
Krisztina Kupai
László Kovács
Péter Ferdinandy
Publication date
01-05-2010
Publisher
Springer International Publishing
Published in
Drugs / Issue 8/2010
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.2165/11318390-000000000-00000

Other articles of this Issue 8/2010

Drugs 8/2010 Go to the issue

Adis Drug Evaluation

Panitumumab

Adis Drug Profile

Ofatumumab