Skip to main content
Top
Published in: American Journal of Cardiovascular Drugs 4/2005

01-07-2005 | Review Article

Neuroprotection with Angiotensin Receptor Antagonists

A Review of the Evidence and Potential Mechanisms

Authors: Henrik Wilms, Philip Rosenstiel, Thomas Unger, Günther Deuschl, Dr Ralph Lucius

Published in: American Journal of Cardiovascular Drugs | Issue 4/2005

Login to get access

Abstract

The peptide hormone angiotensin (A)-II, the major effector peptide of the renin-angiotensin system (RAS), is well established to play a pivotal role in the systemic regulation of blood pressure, fluid, and electrolyte homeostasis. Recent biochemical and neurophysiologic studies have documented local intrinsic angiotensin-generating systems in organs and tissues such as the brain, retina, bone marrow, liver, and pancreas. The locally generated angiotensin peptides have multiple and novel actions including stimulating cell growth and anti-proliferative and/or antiapoptotic actions. In the mammalian brain, all components of the RAS are present including angiotensin receptor subtypes 1 (AT1) and 2 (AT2). A-II exerts most of its well defined physiologic and pathophysiologic actions, including those on the central and peripheral nervous system, through its AT1 receptor subtype. While the AT1 receptor is responsible for the classical effects of A-II, it has been found that the AT2 receptor is linked to totally different signalling mechanisms and this has revealed hitherto unknown functions of A-II. AT2 receptors are expressed at low density in many healthy adult tissues, but are upregulated in a variety of human diseases. This receptor not only contributes to stroke-related pathologic mechanisms (e.g. hypertension, atherothrombosis, and cardiac hypertrophy) but may also be involved in post-ischemic damage to the brain. It has been reported that the AT2 receptor regulates several functions of nerve cells, e.g. ionic fluxes, cell differentiation, and neuronal tissue regeneration, and also modulates programmed cell death. In this article, we review the experimental evidence supporting the notion that blockade of brain AT1receptors can be beneficial with respect to stroke incidence and outcome. We further delineate how AT2 receptors could be involved in neuronal regeneration following brain injury such as stroke or CNS trauma. The current review is focussed on some of the new functions arising from the locally formed A-II with particular attention to its emerging neuroprotective role in the brain.
Literature
1.
go back to reference Tigerstedt R, Bergmann PG. Niere und Kreislauf. Skand Arch Physiol 1898; 8: 223–231.CrossRef Tigerstedt R, Bergmann PG. Niere und Kreislauf. Skand Arch Physiol 1898; 8: 223–231.CrossRef
2.
go back to reference Dzau VJ. Cell biology and genetics of angiotensin in cardiovascular disease. J Hypertens Suppl 1994; 12(4): S3–10.PubMed Dzau VJ. Cell biology and genetics of angiotensin in cardiovascular disease. J Hypertens Suppl 1994; 12(4): S3–10.PubMed
3.
go back to reference Owens GK, Rabinovitch PS, Schwartz SM. Smooth muscle cell hypertrophy versus hyperplasia in hypertension. Proc Natl Acad Sci U S A 1981; 78(12): 7759–63.PubMedCrossRef Owens GK, Rabinovitch PS, Schwartz SM. Smooth muscle cell hypertrophy versus hyperplasia in hypertension. Proc Natl Acad Sci U S A 1981; 78(12): 7759–63.PubMedCrossRef
4.
go back to reference Bumpus FM, Catt KJ, Chiu AT, et al. Nomenclature for angiotensin receptors: a report of the Nomenclature Committee of the Council for High Blood Pressure Research. Hypertension 1991; 17(5): 720–1.PubMedCrossRef Bumpus FM, Catt KJ, Chiu AT, et al. Nomenclature for angiotensin receptors: a report of the Nomenclature Committee of the Council for High Blood Pressure Research. Hypertension 1991; 17(5): 720–1.PubMedCrossRef
5.
go back to reference Unger T, Chung O, Csikos T, et al. Angiotensin receptors. J Hypertens Suppl 1996; 14(5): S95–103.PubMed Unger T, Chung O, Csikos T, et al. Angiotensin receptors. J Hypertens Suppl 1996; 14(5): S95–103.PubMed
6.
go back to reference Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993; 45(2): 205–51.PubMed Timmermans PB, Wong PC, Chiu AT, et al. Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 1993; 45(2): 205–51.PubMed
7.
go back to reference Aceto JF, Baker KM. [Sarl]angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 1990; 258(3 Pt 2): H806–13.PubMed Aceto JF, Baker KM. [Sarl]angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. Am J Physiol 1990; 258(3 Pt 2): H806–13.PubMed
8.
go back to reference Paquet JL, Baudouin-Legros M, Brunelle G, et al. Angiotensin II-induced proliferation of aortic myocytes in spontaneously hypertensive rats. J Hypertens 1990; 8(6): 565–72.PubMedCrossRef Paquet JL, Baudouin-Legros M, Brunelle G, et al. Angiotensin II-induced proliferation of aortic myocytes in spontaneously hypertensive rats. J Hypertens 1990; 8(6): 565–72.PubMedCrossRef
9.
go back to reference Stoll M, Steckelings UM, Paul M, et al. The angiotensin AT2 receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995; 95(2): 651–7.PubMedCrossRef Stoll M, Steckelings UM, Paul M, et al. The angiotensin AT2 receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995; 95(2): 651–7.PubMedCrossRef
10.
go back to reference Rosenstiel P, Gallinat S, Arlt A, et al. Angiotensin AT2 receptor ligands: do they have potential as future treatments for neurological disease? CNS Drugs 2002; 16(3): 145–53.PubMedCrossRef Rosenstiel P, Gallinat S, Arlt A, et al. Angiotensin AT2 receptor ligands: do they have potential as future treatments for neurological disease? CNS Drugs 2002; 16(3): 145–53.PubMedCrossRef
11.
go back to reference Zhu YZ, Chimon GN, Zhu YC, et al. Expression of angiotensin II AT2 receptor in the acute phase of stroke in rats. Neuroreport 2000; 11(6): 1191–4.PubMedCrossRef Zhu YZ, Chimon GN, Zhu YC, et al. Expression of angiotensin II AT2 receptor in the acute phase of stroke in rats. Neuroreport 2000; 11(6): 1191–4.PubMedCrossRef
12.
go back to reference Gallinat S, Yu M, Dorst A, et al. Sciatic nerve transection evokes lasting upregulation of angiotensin AT2 and ATI receptor mRNA in adult rat dorsal root ganglia and sciatic nerves. Brain Res Mol Brain Res 1998; 57(1): 111–22.PubMedCrossRef Gallinat S, Yu M, Dorst A, et al. Sciatic nerve transection evokes lasting upregulation of angiotensin AT2 and ATI receptor mRNA in adult rat dorsal root ganglia and sciatic nerves. Brain Res Mol Brain Res 1998; 57(1): 111–22.PubMedCrossRef
13.
go back to reference Lucius R, Gallinat S, Rosenstiel P, et al. The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med 1998; 188(4): 661–70.PubMedCrossRef Lucius R, Gallinat S, Rosenstiel P, et al. The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med 1998; 188(4): 661–70.PubMedCrossRef
14.
go back to reference Ge J, Barnes NM. Alterations in angiotensin AT1 and AT2 receptor subtype levels in brain regions from patients with neurodegenerative disorders. Eur J Pharmacol 1996; 297(3): 299–306.PubMedCrossRef Ge J, Barnes NM. Alterations in angiotensin AT1 and AT2 receptor subtype levels in brain regions from patients with neurodegenerative disorders. Eur J Pharmacol 1996; 297(3): 299–306.PubMedCrossRef
15.
go back to reference Brechler V, Jones PW, Levens NR, et al. Agonistic and antagonistic properties of angiotensin analogs at the AT2 receptor in PC12W cells. Regul Pept 1993; 44(2): 207–13.PubMedCrossRef Brechler V, Jones PW, Levens NR, et al. Agonistic and antagonistic properties of angiotensin analogs at the AT2 receptor in PC12W cells. Regul Pept 1993; 44(2): 207–13.PubMedCrossRef
16.
go back to reference Elton TS, Stephan CC, Taylor GR, et al. Isolation of two distinct type I angiotensin II receptor genes. Biochem Biophys Res Commun 1992; 184(2): 1067–73.PubMedCrossRef Elton TS, Stephan CC, Taylor GR, et al. Isolation of two distinct type I angiotensin II receptor genes. Biochem Biophys Res Commun 1992; 184(2): 1067–73.PubMedCrossRef
17.
go back to reference Yoshida H, Kakuchi J, Guo DF, et al. Analysis of the evolution of angiotensin II type 1 receptor gene in mammals (mouse, rat, bovine and human). Biochem Biophys Res Commun 1992; 186(2): 1042–9.PubMedCrossRef Yoshida H, Kakuchi J, Guo DF, et al. Analysis of the evolution of angiotensin II type 1 receptor gene in mammals (mouse, rat, bovine and human). Biochem Biophys Res Commun 1992; 186(2): 1042–9.PubMedCrossRef
18.
go back to reference Ernsberger P, Zhou J, Damon TH, et al. Angiotensin II receptor subtypes in cultured rat renal mesangial cells. Am J Physiol 1992; 263(3 Pt 2): F411–6.PubMed Ernsberger P, Zhou J, Damon TH, et al. Angiotensin II receptor subtypes in cultured rat renal mesangial cells. Am J Physiol 1992; 263(3 Pt 2): F411–6.PubMed
19.
go back to reference Siemens IR, Reagan LP, Yee DK, et al. Biochemical characterization of two distinct angiotensin AT2 receptor populations in murine neuroblastoma N1E-115 cells. J Neurochem 1994; 62(6): 2106–15.PubMedCrossRef Siemens IR, Reagan LP, Yee DK, et al. Biochemical characterization of two distinct angiotensin AT2 receptor populations in murine neuroblastoma N1E-115 cells. J Neurochem 1994; 62(6): 2106–15.PubMedCrossRef
20.
go back to reference Volpe M. Treatment of systolic hypertension: spotlight on recent studies with angiotensin II antagonists. J Hum Hypertens 2005; 19(2): 93–102.PubMedCrossRef Volpe M. Treatment of systolic hypertension: spotlight on recent studies with angiotensin II antagonists. J Hum Hypertens 2005; 19(2): 93–102.PubMedCrossRef
21.
go back to reference Unger T, Kaschina E. Drug interactions with angiotensin receptor blockers: a comparison with other antihypertensives. Drug Saf 2003; 26(10): 707–20.PubMedCrossRef Unger T, Kaschina E. Drug interactions with angiotensin receptor blockers: a comparison with other antihypertensives. Drug Saf 2003; 26(10): 707–20.PubMedCrossRef
22.
go back to reference Camargo MJ, von Lutterotti N, Campbell WG, et al. Control of blood pressure and end-organ damage in maturing salt-loaded stroke-prone spontaneously hypertensive rats by oral angiotensin II receptor blockade. J Hypertens 1993; 11(1): 31–40.PubMedCrossRef Camargo MJ, von Lutterotti N, Campbell WG, et al. Control of blood pressure and end-organ damage in maturing salt-loaded stroke-prone spontaneously hypertensive rats by oral angiotensin II receptor blockade. J Hypertens 1993; 11(1): 31–40.PubMedCrossRef
23.
go back to reference Fornes P, Richer C, Vacher E, et al. Losartan’s protective effects in stroke-prone spontaneously hypertensive rats persist durably after treatment withdrawal. J Cardiovasc Pharmacol 1993; 22(2): 305–13.PubMedCrossRef Fornes P, Richer C, Vacher E, et al. Losartan’s protective effects in stroke-prone spontaneously hypertensive rats persist durably after treatment withdrawal. J Cardiovasc Pharmacol 1993; 22(2): 305–13.PubMedCrossRef
24.
go back to reference Stier CT, Adler LA, Levine S, et al. Stroke prevention by losartan in stroke-prone spontaneously hypertensive rats. J Hypertens Suppl 1993; 11(3): S37–42.PubMed Stier CT, Adler LA, Levine S, et al. Stroke prevention by losartan in stroke-prone spontaneously hypertensive rats. J Hypertens Suppl 1993; 11(3): S37–42.PubMed
25.
go back to reference Gohlke P, Linz W, Scholkens BA, et al. Cardiac and vascular effects of long-term losartan treatment in stroke-prone spontaneously hypertensive rats. Hypertension 1996; 28(3): 397–402.PubMedCrossRef Gohlke P, Linz W, Scholkens BA, et al. Cardiac and vascular effects of long-term losartan treatment in stroke-prone spontaneously hypertensive rats. Hypertension 1996; 28(3): 397–402.PubMedCrossRef
26.
go back to reference Sachinidis A, el-Haschimi K, Ko Y, et al. CV-11974, the active metabolite of TCV-116 (Candesarten), inhibits the synergistic or additive effect of different growth factors on angiotensin II-induced proliferation of vascular smooth muscle cells. Biochem Pharmacol 1996; 52(1): 123–6.PubMedCrossRef Sachinidis A, el-Haschimi K, Ko Y, et al. CV-11974, the active metabolite of TCV-116 (Candesarten), inhibits the synergistic or additive effect of different growth factors on angiotensin II-induced proliferation of vascular smooth muscle cells. Biochem Pharmacol 1996; 52(1): 123–6.PubMedCrossRef
27.
go back to reference Yanagitani Y, Rakugi H, Okamura A, et al. Angiotensin II type 1 receptor-mediated peroxide production in human macrophages. Hypertension 1999; 33(1 Pt 2): 335–9.PubMedCrossRef Yanagitani Y, Rakugi H, Okamura A, et al. Angiotensin II type 1 receptor-mediated peroxide production in human macrophages. Hypertension 1999; 33(1 Pt 2): 335–9.PubMedCrossRef
28.
go back to reference Blume A, Herdegen T, Unger T. Angiotensin peptides and inducible transcription factors. J Mol Med 1999; 77(3): 339–57.PubMedCrossRef Blume A, Herdegen T, Unger T. Angiotensin peptides and inducible transcription factors. J Mol Med 1999; 77(3): 339–57.PubMedCrossRef
29.
go back to reference Balla T, Baukal AJ, Eng S, et al. Angiotensin II receptor subtypes and biological responses in the adrenal cortex and medulla. Mol Pharmacol 1991; 40(3): 401–6.PubMed Balla T, Baukal AJ, Eng S, et al. Angiotensin II receptor subtypes and biological responses in the adrenal cortex and medulla. Mol Pharmacol 1991; 40(3): 401–6.PubMed
30.
go back to reference Marrero MB, Paxton WG, Schieffer B, et al. Angiotensin II signalling events mediated by tyrosine phosphorylation. Cell Signal 1996; 8(1): 21–6.PubMedCrossRef Marrero MB, Paxton WG, Schieffer B, et al. Angiotensin II signalling events mediated by tyrosine phosphorylation. Cell Signal 1996; 8(1): 21–6.PubMedCrossRef
31.
go back to reference Gelband CH, Sumners C, Lu D, et al. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. Regul Pept 1998; 73(3): 141–7.PubMedCrossRef Gelband CH, Sumners C, Lu D, et al. Angiotensin receptors and norepinephrine neuromodulation: implications of functional coupling. Regul Pept 1998; 73(3): 141–7.PubMedCrossRef
32.
go back to reference Akishita M, Ito M, Lehtonen JY, et al. Expression of the AT2 receptor developmentally programs extracellular signal-regulated kinase activity and influence: fetal vascular growth. J Clin Invest 1999; 103(1): 63–71.PubMedCrossRef Akishita M, Ito M, Lehtonen JY, et al. Expression of the AT2 receptor developmentally programs extracellular signal-regulated kinase activity and influence: fetal vascular growth. J Clin Invest 1999; 103(1): 63–71.PubMedCrossRef
33.
go back to reference Pees C, Unger T, Gohlke P. Effect of angiotensin AT2 receptor stimulation on vascular cyclic GMP production in normotensive Wistar Kyoto rats. Int. Biochem Cell Biol 2003; 35(6): 963–72.CrossRef Pees C, Unger T, Gohlke P. Effect of angiotensin AT2 receptor stimulation on vascular cyclic GMP production in normotensive Wistar Kyoto rats. Int. Biochem Cell Biol 2003; 35(6): 963–72.CrossRef
34.
35.
go back to reference Jiao H, Cui XL, Torti M, et al. Arachidonic acid mediates angiotensin II effects on p21ras in renal proximal tubular cells via the tyrosine kinase-Shc-Grb2-Sos pathway. Proc Natl Acad Sci U S A 1998; 95(13): 7417–21.PubMedCrossRef Jiao H, Cui XL, Torti M, et al. Arachidonic acid mediates angiotensin II effects on p21ras in renal proximal tubular cells via the tyrosine kinase-Shc-Grb2-Sos pathway. Proc Natl Acad Sci U S A 1998; 95(13): 7417–21.PubMedCrossRef
36.
go back to reference Gallinat S, Busche S, Schutze S, et al. AT2 receptor stimulation induces generation of ceramides in PC12W cells. FEBS Lett 1999; 443(1): 75–9.PubMedCrossRef Gallinat S, Busche S, Schutze S, et al. AT2 receptor stimulation induces generation of ceramides in PC12W cells. FEBS Lett 1999; 443(1): 75–9.PubMedCrossRef
37.
go back to reference Lehtonen JY, Horiuchi M, Daviet L, et al. Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced apoptosis. J Bio Chem 1999; 274(24): 16901–6.CrossRef Lehtonen JY, Horiuchi M, Daviet L, et al. Activation of the de novo biosynthesis of sphingolipids mediates angiotensin II type 2 receptor-induced apoptosis. J Bio Chem 1999; 274(24): 16901–6.CrossRef
38.
go back to reference Huang XC, Richards EM, Sumners C. Angiotensin II type 2 receptor-mediated stimulation of protein phosphatase 2A in rat hypothalamic/brainstem neurona cocultures. J Neurochem 1995; 65(5): 2131–7.PubMedCrossRef Huang XC, Richards EM, Sumners C. Angiotensin II type 2 receptor-mediated stimulation of protein phosphatase 2A in rat hypothalamic/brainstem neurona cocultures. J Neurochem 1995; 65(5): 2131–7.PubMedCrossRef
39.
go back to reference Horiuchi M, Hayashida W, Kambe T, et al. Angiotensin type 2 recepto dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phos phatase-1 and induces apoptosis. J Biol Chem 1997; 272(30): 19022–6.PubMedCrossRef Horiuchi M, Hayashida W, Kambe T, et al. Angiotensin type 2 recepto dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phos phatase-1 and induces apoptosis. J Biol Chem 1997; 272(30): 19022–6.PubMedCrossRef
40.
go back to reference Shaw S, Bencherif M, Marrero MB. Angiotensin II blocks nicotine-mediated neuroprotection against beta-amyloid (1–42) via activation of the tyrosine phosphatase SHP-1. J Neurosci 2003; 23(35): 11224–8.PubMed Shaw S, Bencherif M, Marrero MB. Angiotensin II blocks nicotine-mediated neuroprotection against beta-amyloid (1–42) via activation of the tyrosine phosphatase SHP-1. J Neurosci 2003; 23(35): 11224–8.PubMed
41.
go back to reference de Gasparo M, Catt KJ, Nagami T, et al. International union of pharmacology: XXIII. The angiotensin II receptors. Pharmacol Rev 2000; 52(3): 415–72.PubMed de Gasparo M, Catt KJ, Nagami T, et al. International union of pharmacology: XXIII. The angiotensin II receptors. Pharmacol Rev 2000; 52(3): 415–72.PubMed
42.
go back to reference Archer FR, Doherty P, Collins D, et al. CAMs and FGF cause a local submembrane calcium signal promoting axon outgrowth without a rise in bulk calciun concentration. Eur J Neurosci 1999; 11(10): 3565–73.PubMedCrossRef Archer FR, Doherty P, Collins D, et al. CAMs and FGF cause a local submembrane calcium signal promoting axon outgrowth without a rise in bulk calciun concentration. Eur J Neurosci 1999; 11(10): 3565–73.PubMedCrossRef
43.
go back to reference Koshimura K, Murakami Y, Sohmiya M, et al. Effects of erythropoietin on neuronal activity. J Neurochem 1999; 72(6): 2565–72.PubMedCrossRef Koshimura K, Murakami Y, Sohmiya M, et al. Effects of erythropoietin on neuronal activity. J Neurochem 1999; 72(6): 2565–72.PubMedCrossRef
44.
go back to reference Yu SP, Yeh CH, Sensi SL, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 1997; 278(5335): 114–7.PubMedCrossRef Yu SP, Yeh CH, Sensi SL, et al. Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 1997; 278(5335): 114–7.PubMedCrossRef
45.
go back to reference Jing G, Grammatopoulos T, Ferguson P, et al. Inhibitory effects of angiotensin on NMDA-induced cytotoxicity in primary neuronal cultures. Brain Res Bull 2004; 62(5): 397–403.PubMedCrossRef Jing G, Grammatopoulos T, Ferguson P, et al. Inhibitory effects of angiotensin on NMDA-induced cytotoxicity in primary neuronal cultures. Brain Res Bull 2004; 62(5): 397–403.PubMedCrossRef
46.
go back to reference Horiuchi M, Hayashida W, Akishita M, et al. Stimulation of different subtypes of angiotensin II receptors, AT1 and AT2 receptors, regulates STAT activation by negative crosstalk. Circ Res 1999; 84(8): 876–82.PubMedCrossRef Horiuchi M, Hayashida W, Akishita M, et al. Stimulation of different subtypes of angiotensin II receptors, AT1 and AT2 receptors, regulates STAT activation by negative crosstalk. Circ Res 1999; 84(8): 876–82.PubMedCrossRef
47.
go back to reference De-Fraja C. STAT signalling in the mature and aging brain. Int J Dev Neurosci 2000; 18(4–5): 439–46.PubMedCrossRef De-Fraja C. STAT signalling in the mature and aging brain. Int J Dev Neurosci 2000; 18(4–5): 439–46.PubMedCrossRef
48.
go back to reference Nouet S, Amzallag N, Li JM, et al. Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP. J Biol Chen 2004; 279(28): 28989–97.CrossRef Nouet S, Amzallag N, Li JM, et al. Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP. J Biol Chen 2004; 279(28): 28989–97.CrossRef
49.
go back to reference Unger T, Badoer E, Ganten D, et al. Brain angiotensin: pathways and pharmacology. Circulation 1988; 77(6 Pt 2): 140–54. Unger T, Badoer E, Ganten D, et al. Brain angiotensin: pathways and pharmacology. Circulation 1988; 77(6 Pt 2): 140–54.
50.
go back to reference Dai WJ, Funk A, Herdegen T, et al. Blockade of central angiotensin AT (1) receptors improves neurological outcome and reduces expression of AP-1 transcription factors after focal brain ischemia in rats. Stroke 1999; 30(11): 2391–8.PubMedCrossRef Dai WJ, Funk A, Herdegen T, et al. Blockade of central angiotensin AT (1) receptors improves neurological outcome and reduces expression of AP-1 transcription factors after focal brain ischemia in rats. Stroke 1999; 30(11): 2391–8.PubMedCrossRef
51.
go back to reference Lou M, Blume A, Zhao Y, et al. Sustained blockade of brain ATI receptors before and after focal cerebral ischemia alleviates neurologic deficits and reduce: neuronal injury, apoptosis, and inflammatory responses in the rat. J Cereb Blood Flow Metab 2004; 24(5): 536–47.PubMedCrossRef Lou M, Blume A, Zhao Y, et al. Sustained blockade of brain ATI receptors before and after focal cerebral ischemia alleviates neurologic deficits and reduce: neuronal injury, apoptosis, and inflammatory responses in the rat. J Cereb Blood Flow Metab 2004; 24(5): 536–47.PubMedCrossRef
52.
go back to reference Li J, Culman J, Hörtnagl H, et al. Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J 2005 Apr; 19(6): 617–9.PubMedCrossRef Li J, Culman J, Hörtnagl H, et al. Angiotensin AT2 receptor protects against cerebral ischemia-induced neuronal injury. FASEB J 2005 Apr; 19(6): 617–9.PubMedCrossRef
53.
go back to reference Sandercock PA, Warlow CP, Jones LN, et al. Predisposing factors for cerebral infarction: the Oxfordshire community stroke project. BMJ 1989; 298(6666): 75–80.PubMedCrossRef Sandercock PA, Warlow CP, Jones LN, et al. Predisposing factors for cerebral infarction: the Oxfordshire community stroke project. BMJ 1989; 298(6666): 75–80.PubMedCrossRef
54.
go back to reference Ogata J, Fujishima M, Tamaki K, et al. Stroke-prone spontaneously hypertensive rats as an experimental model of malignant hypertension: I. A light- and electron-microscopic study of the brain. Acta Neuropathol (Berl) 1980; 51(3): 179–84.CrossRef Ogata J, Fujishima M, Tamaki K, et al. Stroke-prone spontaneously hypertensive rats as an experimental model of malignant hypertension: I. A light- and electron-microscopic study of the brain. Acta Neuropathol (Berl) 1980; 51(3): 179–84.CrossRef
55.
go back to reference Mayhan WG, Faraci FM, Heistad DD. Impairment of endothelium-dependent responses of cerebral arterioles in chronic hypertension. Am J Physiol 1987; 253(6 Pt 2): H1435–40.PubMed Mayhan WG, Faraci FM, Heistad DD. Impairment of endothelium-dependent responses of cerebral arterioles in chronic hypertension. Am J Physiol 1987; 253(6 Pt 2): H1435–40.PubMed
56.
go back to reference Baumbach GL, Dobrin PB, Hart MN, et al. Mechanics of cerebral arterioles in hypertensive rats. Circ Res 1988; 62(1): 56–64.PubMedCrossRef Baumbach GL, Dobrin PB, Hart MN, et al. Mechanics of cerebral arterioles in hypertensive rats. Circ Res 1988; 62(1): 56–64.PubMedCrossRef
57.
go back to reference Smeda JS. Cerebral vascular changes associated with hemorrhagic stroke in hypertension. Can J Physiol Pharmacol 1992; 70(4): 552–64.PubMedCrossRef Smeda JS. Cerebral vascular changes associated with hemorrhagic stroke in hypertension. Can J Physiol Pharmacol 1992; 70(4): 552–64.PubMedCrossRef
58.
go back to reference Vraamark T, Waldemar G, Strandgaard S, et al. Angiotensin II receptor antagonist CV-11974 and cerebral blood flow autoregulation. J Hypertens 1995; 13(7): 755–61.PubMedCrossRef Vraamark T, Waldemar G, Strandgaard S, et al. Angiotensin II receptor antagonist CV-11974 and cerebral blood flow autoregulation. J Hypertens 1995; 13(7): 755–61.PubMedCrossRef
59.
go back to reference Inada Y, Wada T, Ojima M, et al. Protective effects of candesartan cilexetil (TCV-116) against stroke, kidney dysfunction and cardiac hypertrophy in stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens 1997; 19(7): 1079–99.PubMedCrossRef Inada Y, Wada T, Ojima M, et al. Protective effects of candesartan cilexetil (TCV-116) against stroke, kidney dysfunction and cardiac hypertrophy in stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens 1997; 19(7): 1079–99.PubMedCrossRef
60.
go back to reference Vacher E, Richer C, Giudicelli JF. Effects of losartan on cerebral arteries in stroke-prone spontaneously hypertensive rats. J Hypertens 1996; 14(11): 1341–8.PubMedCrossRef Vacher E, Richer C, Giudicelli JF. Effects of losartan on cerebral arteries in stroke-prone spontaneously hypertensive rats. J Hypertens 1996; 14(11): 1341–8.PubMedCrossRef
61.
go back to reference Tesfamariam B, Halpern W. Endothelium-dependent and endothelium-independent vasodilation in resistance arteries from hypertensive rats. Hypertension 1988; 11(5): 440–4.PubMedCrossRef Tesfamariam B, Halpern W. Endothelium-dependent and endothelium-independent vasodilation in resistance arteries from hypertensive rats. Hypertension 1988; 11(5): 440–4.PubMedCrossRef
62.
go back to reference Diederich D, Yang ZH, Buhler FR, et al. Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve cyclooxygenase pathway. Am J Physiol 1990; 258(2 Pt 2): H445–51.PubMed Diederich D, Yang ZH, Buhler FR, et al. Impaired endothelium-dependent relaxations in hypertensive resistance arteries involve cyclooxygenase pathway. Am J Physiol 1990; 258(2 Pt 2): H445–51.PubMed
63.
go back to reference Mayhan WG, Faraci FM, Heistad DD. Responses of cerebral arterioles to adenosine 5’-diphosphate, serotonin, and the thromboxane analogue U-46619 during chronic hypertension. Hypertension 1988; 12(6): 556–61.PubMedCrossRef Mayhan WG, Faraci FM, Heistad DD. Responses of cerebral arterioles to adenosine 5’-diphosphate, serotonin, and the thromboxane analogue U-46619 during chronic hypertension. Hypertension 1988; 12(6): 556–61.PubMedCrossRef
64.
go back to reference Sudhir K, MacGregor JS, Gupta M, et al. Effect of selective angiotensin II receptor antagonism and angiotensin converting enzyme inhibition on the coronary vasculature in vivo: intravascular two-dimensional and Doppler ultrasound studies. Circulation 1993; 87(3): 931–8.PubMedCrossRef Sudhir K, MacGregor JS, Gupta M, et al. Effect of selective angiotensin II receptor antagonism and angiotensin converting enzyme inhibition on the coronary vasculature in vivo: intravascular two-dimensional and Doppler ultrasound studies. Circulation 1993; 87(3): 931–8.PubMedCrossRef
65.
go back to reference Jaiswal N, Diz DI, Tallant EA, et al. The nonpeptide angiotensin II antagonist DuP 753 is a potent stimulus for prostacyclin synthesis. Am J Hypertens 1991; 4(3 Pt 1): 228–33.PubMed Jaiswal N, Diz DI, Tallant EA, et al. The nonpeptide angiotensin II antagonist DuP 753 is a potent stimulus for prostacyclin synthesis. Am J Hypertens 1991; 4(3 Pt 1): 228–33.PubMed
66.
go back to reference Bertolino F, Valentin JP, Maffre M, et al. Prevention of thromboxane A2 receptor-mediated pulmonary hypertension by a nonpeptide angiotensin II type 1 receptor antagonist. J Pharmacol Exp Ther 1994; 268(2): 747–52.PubMed Bertolino F, Valentin JP, Maffre M, et al. Prevention of thromboxane A2 receptor-mediated pulmonary hypertension by a nonpeptide angiotensin II type 1 receptor antagonist. J Pharmacol Exp Ther 1994; 268(2): 747–52.PubMed
67.
go back to reference Ishizaki H, Ohtawa M. Inhibitory effect of the nonpeptide angiotensin II receptor antagonist losartan and its active metabolite, E-3174, on cAMP phosphodiesterase: additional action of the antagonists. Biochem Pharmacol 1994; 48(1): 201–4.PubMedCrossRef Ishizaki H, Ohtawa M. Inhibitory effect of the nonpeptide angiotensin II receptor antagonist losartan and its active metabolite, E-3174, on cAMP phosphodiesterase: additional action of the antagonists. Biochem Pharmacol 1994; 48(1): 201–4.PubMedCrossRef
68.
go back to reference Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT (1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 2000; 31(10): 2478–86.PubMedCrossRef Nishimura Y, Ito T, Saavedra JM. Angiotensin II AT (1) blockade normalizes cerebrovascular autoregulation and reduces cerebral ischemia in spontaneously hypertensive rats. Stroke 2000; 31(10): 2478–86.PubMedCrossRef
69.
go back to reference Fernandez LA, Caride VJ, Stromberg C, et al. Angiotensin AT2 receptor stimulation increases survival in gerbils with abrupt unilateral carotid ligation. J Cardiovasc Pharmacol 1994; 24(6): 937–40.PubMedCrossRef Fernandez LA, Caride VJ, Stromberg C, et al. Angiotensin AT2 receptor stimulation increases survival in gerbils with abrupt unilateral carotid ligation. J Cardiovasc Pharmacol 1994; 24(6): 937–40.PubMedCrossRef
70.
go back to reference Engelhorn T, Goerike S, Doerfler A, et al. The angiotensin II type 1 receptor blocker candesartan improves cerebral blood flow, reduces infarct size, and improves neurological outcome after transient cerebral ischemia in rats. J Cereb Blood Flow Metab 2004; 24: 467–74.PubMedCrossRef Engelhorn T, Goerike S, Doerfler A, et al. The angiotensin II type 1 receptor blocker candesartan improves cerebral blood flow, reduces infarct size, and improves neurological outcome after transient cerebral ischemia in rats. J Cereb Blood Flow Metab 2004; 24: 467–74.PubMedCrossRef
71.
go back to reference Groth W, Blume A, Gohlke P, et al. Chronic pretreatment with candesartan improves recovery from focal cerebral ischaemia in rats. J Hypertens 2003; 21(11): 2175–82.PubMedCrossRef Groth W, Blume A, Gohlke P, et al. Chronic pretreatment with candesartan improves recovery from focal cerebral ischaemia in rats. J Hypertens 2003; 21(11): 2175–82.PubMedCrossRef
72.
go back to reference Devereux RB, Dahlof B, Kjeldsen SE, et al. Effects of losartan or atenolol in hypertensive patients without clinically evident vascular disease: a substudy of the LIFE randomized trial. Ann Intern Med 2003; 139(3): 169–77.PubMed Devereux RB, Dahlof B, Kjeldsen SE, et al. Effects of losartan or atenolol in hypertensive patients without clinically evident vascular disease: a substudy of the LIFE randomized trial. Ann Intern Med 2003; 139(3): 169–77.PubMed
73.
go back to reference Hansson L, Lindholm LH, Niskanen L, et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 1999; 353: 611–6.PubMedCrossRef Hansson L, Lindholm LH, Niskanen L, et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 1999; 353: 611–6.PubMedCrossRef
74.
go back to reference Fernandez LA, Spencer DD, Kaczmar T. Angiotensin II decreases mortality rate in gerbils with unilateral carotid ligation. Stroke 1986; 17: 82–5.PubMedCrossRef Fernandez LA, Spencer DD, Kaczmar T. Angiotensin II decreases mortality rate in gerbils with unilateral carotid ligation. Stroke 1986; 17: 82–5.PubMedCrossRef
75.
go back to reference Kaliszewski C, Fernandez LA, Wicke JD. Differences in mortality rate between abrupt and progressive carotid ligation in the gerbil: role of endogenous angiotensin II. J Cereb Blood Flow Metab 1988; 8: 149–54.PubMedCrossRef Kaliszewski C, Fernandez LA, Wicke JD. Differences in mortality rate between abrupt and progressive carotid ligation in the gerbil: role of endogenous angiotensin II. J Cereb Blood Flow Metab 1988; 8: 149–54.PubMedCrossRef
76.
go back to reference Walther T, Olah L, Harms C, et al. Ischemic injury in experimental stroke depends on angiotensin II. FASEB J 2002; 16(2): 169–76.PubMedCrossRef Walther T, Olah L, Harms C, et al. Ischemic injury in experimental stroke depends on angiotensin II. FASEB J 2002; 16(2): 169–76.PubMedCrossRef
77.
go back to reference Kimura B, Sumners C, Phillips MI. Changes in skin angiotensin II receptors in rats during wound healing. Biochem Biophys Res Commun 1992; 187(2): 1083–90.PubMedCrossRef Kimura B, Sumners C, Phillips MI. Changes in skin angiotensin II receptors in rats during wound healing. Biochem Biophys Res Commun 1992; 187(2): 1083–90.PubMedCrossRef
78.
go back to reference Nio Y, Matsubara H, Murasawa S, et al. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 1995; 95(1): 46–54.PubMedCrossRef Nio Y, Matsubara H, Murasawa S, et al. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 1995; 95(1): 46–54.PubMedCrossRef
79.
go back to reference Shewan D, Berry M, Cohen J. Extensive regeneration in vitro by early embryonic neurons on immature and adult CNS tissue. J Neurosci 1995; 15(3 Pt 1): 2057–62.PubMed Shewan D, Berry M, Cohen J. Extensive regeneration in vitro by early embryonic neurons on immature and adult CNS tissue. J Neurosci 1995; 15(3 Pt 1): 2057–62.PubMed
80.
go back to reference Hausmann B, Sievers J, Hermanns J, et al. Regeneration of axons from the adult rat optic nerve: influence of fetal brain grafts, laminin, and artificial basement membrane. J Comp Neurol 1989; 281(3): 447–66.PubMedCrossRef Hausmann B, Sievers J, Hermanns J, et al. Regeneration of axons from the adult rat optic nerve: influence of fetal brain grafts, laminin, and artificial basement membrane. J Comp Neurol 1989; 281(3): 447–66.PubMedCrossRef
81.
go back to reference Meffert S, Stoll M, Steckelings UM, et al. The angiotensin II AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Mol Cell Endocrinol 1996; 122(1): 59–67.PubMedCrossRef Meffert S, Stoll M, Steckelings UM, et al. The angiotensin II AT2 receptor inhibits proliferation and promotes differentiation in PC12W cells. Mol Cell Endocrinol 1996; 122(1): 59–67.PubMedCrossRef
82.
go back to reference Gallinat S, Csikos T, Meffert S, et al. The angiotensin AT2 receptor down-regulates neurofilament M in PC12W cells. Neurosci Lett 1997; 227(1): 29–32.PubMedCrossRef Gallinat S, Csikos T, Meffert S, et al. The angiotensin AT2 receptor down-regulates neurofilament M in PC12W cells. Neurosci Lett 1997; 227(1): 29–32.PubMedCrossRef
83.
go back to reference Stroth U, Meffert S, Gallinat S, et al. Angiotensin II and NGF differentially influence microtubule proteins in PC12W cells: role of the AT2 receptor. Brain Res Mol Brain Res 1998; 53(1–2): 187–95.PubMedCrossRef Stroth U, Meffert S, Gallinat S, et al. Angiotensin II and NGF differentially influence microtubule proteins in PC12W cells: role of the AT2 receptor. Brain Res Mol Brain Res 1998; 53(1–2): 187–95.PubMedCrossRef
84.
go back to reference Laflamme L, Gasparo M, Gallo JM, et al. Angiotensin II induction of neurite outgrowth by AT2 receptors in NG108-15 cells: effect counteracted by the AT1 receptors. J Biol Chem 1996; 271(37): 22729–35.PubMedCrossRef Laflamme L, Gasparo M, Gallo JM, et al. Angiotensin II induction of neurite outgrowth by AT2 receptors in NG108-15 cells: effect counteracted by the AT1 receptors. J Biol Chem 1996; 271(37): 22729–35.PubMedCrossRef
85.
go back to reference Nijhawan D, Honarpour N, Wang X. Apoptosis in neural development and disease. Annu Rev Neurosci 2000; 23: 73–87.PubMedCrossRef Nijhawan D, Honarpour N, Wang X. Apoptosis in neural development and disease. Annu Rev Neurosci 2000; 23: 73–87.PubMedCrossRef
86.
go back to reference Herdegen T, Skene P, Bahr M. The c-Jun transcription factor-bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 1997; 20(5): 227–31.PubMedCrossRef Herdegen T, Skene P, Bahr M. The c-Jun transcription factor-bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 1997; 20(5): 227–31.PubMedCrossRef
87.
go back to reference Yamada T, Horiuchi M, Dzau VJ. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci U S A 1996; 93(1): 156–60.PubMedCrossRef Yamada T, Horiuchi M, Dzau VJ. Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci U S A 1996; 93(1): 156–60.PubMedCrossRef
88.
go back to reference Stroth U, Blume A, Mielke K, et al. Angiotensin AT (2) receptor stimulates ERK1 and ERK2 in quiescent but inhibits ERK in NGF-stimulated PC12W cells. Brain Res Mol Brain Res 2000; 78(1–2): 175–80.PubMedCrossRef Stroth U, Blume A, Mielke K, et al. Angiotensin AT (2) receptor stimulates ERK1 and ERK2 in quiescent but inhibits ERK in NGF-stimulated PC12W cells. Brain Res Mol Brain Res 2000; 78(1–2): 175–80.PubMedCrossRef
89.
go back to reference Kummer JL, Rao PK, Heidenreich KA. Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem 1997; 272(33): 20490–4.PubMedCrossRef Kummer JL, Rao PK, Heidenreich KA. Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem 1997; 272(33): 20490–4.PubMedCrossRef
90.
go back to reference Kolesnick RN, Kronke M. Regulation of ceramide production and apoptosis. Annu Rev Physiol 1998; 60: 643–65.PubMedCrossRef Kolesnick RN, Kronke M. Regulation of ceramide production and apoptosis. Annu Rev Physiol 1998; 60: 643–65.PubMedCrossRef
91.
go back to reference Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system. Annu Rev Neurosci 1997; 20: 245–67.PubMedCrossRef Merry DE, Korsmeyer SJ. Bcl-2 gene family in the nervous system. Annu Rev Neurosci 1997; 20: 245–67.PubMedCrossRef
92.
go back to reference Shenoy UV, Richards EM, Huang XC, et al. Angiotensin II type 2 receptor-mediated apoptosis of cultured neurons from newborn rat brain. Endocrinology 1999; 140(1): 500–9.PubMedCrossRef Shenoy UV, Richards EM, Huang XC, et al. Angiotensin II type 2 receptor-mediated apoptosis of cultured neurons from newborn rat brain. Endocrinology 1999; 140(1): 500–9.PubMedCrossRef
93.
go back to reference Miura S, Karnik SS. Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis. EMBO J 2000; 19(15): 4026–35.PubMedCrossRef Miura S, Karnik SS. Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis. EMBO J 2000; 19(15): 4026–35.PubMedCrossRef
94.
go back to reference Grammatopoulos TN, Morris K, Bachar C, et al. Angiotensin II attenuates chemical hypoxia-induced caspase-3 activation in primary cortical neuronal cultures. Brain Res Bull 2004; 62(4): 297–303.PubMedCrossRef Grammatopoulos TN, Morris K, Bachar C, et al. Angiotensin II attenuates chemical hypoxia-induced caspase-3 activation in primary cortical neuronal cultures. Brain Res Bull 2004; 62(4): 297–303.PubMedCrossRef
96.
go back to reference Harrington EA, Fanidi A, Evan GI. Oncogenes and cell death. Curr Opin Genet Dev 1994; 4(1): 120–9.PubMedCrossRef Harrington EA, Fanidi A, Evan GI. Oncogenes and cell death. Curr Opin Genet Dev 1994; 4(1): 120–9.PubMedCrossRef
97.
go back to reference Reinecke K, Lucius R, Reinecke A, et al. Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kappaB. FASEB J 2003; 17(14): 2094–6.PubMed Reinecke K, Lucius R, Reinecke A, et al. Angiotensin II accelerates functional recovery in the rat sciatic nerve in vivo: role of the AT2 receptor and the transcription factor NF-kappaB. FASEB J 2003; 17(14): 2094–6.PubMed
98.
go back to reference Iwasaki Y, Chikawa Y, Igarashi O, et al. Trophic effect of olmesartan, a novel AT1R antagonist, on spinal motor neurons in vitro and in vivo. Neurol Res 2002; 24(5): 468–72.PubMedCrossRef Iwasaki Y, Chikawa Y, Igarashi O, et al. Trophic effect of olmesartan, a novel AT1R antagonist, on spinal motor neurons in vitro and in vivo. Neurol Res 2002; 24(5): 468–72.PubMedCrossRef
Metadata
Title
Neuroprotection with Angiotensin Receptor Antagonists
A Review of the Evidence and Potential Mechanisms
Authors
Henrik Wilms
Philip Rosenstiel
Thomas Unger
Günther Deuschl
Dr Ralph Lucius
Publication date
01-07-2005
Publisher
Springer International Publishing
Published in
American Journal of Cardiovascular Drugs / Issue 4/2005
Print ISSN: 1175-3277
Electronic ISSN: 1179-187X
DOI
https://doi.org/10.2165/00129784-200505040-00004

Other articles of this Issue 4/2005

American Journal of Cardiovascular Drugs 4/2005 Go to the issue