Skip to main content
Top
Published in: CNS Drugs 10/2003

01-08-2003 | Review Article

Neuroprotective Strategies in Parkinson’s Disease

An Update on Progress

Authors: Silvia Mandel, Edna Grünblatt, Peter Riederer, Manfred Gerlach, Yona Levites, Dr Moussa B. H. Youdim

Published in: CNS Drugs | Issue 10/2003

Login to get access

Abstract

In spite of the extensive studies performed on postmortem substantia nigra from Parkinson’s disease patients, the aetiology of the disease has not yet been established. Nevertheless, these studies have demonstrated that, at the time of death, a cascade of events had been initiated that may contribute to the demise of the melanin-containing nigro-striatal dopamine neurons. These events include increased levels of iron and monoamine oxidase (MAO)-B activity, oxidative stress, inflammatory processes, glutamatergic excitotoxicity, nitric oxide synthesis, abnormal protein folding and aggregation, reduced expression of trophic factors, depletion of endogenous antioxidants such as reduced glutathione, and altered calcium homeostasis. To a large extent, the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) animal models of Parkinson’s disease confirm these findings. Furthermore, neuroprotection can be afforded in these models with iron chelators, radical scavenger antioxidants, MAO-B inhibitors, glutamate antagonists, nitric oxide synthase inhibitors, calcium channel antagonists and trophic factors.
Despite the success obtained with animal models, clinical neuroprotection is much more difficult to accomplish. Although the negative studies obtained with the MAO-B inhibitor selegiline (deprenyl) and the antioxidant tocopherol (vitamin E) may have resulted from an inappropriate choice of drug (selegiline) or an inadequate dose (tocopherol), the niggling problem that still remains is why these drugs, and others, do work in animals while they fail in the clinic. One reason for this may be related to the fact that in normal human brains the number of dopaminergic neurons falls by around 3–5% every decade, while in Parkinson’s disease this decline is greater. Brain autopsy studies have shown that by the time the disease is identified, some 70–75% of the dopamine-containing neurons have been lost. More sensitive reliable methods and clinical correlative markers are required to discern between confoundable symptomatic effects versus a possible neuroprotective action of drugs, namely, the ability to delay or forestall disease progression by protecting or rescuing the remaining dopamine neurons or even restoring those that have been lost.
A number of other possibilities for the clinical failure of potential neuroprotectants also exist. First, the animal models of Parkinson’s disease may not be totally reflective of the disease and, therefore, the chemical pathologies established in the animal models may not cause, or contribute to, the progression of the disease clinically. Second, because of the series of events occurring in neurode-generation and our ignorance about which of these factors constitutes the primary event in the pathogenic process, a single drug may not be adequate to induce neuroprotection and, as a consequence, use of a cocktail of drugs may be more appropriate. The latter concept receives support from recent complementary DNA (cDNA) microarray gene expression studies, which show the existence of a gene cascade of events occurring in the nigrostriatal pathway of MPTP, 6-OHDA and methamphetamine animal models of Parkinson’s disease.
Even with the advent of powerful new tools such as genomics, proteomics, brain imaging, gene replacement therapy and knockout animal models, the desired end result of neuroprotection is still beyond our current capability.
Literature
1.
go back to reference Marsden CD, Parkes JD. Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet 1977; I(8007): 345–9CrossRef Marsden CD, Parkes JD. Success and problems of long-term levodopa therapy in Parkinson’s disease. Lancet 1977; I(8007): 345–9CrossRef
2.
go back to reference Lindvall O, Backlund EO, Farde L, et al. Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 1987; 22(4): 457–68PubMedCrossRef Lindvall O, Backlund EO, Farde L, et al. Transplantation in Parkinson’s disease: two cases of adrenal medullary grafts to the putamen. Ann Neurol 1987; 22(4): 457–68PubMedCrossRef
3.
go back to reference Freeman TB, Olanow CW, Hauser RA, et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann Neurol 1995; 38(3): 379–88PubMedCrossRef Freeman TB, Olanow CW, Hauser RA, et al. Bilateral fetal nigral transplantation into the postcommissural putamen in Parkinson’s disease. Ann Neurol 1995; 38(3): 379–88PubMedCrossRef
4.
go back to reference Barker RA. Prospects for the treatment of Parkinson’s disease using neural grafts. Expert Opin Pharmacother 2000; 1(5): 889–902PubMedCrossRef Barker RA. Prospects for the treatment of Parkinson’s disease using neural grafts. Expert Opin Pharmacother 2000; 1(5): 889–902PubMedCrossRef
5.
go back to reference Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344(10): 710–9PubMedCrossRef Freed CR, Greene PE, Breeze RE, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001; 344(10): 710–9PubMedCrossRef
6.
go back to reference Parboosingh JS, Rousseau M, Rogan F, et al. Absence of mutations in superoxide dismutase and catalase genes in patients with Parkinson’s disease. Arch Neurol 1995; 52(12): 1160–3PubMedCrossRef Parboosingh JS, Rousseau M, Rogan F, et al. Absence of mutations in superoxide dismutase and catalase genes in patients with Parkinson’s disease. Arch Neurol 1995; 52(12): 1160–3PubMedCrossRef
7.
go back to reference Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276(5321): 2045–7PubMedCrossRef Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276(5321): 2045–7PubMedCrossRef
8.
go back to reference Polymeropoulos MH. Autosomal dominant Parkinson’s disease and alpha-synuclein. Ann Neurol 1998; 44(3 Suppl. 1): S63–4PubMed Polymeropoulos MH. Autosomal dominant Parkinson’s disease and alpha-synuclein. Ann Neurol 1998; 44(3 Suppl. 1): S63–4PubMed
9.
go back to reference Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 1998; 4(11): 1318–20PubMedCrossRef Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 1998; 4(11): 1318–20PubMedCrossRef
10.
go back to reference Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature 1997; 388(6645): 839–40PubMedCrossRef Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies. Nature 1997; 388(6645): 839–40PubMedCrossRef
11.
go back to reference Chung KK, Dawson VL, Dawson TM. The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neuro-degenerative disorders. Trends Neurosci 2001; 24(11 Suppl.): S7–14PubMedCrossRef Chung KK, Dawson VL, Dawson TM. The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neuro-degenerative disorders. Trends Neurosci 2001; 24(11 Suppl.): S7–14PubMedCrossRef
12.
go back to reference Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392(6676): 605–8PubMedCrossRef Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392(6676): 605–8PubMedCrossRef
13.
go back to reference Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000; 25(3): 302–5PubMedCrossRef Shimura H, Hattori N, Kubo S, et al. Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 2000; 25(3): 302–5PubMedCrossRef
14.
15.
go back to reference Linazasoro G. Neuroprotection in Parkinson’s disease: love story or mission impossible? Exp Rev Neurotherapeutics 2002; 2(3): 403–16CrossRef Linazasoro G. Neuroprotection in Parkinson’s disease: love story or mission impossible? Exp Rev Neurotherapeutics 2002; 2(3): 403–16CrossRef
16.
go back to reference McNaught KS, Belizaire R, Jenner P, et al. Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci Lett 2002; 326(3): 155–8PubMedCrossRef McNaught KS, Belizaire R, Jenner P, et al. Selective loss of 20S proteasome alpha-subunits in the substantia nigra pars compacta in Parkinson’s disease. Neurosci Lett 2002; 326(3): 155–8PubMedCrossRef
17.
go back to reference Riederer P, Sofic E, Rausch WD, et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 1989; 52(2): 515–20PubMedCrossRef Riederer P, Sofic E, Rausch WD, et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 1989; 52(2): 515–20PubMedCrossRef
18.
go back to reference Youdim MB, Ben-Shachar D, Riederer P. The possible role of iron in the etiopathology of Parkinson’s disease. Mov Disord 1993; 8(1): 1–12PubMedCrossRef Youdim MB, Ben-Shachar D, Riederer P. The possible role of iron in the etiopathology of Parkinson’s disease. Mov Disord 1993; 8(1): 1–12PubMedCrossRef
19.
go back to reference Gotz ME, Kunig G, Riederer P, et al. Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 1994; 63(1): 37–122PubMedCrossRef Gotz ME, Kunig G, Riederer P, et al. Oxidative stress: free radical production in neural degeneration. Pharmacol Ther 1994; 63(1): 37–122PubMedCrossRef
20.
go back to reference Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 1996; 47(0028-3878): 161–70CrossRef Jenner P, Olanow CW. Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology 1996; 47(0028-3878): 161–70CrossRef
21.
go back to reference Olanow CW, Youdim MB. Iron and neurodegeneration: prospects for neuroprotection. In: Olanow CW, Jenner P, Youdim MB, editors. Neurodegeneration and neuroprotection in Parkinson’s disease. London: Academic Press, 1996: 55–69CrossRef Olanow CW, Youdim MB. Iron and neurodegeneration: prospects for neuroprotection. In: Olanow CW, Jenner P, Youdim MB, editors. Neurodegeneration and neuroprotection in Parkinson’s disease. London: Academic Press, 1996: 55–69CrossRef
22.
go back to reference Youdim MBH, Riederer P. Understanding Parkinson’s disease. Sci Am 1999; 276(1): 52–9CrossRef Youdim MBH, Riederer P. Understanding Parkinson’s disease. Sci Am 1999; 276(1): 52–9CrossRef
23.
go back to reference Jenner P. Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 1998; 13(0885-3185): 24–34PubMed Jenner P. Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 1998; 13(0885-3185): 24–34PubMed
24.
go back to reference Mandel S, Grunblatt E, Youdim MBH. cDNA microarray to study gene expression of dopaminergic neurodegeneration and neuroprotection in MPTP and 6-hydroxydopamine models: implications for idiopathic Parkinson’s disease. J Neural Transm Suppl 2000; 60: 117–24PubMed Mandel S, Grunblatt E, Youdim MBH. cDNA microarray to study gene expression of dopaminergic neurodegeneration and neuroprotection in MPTP and 6-hydroxydopamine models: implications for idiopathic Parkinson’s disease. J Neural Transm Suppl 2000; 60: 117–24PubMed
25.
go back to reference Mendez JS, Finn BW. Use of 6-hydroxydopamine to create lesions in catecholamine neurons in rats. J Neurosurg 1975; 42(2): 166–73PubMedCrossRef Mendez JS, Finn BW. Use of 6-hydroxydopamine to create lesions in catecholamine neurons in rats. J Neurosurg 1975; 42(2): 166–73PubMedCrossRef
26.
go back to reference Kostrzewa RM, Harper JW. Effect of 6-hydroxydopa on cat-echolamine-containing neurons in brains of newborn rats. Brain Res 1974; 69(1): 174–81PubMedCrossRef Kostrzewa RM, Harper JW. Effect of 6-hydroxydopa on cat-echolamine-containing neurons in brains of newborn rats. Brain Res 1974; 69(1): 174–81PubMedCrossRef
27.
go back to reference Burns RS, Chiueh CC, Markey SP, et al. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 1983; 80(14): 4546–50PubMedCrossRef Burns RS, Chiueh CC, Markey SP, et al. A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci U S A 1983; 80(14): 4546–50PubMedCrossRef
28.
go back to reference Chiueh CC, Miyake H, Peng MT. Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. Adv Neurol 1993; 60: 251–8PubMed Chiueh CC, Miyake H, Peng MT. Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. Adv Neurol 1993; 60: 251–8PubMed
29.
go back to reference Davis GC, Williams AC, Markey SP, et al. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1979; 1(3): 249–54PubMedCrossRef Davis GC, Williams AC, Markey SP, et al. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res 1979; 1(3): 249–54PubMedCrossRef
30.
go back to reference Heikkila RE, Manzino L, Cabbat FS, et al. Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 1984; 311(5985): 467–9PubMedCrossRef Heikkila RE, Manzino L, Cabbat FS, et al. Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 1984; 311(5985): 467–9PubMedCrossRef
31.
go back to reference Tatton WG. Selegiline can mediate neuronal rescue rather than neuronal protection. Mov Disord 1993; 8Suppl. 1: S20–30PubMedCrossRef Tatton WG. Selegiline can mediate neuronal rescue rather than neuronal protection. Mov Disord 1993; 8Suppl. 1: S20–30PubMedCrossRef
32.
go back to reference Santiago M, Matarredona ER, Granero L, et al. Neuroprotective effect of the iron chelator desferrioxamine against MPP+ toxicity on striatal dopaminergic terminals. J Neurochem 1997; 68(2): 732–8PubMedCrossRef Santiago M, Matarredona ER, Granero L, et al. Neuroprotective effect of the iron chelator desferrioxamine against MPP+ toxicity on striatal dopaminergic terminals. J Neurochem 1997; 68(2): 732–8PubMedCrossRef
33.
go back to reference Lan J, Jiang DH. Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J Neural Transmission 1997; 104(4-5): 469–81CrossRef Lan J, Jiang DH. Desferrioxamine and vitamin E protect against iron and MPTP-induced neurodegeneration in mice. J Neural Transmission 1997; 104(4-5): 469–81CrossRef
34.
go back to reference Matarredona ER, Santiago M, Cano J, et al. Involvement of iron in MPP+ toxicity in substantia nigra: protection by desferrioxamine. Brain Res 1997; 773(1-2): 76–81PubMedCrossRef Matarredona ER, Santiago M, Cano J, et al. Involvement of iron in MPP+ toxicity in substantia nigra: protection by desferrioxamine. Brain Res 1997; 773(1-2): 76–81PubMedCrossRef
35.
go back to reference Ben-Shachar D, Eshel G, Finberg JP, et al. The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 1991; 56(4): 1441–4PubMedCrossRef Ben-Shachar D, Eshel G, Finberg JP, et al. The iron chelator desferrioxamine (Desferal) retards 6-hydroxydopamine-induced degeneration of nigrostriatal dopamine neurons. J Neurochem 1991; 56(4): 1441–4PubMedCrossRef
36.
go back to reference Cadet JL, Katz M, Jackson-Lewis V, et al. Vitamin E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence. Brain Res 1989; 476(1): 10–5PubMedCrossRef Cadet JL, Katz M, Jackson-Lewis V, et al. Vitamin E attenuates the toxic effects of intrastriatal injection of 6-hydroxydopamine (6-OHDA) in rats: behavioral and biochemical evidence. Brain Res 1989; 476(1): 10–5PubMedCrossRef
37.
go back to reference Perumal AS, Gopal VB, Tordzro WK, et al. Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain. Brain Res Bull 1992; 29(5): 699–701PubMedCrossRef Perumal AS, Gopal VB, Tordzro WK, et al. Vitamin E attenuates the toxic effects of 6-hydroxydopamine on free radical scavenging systems in rat brain. Brain Res Bull 1992; 29(5): 699–701PubMedCrossRef
38.
go back to reference Gassen M, Gross A, Youdim MB. Apomorphine enantiomers protect cultured pheochromocytoma (PC1 2) cells from oxidative stress induced by H2O2 and 6-hydroxydopamine. Mov Disord 1998; 13(2): 242–8PubMedCrossRef Gassen M, Gross A, Youdim MB. Apomorphine enantiomers protect cultured pheochromocytoma (PC1 2) cells from oxidative stress induced by H2O2 and 6-hydroxydopamine. Mov Disord 1998; 13(2): 242–8PubMedCrossRef
39.
go back to reference Grunblatt E, Mandel S, Berkuzki T, et al. Apomorphine protects against MPTP-induced neurotoxicity in mice. Mov Disord 1999; 14(4): 612–8PubMedCrossRef Grunblatt E, Mandel S, Berkuzki T, et al. Apomorphine protects against MPTP-induced neurotoxicity in mice. Mov Disord 1999; 14(4): 612–8PubMedCrossRef
40.
go back to reference Grunblatt E, Mandel S, Maor G, et al. Effects of R-apomorphine and S-apomorphine on MPTP-induced nigro-striatal doamine neuronal loss. J Neurochem 2001; 77(1): 146–56PubMedCrossRef Grunblatt E, Mandel S, Maor G, et al. Effects of R-apomorphine and S-apomorphine on MPTP-induced nigro-striatal doamine neuronal loss. J Neurochem 2001; 77(1): 146–56PubMedCrossRef
41.
go back to reference Muralikrishnan D, Mohanakumar KP. Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. FASEB J 1998; 12(10): 905–12PubMed Muralikrishnan D, Mohanakumar KP. Neuroprotection by bromocriptine against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity in mice. FASEB J 1998; 12(10): 905–12PubMed
42.
go back to reference Di Monte D, Sandy MS, Smith MT. Increased efflux rather than oxidation is the mechanism of glutathione depletion by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Biochem Biophys Res Commun 1987; 148(1): 153–60PubMedCrossRef Di Monte D, Sandy MS, Smith MT. Increased efflux rather than oxidation is the mechanism of glutathione depletion by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Biochem Biophys Res Commun 1987; 148(1): 153–60PubMedCrossRef
43.
go back to reference Przedborski S, Jackson-Lewis V, Yokoyama R, et al. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci U S A 1996; 93(10): 4565–71PubMedCrossRef Przedborski S, Jackson-Lewis V, Yokoyama R, et al. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahy-dropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci U S A 1996; 93(10): 4565–71PubMedCrossRef
44.
go back to reference Schulz JB, Matthews RT, Muqit MM, et al. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 1995; 64(2): 936–9PubMedCrossRef Schulz JB, Matthews RT, Muqit MM, et al. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 1995; 64(2): 936–9PubMedCrossRef
45.
go back to reference DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14(4): 457–60PubMedCrossRef DeRisi J, Penland L, Brown PO, et al. Use of a cDNA microarray to analyse gene expression patterns in human cancer. Nat Genet 1996; 14(4): 457–60PubMedCrossRef
46.
go back to reference Lee CK, Klopp RG, Weindruch R, et al. Gene expression profile of aging and its retardation by caloric restriction. Science 1999; 285(5432): 1390–3PubMedCrossRef Lee CK, Klopp RG, Weindruch R, et al. Gene expression profile of aging and its retardation by caloric restriction. Science 1999; 285(5432): 1390–3PubMedCrossRef
47.
go back to reference Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature 2000; 405(6788): 827–36PubMedCrossRef Lockhart DJ, Winzeler EA. Genomics, gene expression and DNA arrays. Nature 2000; 405(6788): 827–36PubMedCrossRef
48.
go back to reference Mandel S, Grunblatt E, Maor G, et al. Early and late gene changes in MPTP mice model of Parkinson’s disease employing cDNA microarray. Neurochem Res 2002; 27(10): 1231–43PubMedCrossRef Mandel S, Grunblatt E, Maor G, et al. Early and late gene changes in MPTP mice model of Parkinson’s disease employing cDNA microarray. Neurochem Res 2002; 27(10): 1231–43PubMedCrossRef
49.
go back to reference Grunblatt E, Mandel S, Maor G, et al. Gene expression analysis in MPTP mice model of Parkinson’s disease using cDNA microarray. J Neurochem 2001; 78: 1–12PubMedCrossRef Grunblatt E, Mandel S, Maor G, et al. Gene expression analysis in MPTP mice model of Parkinson’s disease using cDNA microarray. J Neurochem 2001; 78: 1–12PubMedCrossRef
50.
go back to reference Cadet JL, Jayanthi S, McCoy MT, et al. Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: evidence from cDNA array. Synapse 2001; 41(1): 40–8PubMedCrossRef Cadet JL, Jayanthi S, McCoy MT, et al. Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: evidence from cDNA array. Synapse 2001; 41(1): 40–8PubMedCrossRef
51.
go back to reference Xie T, Tong L, Barrett T, et al. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity. J Neurosci 2002; 22(1): 274–83PubMed Xie T, Tong L, Barrett T, et al. Changes in gene expression linked to methamphetamine-induced dopaminergic neurotoxicity. J Neurosci 2002; 22(1): 274–83PubMed
52.
go back to reference Berding G, Odin P, Brooks DJ, et al. Resting regional cerebral glucose metabolism in advanced Parkinson’s disease studied in the off and on conditions with [(18)F]FDG-PET. Mov Disord 2001; 16(6): 1014–22PubMedCrossRef Berding G, Odin P, Brooks DJ, et al. Resting regional cerebral glucose metabolism in advanced Parkinson’s disease studied in the off and on conditions with [(18)F]FDG-PET. Mov Disord 2001; 16(6): 1014–22PubMedCrossRef
53.
go back to reference Napolitano M, Centonze D, Calce A, et al. Experimental Parkinsonism modulates multiple genes involved in the transduction of dopaminergic signals in the striatum. Neurobiol Dis 2002; 10(3): 387–95PubMedCrossRef Napolitano M, Centonze D, Calce A, et al. Experimental Parkinsonism modulates multiple genes involved in the transduction of dopaminergic signals in the striatum. Neurobiol Dis 2002; 10(3): 387–95PubMedCrossRef
54.
go back to reference Smyth PG, Berman SA. Markers of apoptosis: methods for elucidating the mechanism of apoptotic cell death from the nervous system. Biotechniques 2002; 32(3): 648–50, 652, 654 passimPubMed Smyth PG, Berman SA. Markers of apoptosis: methods for elucidating the mechanism of apoptotic cell death from the nervous system. Biotechniques 2002; 32(3): 648–50, 652, 654 passimPubMed
55.
56.
go back to reference Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 2001; 65(2): 135–72PubMedCrossRef Blum D, Torch S, Lambeng N, et al. Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 2001; 65(2): 135–72PubMedCrossRef
57.
go back to reference Jimenez Del Rio M, Velez Pardo C. Apoptosis in neurodegenerative diseases: facts and controversies. Rev Neurol 2001; 32(9): 851–60 Jimenez Del Rio M, Velez Pardo C. Apoptosis in neurodegenerative diseases: facts and controversies. Rev Neurol 2001; 32(9): 851–60
58.
go back to reference Johnston JP. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 1968; 17(7): 1285–97PubMedCrossRef Johnston JP. Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 1968; 17(7): 1285–97PubMedCrossRef
59.
go back to reference Youdim MBH, Gross A, Finberg JPM. Rasagiline [N-propargyl-1R (+)-aminoindant], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 2001; 132: 500–6PubMedCrossRef Youdim MBH, Gross A, Finberg JPM. Rasagiline [N-propargyl-1R (+)-aminoindant], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 2001; 132: 500–6PubMedCrossRef
60.
go back to reference Riederer P, Youdim MBH, Rausch WD, et al. On the mode of action of L-deprenyl in the human central nervous system. J Neural Transm 1978; 43(3–4): 217–26PubMedCrossRef Riederer P, Youdim MBH, Rausch WD, et al. On the mode of action of L-deprenyl in the human central nervous system. J Neural Transm 1978; 43(3–4): 217–26PubMedCrossRef
61.
go back to reference Sonsalla PK, Golbe LI. Deprenyl as prophylaxis against Parkinson’s disease? Clin Neuropharmacol 1988; 11(6): 500–11PubMedCrossRef Sonsalla PK, Golbe LI. Deprenyl as prophylaxis against Parkinson’s disease? Clin Neuropharmacol 1988; 11(6): 500–11PubMedCrossRef
62.
go back to reference Knoll J, Ecseri Z, Kelemen K, et al. Phenylisopropylmethyl-propinylamine (E-250), a new spectrum psychic energizer. Arch Int Pharmacodyn Ther 1965; 155: 154–64PubMed Knoll J, Ecseri Z, Kelemen K, et al. Phenylisopropylmethyl-propinylamine (E-250), a new spectrum psychic energizer. Arch Int Pharmacodyn Ther 1965; 155: 154–64PubMed
63.
go back to reference Magyar K, Vizi ES, Ecseri Z, et al. Comparative pharmacological analysis of the optical isomers of phenyl-isopropyl-methylpropinylamine (E-250). Acta Physiol Acad Sci Hung 1967; 32(4): 377–87PubMed Magyar K, Vizi ES, Ecseri Z, et al. Comparative pharmacological analysis of the optical isomers of phenyl-isopropyl-methylpropinylamine (E-250). Acta Physiol Acad Sci Hung 1967; 32(4): 377–87PubMed
64.
go back to reference Varga E, Tringer L. Clinical trial of a new type promptly acting psychoenergetic agent (phenyl-isopropyl-methylpropinyl-HCl, “E-250”). Acta Med Acad Sci Hung 1967; 23(3): 289–95PubMed Varga E, Tringer L. Clinical trial of a new type promptly acting psychoenergetic agent (phenyl-isopropyl-methylpropinyl-HCl, “E-250”). Acta Med Acad Sci Hung 1967; 23(3): 289–95PubMed
65.
go back to reference Birkmayer W, Riederer P, Youdim MBH, et al. The potentiation of the anti akinetic effect after L-dopa treatment by an inhibitor of MAO-B, deprenil. J Neural Transm 1975; 36(3–4): 303–26PubMedCrossRef Birkmayer W, Riederer P, Youdim MBH, et al. The potentiation of the anti akinetic effect after L-dopa treatment by an inhibitor of MAO-B, deprenil. J Neural Transm 1975; 36(3–4): 303–26PubMedCrossRef
66.
go back to reference Presthus J, Hajba A. Deprenyl (selegiline) combined with levodopa and a decarboxylase inhibitor in the treatment of Parkinson’s disease. Acta Neurol Scand Suppl 1983; 95: 127–33PubMedCrossRef Presthus J, Hajba A. Deprenyl (selegiline) combined with levodopa and a decarboxylase inhibitor in the treatment of Parkinson’s disease. Acta Neurol Scand Suppl 1983; 95: 127–33PubMedCrossRef
67.
go back to reference Robertson DR, George CF. Drug therapy for Parkinson’s disease in the elderly. Br Med Bull 1990; 46(1): 124–46PubMed Robertson DR, George CF. Drug therapy for Parkinson’s disease in the elderly. Br Med Bull 1990; 46(1): 124–46PubMed
68.
go back to reference Mendlewicz J, Youdim MBH. A selective MAO-B inhibitor (L-deprenyl) and 5-HTP as antidepressant therapy. In: Youdim MBH, Paykel ES, editor. Monoamine oxidase inhibitors: the state of the art. London: John Wiley & Sons Ltd, 1981: 177–88 Mendlewicz J, Youdim MBH. A selective MAO-B inhibitor (L-deprenyl) and 5-HTP as antidepressant therapy. In: Youdim MBH, Paykel ES, editor. Monoamine oxidase inhibitors: the state of the art. London: John Wiley & Sons Ltd, 1981: 177–88
69.
go back to reference Golbe LI. Deprenyl as symptomatic therapy in Parkinson’s disease. Clin Neuropharmacol 1988; 11(5): 387–400PubMedCrossRef Golbe LI. Deprenyl as symptomatic therapy in Parkinson’s disease. Clin Neuropharmacol 1988; 11(5): 387–400PubMedCrossRef
70.
go back to reference Birkmayer W, Knoll J, Riederer P, et al. Increased life expectancy resulting from addition of L-deprenyl to madopar treatment in Parkinson’s disease: a longterm study. J Neural Transm 1985; 64(2): 113–27PubMedCrossRef Birkmayer W, Knoll J, Riederer P, et al. Increased life expectancy resulting from addition of L-deprenyl to madopar treatment in Parkinson’s disease: a longterm study. J Neural Transm 1985; 64(2): 113–27PubMedCrossRef
71.
go back to reference Cohen G, Spina MB. Deprenyl suppresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 1989; 26(5): 689–90PubMedCrossRef Cohen G, Spina MB. Deprenyl suppresses the oxidant stress associated with increased dopamine turnover. Ann Neurol 1989; 26(5): 689–90PubMedCrossRef
72.
go back to reference Oreland L, Gottfries CG. Brain and brain monoamine oxidase in aging and in dementia of Alzheimer’s type. Prog Neuropsy-chopharmacol Biol Psychiatry 1986; 10(3–5): 533–40CrossRef Oreland L, Gottfries CG. Brain and brain monoamine oxidase in aging and in dementia of Alzheimer’s type. Prog Neuropsy-chopharmacol Biol Psychiatry 1986; 10(3–5): 533–40CrossRef
73.
go back to reference Fowler CJ, Wiberg A, Oreland L, et al. The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 1980; 49(1-2): 1–20PubMedCrossRef Fowler CJ, Wiberg A, Oreland L, et al. The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 1980; 49(1-2): 1–20PubMedCrossRef
74.
go back to reference Glover V, Gibb C, Sandler M. The role of MAO in MPTP toxicity: a review. J Neural Transm Suppl 1986; 20: 65–76PubMed Glover V, Gibb C, Sandler M. The role of MAO in MPTP toxicity: a review. J Neural Transm Suppl 1986; 20: 65–76PubMed
75.
go back to reference Knoll J. The pharmacological basis of the beneficial effects of (−)deprenyl (selegiline) in Parkinson’s and Alzheimer’s diseases. J Neural Transm Suppl 1993; 40: 69–91PubMed Knoll J. The pharmacological basis of the beneficial effects of (−)deprenyl (selegiline) in Parkinson’s and Alzheimer’s diseases. J Neural Transm Suppl 1993; 40: 69–91PubMed
76.
go back to reference Carrillo MC, Minami C, Kitani K, et al. Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sci 2000; 67(5): 577–85PubMedCrossRef Carrillo MC, Minami C, Kitani K, et al. Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sci 2000; 67(5): 577–85PubMedCrossRef
77.
go back to reference Kitani K, Minami C, Isobe K, et al. Why (−)deprenyl prolongs survivals of experimental animals: increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors may lead to systemic anti-aging effects. Mech Ageing Dev 2002; 123(8): 1087–100PubMedCrossRef Kitani K, Minami C, Isobe K, et al. Why (−)deprenyl prolongs survivals of experimental animals: increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors may lead to systemic anti-aging effects. Mech Ageing Dev 2002; 123(8): 1087–100PubMedCrossRef
78.
go back to reference Lai CT, Zuo DM, Yu PH. Is brain superoxide dismutase activity increased following chronic treatment with 1-deprenyl? J Neural Transm Suppl 1994; 41: 221–9PubMed Lai CT, Zuo DM, Yu PH. Is brain superoxide dismutase activity increased following chronic treatment with 1-deprenyl? J Neural Transm Suppl 1994; 41: 221–9PubMed
79.
go back to reference Langston JW. Selegiline as neuroprotective therapy in Parkinson’s disease: concepts and controversies. Neurology 1990; 40 (10Suppl. 3): Suppl. 61–6 Langston JW. Selegiline as neuroprotective therapy in Parkinson’s disease: concepts and controversies. Neurology 1990; 40 (10Suppl. 3): Suppl. 61–6
80.
go back to reference Magyar K. Behaviour of (−)-deprenyl and its analogues. J Neural Transm Suppl 1994; 41: 167–75PubMed Magyar K. Behaviour of (−)-deprenyl and its analogues. J Neural Transm Suppl 1994; 41: 167–75PubMed
81.
go back to reference Lamensdorf I, Porat S, Simantov R, et al. Effect of low-dose treatment with selegiline on dopamine transporter (DAT) expression and amphetamine-induced dopamine release in vivo. Br J Pharmacol 1999; 126(4): 997–1002PubMedCrossRef Lamensdorf I, Porat S, Simantov R, et al. Effect of low-dose treatment with selegiline on dopamine transporter (DAT) expression and amphetamine-induced dopamine release in vivo. Br J Pharmacol 1999; 126(4): 997–1002PubMedCrossRef
82.
go back to reference Tatton WG, Wadia JS, Ju WY, et al. (−)-Deprenyl reduces neuronal apoptosis and facilitates neuronal outgrowth by altering protein synthesis without inhibiting monoamine oxidase. J Neural Transm Suppl 1996; 48: 45–59PubMed Tatton WG, Wadia JS, Ju WY, et al. (−)-Deprenyl reduces neuronal apoptosis and facilitates neuronal outgrowth by altering protein synthesis without inhibiting monoamine oxidase. J Neural Transm Suppl 1996; 48: 45–59PubMed
83.
go back to reference Maruyama W, Naoi M. Neuroprotection by (−)-deprenyl and related compounds. Mech Ageing Dev 1999; 111(2–3): 189–200PubMedCrossRef Maruyama W, Naoi M. Neuroprotection by (−)-deprenyl and related compounds. Mech Ageing Dev 1999; 111(2–3): 189–200PubMedCrossRef
84.
go back to reference Maruyama W, Yamamoto T, Kitani K, et al. Mechanism underlying anti-apoptotic activity of a (−) deprenyl-related propargylamine, rasagiline. Mech Ageing Dev 2000; 116(2–3): 181–91PubMedCrossRef Maruyama W, Yamamoto T, Kitani K, et al. Mechanism underlying anti-apoptotic activity of a (−) deprenyl-related propargylamine, rasagiline. Mech Ageing Dev 2000; 116(2–3): 181–91PubMedCrossRef
85.
go back to reference Mizuta I, Ohta M, Ohta K, et al. Selegiline and desmethyl-selegiline stimulate NGF, BDNF, and GDNF synthesis in cultured mouse astrocytes. Biochem Biophys Res Commun 2000; 279(3): 751–5PubMedCrossRef Mizuta I, Ohta M, Ohta K, et al. Selegiline and desmethyl-selegiline stimulate NGF, BDNF, and GDNF synthesis in cultured mouse astrocytes. Biochem Biophys Res Commun 2000; 279(3): 751–5PubMedCrossRef
86.
go back to reference Group TPS. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1993; 328(3): 176–83CrossRef Group TPS. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1993; 328(3): 176–83CrossRef
87.
go back to reference Olanow CW, Hauser RA, Gauger L, et al. The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol 1995; 38(5): 771–7PubMedCrossRef Olanow CW, Hauser RA, Gauger L, et al. The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol 1995; 38(5): 771–7PubMedCrossRef
88.
go back to reference Chiba K, Trevor A, Castagnoli Jr N. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 1984; 120(2): 574–8PubMedCrossRef Chiba K, Trevor A, Castagnoli Jr N. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 1984; 120(2): 574–8PubMedCrossRef
89.
go back to reference Finnegan KT, Skratt JJ, Irwin I, et al. Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. Eur J Pharmacol 1990; 184(1): 119–26PubMedCrossRef Finnegan KT, Skratt JJ, Irwin I, et al. Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. Eur J Pharmacol 1990; 184(1): 119–26PubMedCrossRef
90.
go back to reference Wu RM, Murphy DL, Chiueh CC. Neuronal protective and rescue effects of deprenyl against MPP+ dopaminergic toxicity. J Neural Transm Gen Sect 1995; 100(1): 53–61PubMedCrossRef Wu RM, Murphy DL, Chiueh CC. Neuronal protective and rescue effects of deprenyl against MPP+ dopaminergic toxicity. J Neural Transm Gen Sect 1995; 100(1): 53–61PubMedCrossRef
91.
go back to reference Salonen T, Haapalinna A, Heinonen E, et al. Monoamine oxidase B inhibitor selegiline protects young and aged rat peripheral sympathetic neurons against 6-hydroxydopamine-induced neurotoxicity. Acta Neuropathol (Berl) 1996; 91(5): 466–74CrossRef Salonen T, Haapalinna A, Heinonen E, et al. Monoamine oxidase B inhibitor selegiline protects young and aged rat peripheral sympathetic neurons against 6-hydroxydopamine-induced neurotoxicity. Acta Neuropathol (Berl) 1996; 91(5): 466–74CrossRef
92.
go back to reference Sprague JE, Nichols DE. The monoamine oxidase-B inhibitor L-deprenyl protects against 3,4-methylenedioxymetham-phetamine-induced lipid peroxidation and long-term serotonergic deficits. J Pharmacol Exp Ther 1995; 273(2): 667–73PubMed Sprague JE, Nichols DE. The monoamine oxidase-B inhibitor L-deprenyl protects against 3,4-methylenedioxymetham-phetamine-induced lipid peroxidation and long-term serotonergic deficits. J Pharmacol Exp Ther 1995; 273(2): 667–73PubMed
93.
go back to reference Chiueh CC, Huang SJ, Murphy DL. Enhanced hydroxyl radical generation by 2?-methyl analog of MPTP: suppression by clorgyline and deprenyl. Synapse 1992; 11(4): 346–8PubMedCrossRef Chiueh CC, Huang SJ, Murphy DL. Enhanced hydroxyl radical generation by 2?-methyl analog of MPTP: suppression by clorgyline and deprenyl. Synapse 1992; 11(4): 346–8PubMedCrossRef
94.
go back to reference Wu RM, Murphy DL, Chiueh CC. Suppression of hydroxyl radical formation and protection of nigral neurons by l-deprenyl (selegiline). Ann N Y Acad Sci 1996; 786: 379–90PubMedCrossRef Wu RM, Murphy DL, Chiueh CC. Suppression of hydroxyl radical formation and protection of nigral neurons by l-deprenyl (selegiline). Ann N Y Acad Sci 1996; 786: 379–90PubMedCrossRef
95.
go back to reference Carrillo MC, Kitani K, Kanai S, et al. (−)Deprenyl increases activities of superoxide dismutase and catalase in certain brain regions in old male mice. Life Sci 1994; 54(14): 975–81PubMedCrossRef Carrillo MC, Kitani K, Kanai S, et al. (−)Deprenyl increases activities of superoxide dismutase and catalase in certain brain regions in old male mice. Life Sci 1994; 54(14): 975–81PubMedCrossRef
96.
go back to reference Tatton WG, Olanow CW. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1999; 1410(2): 195–213PubMedCrossRef Tatton WG, Olanow CW. Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochim Biophys Acta 1999; 1410(2): 195–213PubMedCrossRef
97.
go back to reference Knoll J, Dallo J, Yen TT. Striatal dopamine, sexual activity and lifespan: longevity of rats treated with (−)deprenyl. Life Sci 1989; 45(6): 525–31PubMedCrossRef Knoll J, Dallo J, Yen TT. Striatal dopamine, sexual activity and lifespan: longevity of rats treated with (−)deprenyl. Life Sci 1989; 45(6): 525–31PubMedCrossRef
98.
go back to reference Kitani K, Kanai S, Sato Y, et al. Chronic treatment of (−)deprenyl prolongs the life span of male Fischer 344 rats: further evidence. Life Sci 1993; 52(3): 281–8PubMedCrossRef Kitani K, Kanai S, Sato Y, et al. Chronic treatment of (−)deprenyl prolongs the life span of male Fischer 344 rats: further evidence. Life Sci 1993; 52(3): 281–8PubMedCrossRef
99.
go back to reference Birkmayer W, Birkmayer GD. Effect of (−)deprenyl in long-term treatment of Parkinson’s disease: a 10-years experience. J Neural Transm Suppl 1986; 22: 219–25PubMed Birkmayer W, Birkmayer GD. Effect of (−)deprenyl in long-term treatment of Parkinson’s disease: a 10-years experience. J Neural Transm Suppl 1986; 22: 219–25PubMed
100.
go back to reference Group PS. Cerebrospinal fluid homovanillic acid in the DATATOP study on Parkinson’s disease. Arch Neurol 1995; 52(3): 237–45CrossRef Group PS. Cerebrospinal fluid homovanillic acid in the DATATOP study on Parkinson’s disease. Arch Neurol 1995; 52(3): 237–45CrossRef
101.
go back to reference Group PS. Mortality in DATATOP: a multicenter trial in early Parkinson’s disease. Ann Neurol 1998; 43(3): 318–25CrossRef Group PS. Mortality in DATATOP: a multicenter trial in early Parkinson’s disease. Ann Neurol 1998; 43(3): 318–25CrossRef
102.
go back to reference Kalir A, Sabbagh A, Youdim MBH. Selective acetylenic ‘suicide’ and reversible inhibitors of monoamine oxidase types A and B. Br J Pharmacol 1981; 73(1): 55–64PubMedCrossRef Kalir A, Sabbagh A, Youdim MBH. Selective acetylenic ‘suicide’ and reversible inhibitors of monoamine oxidase types A and B. Br J Pharmacol 1981; 73(1): 55–64PubMedCrossRef
103.
go back to reference Finberg JPM, Tenne M, Youdim MBH. Selective irreversible propargyl derivative inhibitors of monoamine oxidase (MAO) without the cheese effect. In: Youdim MBH, Peykel ES, editors. Monoamine oxidase inhibitors: the state of the art. Chichester: Wiley, 1981: 31–41 Finberg JPM, Tenne M, Youdim MBH. Selective irreversible propargyl derivative inhibitors of monoamine oxidase (MAO) without the cheese effect. In: Youdim MBH, Peykel ES, editors. Monoamine oxidase inhibitors: the state of the art. Chichester: Wiley, 1981: 31–41
104.
go back to reference Finberg JP, Lamensdorf I, Weinstock M, et al. Pharmacology of rasagiline (N-propargyl-1R-aminoindan). Adv Neurol 1999; 80: 495–9PubMed Finberg JP, Lamensdorf I, Weinstock M, et al. Pharmacology of rasagiline (N-propargyl-1R-aminoindan). Adv Neurol 1999; 80: 495–9PubMed
105.
go back to reference Maruyama W, Akao Y, Youdim MBH, et al. Neurotoxins induce apoptosis in dopamine neurons: protection by N-propargylamine-1 (R)-and (S)-aminoindan, rasagiline and TV1022. J Neural Transm Suppl 2000; 60: 171–86PubMed Maruyama W, Akao Y, Youdim MBH, et al. Neurotoxins induce apoptosis in dopamine neurons: protection by N-propargylamine-1 (R)-and (S)-aminoindan, rasagiline and TV1022. J Neural Transm Suppl 2000; 60: 171–86PubMed
106.
go back to reference Maruyama W, Akao Y, Youdim MBH, et al. Transfection-enforced bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3 phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl (R)salsolinol. J Neurochem 2001; 78: 727–35PubMedCrossRef Maruyama W, Akao Y, Youdim MBH, et al. Transfection-enforced bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3 phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl (R)salsolinol. J Neurochem 2001; 78: 727–35PubMedCrossRef
107.
go back to reference Huang W, Chen Y, Shohami E, et al. Neuroprotective effect of rasagiline, a selective monoamine oxidase-B inhibitor, against closed head injury in the mouse. Eur J Pharmacol 1999; 366(2-3): 127–35PubMedCrossRef Huang W, Chen Y, Shohami E, et al. Neuroprotective effect of rasagiline, a selective monoamine oxidase-B inhibitor, against closed head injury in the mouse. Eur J Pharmacol 1999; 366(2-3): 127–35PubMedCrossRef
108.
go back to reference Youdim MBH, Wadia JS, Tatton NA. Neuroprotective properties of the antiparkinson drug rasagiline and its optical S-isomer [letter]. Neurosci Lett 1999; 54: S45 Youdim MBH, Wadia JS, Tatton NA. Neuroprotective properties of the antiparkinson drug rasagiline and its optical S-isomer [letter]. Neurosci Lett 1999; 54: S45
109.
go back to reference Goggi J, Theofilopoulos S, Riaz SS,et al. The neuronal survival effects of rasagiline and deprenyl on fetal human and rat ventral mesencephalic neurones in culture. Neuroreport 2000; 11(18): 3937–41PubMedCrossRef Goggi J, Theofilopoulos S, Riaz SS,et al. The neuronal survival effects of rasagiline and deprenyl on fetal human and rat ventral mesencephalic neurones in culture. Neuroreport 2000; 11(18): 3937–41PubMedCrossRef
110.
go back to reference Oh C, Murray B, Bhattacharya N, et al. (−)-Deprenyl alters the survival of adult murine facial motoneurons after axotomy: increases in vulnerable C57BL strain but decreases in motor neuron degeneration mutants. J Neurosci Res 1994; 38(1): 64–74PubMedCrossRef Oh C, Murray B, Bhattacharya N, et al. (−)-Deprenyl alters the survival of adult murine facial motoneurons after axotomy: increases in vulnerable C57BL strain but decreases in motor neuron degeneration mutants. J Neurosci Res 1994; 38(1): 64–74PubMedCrossRef
111.
go back to reference Abu-Raya S, Tabakman R, Blaugrund E, et al. Neuroprotective and neurotoxic effects of monoamine oxidase-B inhibitors and derived metabolites under ischemia in PC12 cells. Eur J Pharmacol 2002; 434(3): 109–16PubMedCrossRef Abu-Raya S, Tabakman R, Blaugrund E, et al. Neuroprotective and neurotoxic effects of monoamine oxidase-B inhibitors and derived metabolites under ischemia in PC12 cells. Eur J Pharmacol 2002; 434(3): 109–16PubMedCrossRef
112.
go back to reference Youdim MBH, Wadia A, Tatton NA, et al. The anti-Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Ann N Y Acad Sci 2001; 939: 450–8PubMedCrossRef Youdim MBH, Wadia A, Tatton NA, et al. The anti-Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Ann N Y Acad Sci 2001; 939: 450–8PubMedCrossRef
113.
go back to reference Yogev-Falach M, Amit T, Bar-Am O, et al. The involvement of MAP kinase in the regulation of amyloid precursor protein processing by novel cholinesterase inhibitors derived from rasagiline. FASEB J 2002; 16: 1674–6PubMed Yogev-Falach M, Amit T, Bar-Am O, et al. The involvement of MAP kinase in the regulation of amyloid precursor protein processing by novel cholinesterase inhibitors derived from rasagiline. FASEB J 2002; 16: 1674–6PubMed
114.
go back to reference Youdim MBH, Weinstock M. Molecular basis of neuroprotective activities of rasagline and the anti-Alzheimer drug TV3326, [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate]. Cell Mol Neurobiol 2002; 21(6): 555–73CrossRef Youdim MBH, Weinstock M. Molecular basis of neuroprotective activities of rasagline and the anti-Alzheimer drug TV3326, [(N-propargyl-(3R)aminoindan-5-YL)-ethyl methyl carbamate]. Cell Mol Neurobiol 2002; 21(6): 555–73CrossRef
115.
go back to reference Maruyama W, Weinstock M, Youdim MB, et al. Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-3(R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase-monoamine oxidase inhibitor. Neurosci Lett 2003 May 8; 341(3): 233–6PubMedCrossRef Maruyama W, Weinstock M, Youdim MB, et al. Anti-apoptotic action of anti-Alzheimer drug, TV3326 [(N-propargyl)-3(R)-aminoindan-5-yl]-ethyl methyl carbamate, a novel cholinesterase-monoamine oxidase inhibitor. Neurosci Lett 2003 May 8; 341(3): 233–6PubMedCrossRef
116.
go back to reference Maruyama W, Akao Y, Carrillo MC, et al. Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 2002; 24(5): 675–82PubMedCrossRef Maruyama W, Akao Y, Carrillo MC, et al. Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 2002; 24(5): 675–82PubMedCrossRef
117.
go back to reference Rabey JM, Sagi I, Huberman M, et al. Rasagiline mesylate, a new MAO-B inhibitorfor the treatment of Parkinson’s disease: a double-blind study as adjunctive therapy to levodopa. Clin Neuropharmacol 2000; 23(6): 324–30PubMedCrossRef Rabey JM, Sagi I, Huberman M, et al. Rasagiline mesylate, a new MAO-B inhibitorfor the treatment of Parkinson’s disease: a double-blind study as adjunctive therapy to levodopa. Clin Neuropharmacol 2000; 23(6): 324–30PubMedCrossRef
118.
go back to reference Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol 2002; 59(12): 1937–43CrossRef Parkinson Study Group. A controlled trial of rasagiline in early Parkinson disease: the TEMPO Study. Arch Neurol 2002; 59(12): 1937–43CrossRef
119.
go back to reference Shoulson I. Results of the TEMPO trial. Efficacy and safety of rasagiline as monotherapy: 12 month data. Parkinson Study Group. The 7th International Congress of Parkinson’s Disease and Movement Disorders; 2002 Nov 10; Miami Shoulson I. Results of the TEMPO trial. Efficacy and safety of rasagiline as monotherapy: 12 month data. Parkinson Study Group. The 7th International Congress of Parkinson’s Disease and Movement Disorders; 2002 Nov 10; Miami
120.
go back to reference Uitti RJ, Alskog JE. Comparative review of dopamine receptor agonists in Parkinson’s disease. CNS Drugs 1996; 5(5): 369–88CrossRef Uitti RJ, Alskog JE. Comparative review of dopamine receptor agonists in Parkinson’s disease. CNS Drugs 1996; 5(5): 369–88CrossRef
121.
go back to reference Gerlach M, Ben-Shachar D, Riederer P, et al. Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 1994; 63(3): 793–807PubMedCrossRef Gerlach M, Ben-Shachar D, Riederer P, et al. Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem 1994; 63(3): 793–807PubMedCrossRef
122.
go back to reference Gassen M, Glinka Y, Pinchasi B, et al. Apomorphine is a highly potent free radical scavenger in rat brain mitochondrial fraction. Eur J Pharmacol 1996; 308(2): 219–25PubMedCrossRef Gassen M, Glinka Y, Pinchasi B, et al. Apomorphine is a highly potent free radical scavenger in rat brain mitochondrial fraction. Eur J Pharmacol 1996; 308(2): 219–25PubMedCrossRef
123.
go back to reference Nishibayashi S, Asanuma M, Kohno M, et al. Scavenging effects of dopamine agonists on nitric oxide radicals. J Neurochem 1996; 67(5): 2208–11PubMedCrossRef Nishibayashi S, Asanuma M, Kohno M, et al. Scavenging effects of dopamine agonists on nitric oxide radicals. J Neurochem 1996; 67(5): 2208–11PubMedCrossRef
124.
go back to reference Cassarino DS, Fall CP, Smith TS, et al. Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion. J Neurochem 1998; 71(1): 295–301PubMedCrossRef Cassarino DS, Fall CP, Smith TS, et al. Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion. J Neurochem 1998; 71(1): 295–301PubMedCrossRef
125.
go back to reference Youdim MB, Gassen M, Gross A, et al. Iron chelating, antioxidant and cytoprotective properties of dopamine receptor agonist; apomorphine. J Neural Transm Suppl 2000; 58: 83–96PubMed Youdim MB, Gassen M, Gross A, et al. Iron chelating, antioxidant and cytoprotective properties of dopamine receptor agonist; apomorphine. J Neural Transm Suppl 2000; 58: 83–96PubMed
126.
go back to reference Olanow CW, Jenner P, Brooks D. Dopamine agonists and neuroprotection in Parkinson’s disease. Ann Neurol 1998; 44(3 Suppl. 1): S167–74PubMed Olanow CW, Jenner P, Brooks D. Dopamine agonists and neuroprotection in Parkinson’s disease. Ann Neurol 1998; 44(3 Suppl. 1): S167–74PubMed
127.
go back to reference Zou L, Jankovic J, Rowe DB, et al. Neuroprotection by pramipexole against dopamine- and levodopa-induced cytotoxicity. Life Sci 1999; 64(15): 1275–85PubMedCrossRef Zou L, Jankovic J, Rowe DB, et al. Neuroprotection by pramipexole against dopamine- and levodopa-induced cytotoxicity. Life Sci 1999; 64(15): 1275–85PubMedCrossRef
128.
go back to reference Bennett JP, Carvey PM, Hinds TR, et al. Mechanisms of action of pramipexole putative neuroprotective effects. In: Johnson S, Johnson FN, editors. Contemporary pharmacotherapy. Lancashire: Marius Press, 2001: 33–57 Bennett JP, Carvey PM, Hinds TR, et al. Mechanisms of action of pramipexole putative neuroprotective effects. In: Johnson S, Johnson FN, editors. Contemporary pharmacotherapy. Lancashire: Marius Press, 2001: 33–57
129.
go back to reference Mena MA, Davila V, Bogaluvsky J, et al. A synergistic neuro-trophic response to l-dihydroxyphenylalanine and nerve growth factor. Mol Pharmacol 1998; 54(4): 678–86PubMed Mena MA, Davila V, Bogaluvsky J, et al. A synergistic neuro-trophic response to l-dihydroxyphenylalanine and nerve growth factor. Mol Pharmacol 1998; 54(4): 678–86PubMed
130.
go back to reference Ohta M, Mizuta I, Ohta K, et al. Apomorphine up-regulates NGF and GDNF synthesis in cultured mouse astrocytes. Biochem Biophys Res Commun 2000; 272(1): 18–22PubMedCrossRef Ohta M, Mizuta I, Ohta K, et al. Apomorphine up-regulates NGF and GDNF synthesis in cultured mouse astrocytes. Biochem Biophys Res Commun 2000; 272(1): 18–22PubMedCrossRef
131.
go back to reference Hall ED, Andrus PK, Oostveen JA, et al. Neuroprotective effects of the dopamine D2/D3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Brain Res 1996; 742(1–2): 80–8PubMedCrossRef Hall ED, Andrus PK, Oostveen JA, et al. Neuroprotective effects of the dopamine D2/D3 agonist pramipexole against postischemic or methamphetamine-induced degeneration of nigrostriatal neurons. Brain Res 1996; 742(1–2): 80–8PubMedCrossRef
132.
go back to reference Kondo T, Ito T, Sugita Y. Bromocriptine scavenges methamphetamine-induced hydroxyl radicals and attenuates dopamine depletion in mouse striatum. Ann N Y Acad Sci 1994; 738: 222–9PubMedCrossRef Kondo T, Ito T, Sugita Y. Bromocriptine scavenges methamphetamine-induced hydroxyl radicals and attenuates dopamine depletion in mouse striatum. Ann N Y Acad Sci 1994; 738: 222–9PubMedCrossRef
133.
go back to reference Linazasoro G. Subcutaneous apomorphine in the treatment of Parkinson’s disease. Neurologia 1994; 9(1): 1–3PubMed Linazasoro G. Subcutaneous apomorphine in the treatment of Parkinson’s disease. Neurologia 1994; 9(1): 1–3PubMed
134.
go back to reference Fornai F, Battaglia G, Gesi M, et al. Dose-dependent protective effects of apomorphine against methamphetamine-induced nigrostriatal damage. Brain Res 2001; 898(1): 27–35PubMedCrossRef Fornai F, Battaglia G, Gesi M, et al. Dose-dependent protective effects of apomorphine against methamphetamine-induced nigrostriatal damage. Brain Res 2001; 898(1): 27–35PubMedCrossRef
135.
go back to reference Iida M, Miyazaki I, Tanaka K, et al. Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Brain Res 1999; 838(1–2): 51–9PubMedCrossRef Iida M, Miyazaki I, Tanaka K, et al. Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Brain Res 1999; 838(1–2): 51–9PubMedCrossRef
136.
go back to reference Zou L, Xu J, Jankovic J, et al. Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice. Neurosci Lett 2000; 281(2-3): 167–70PubMedCrossRef Zou L, Xu J, Jankovic J, et al. Pramipexole inhibits lipid peroxidation and reduces injury in the substantia nigra induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in C57BL/6 mice. Neurosci Lett 2000; 281(2-3): 167–70PubMedCrossRef
137.
go back to reference Iida M, Miyazaki I, Tanaka K, et al. Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Brain Res 1999; 838 (1–2): 51–9 Iida M, Miyazaki I, Tanaka K, et al. Dopamine D2 receptor-mediated antioxidant and neuroprotective effects of ropinirole, a dopamine agonist. Brain Res 1999; 838 (1–2): 51–9
138.
go back to reference Sam EE, Verbeke N. Free radical scavenging properties of apomorphine enantiomers and dopamine: possible implication in their mechanism of action in parkinsonism. J Neural Transm Park Dis Dement Sect 1995; 10(2–3): 115–27PubMed Sam EE, Verbeke N. Free radical scavenging properties of apomorphine enantiomers and dopamine: possible implication in their mechanism of action in parkinsonism. J Neural Transm Park Dis Dement Sect 1995; 10(2–3): 115–27PubMed
139.
go back to reference Ubeda A, Montesinos C, Paya M, et al. Iron-reducing and free-radical-scavenging properties of apomorphine and some related benzylisoquinolines. Free Radic Biol Med 1993; 15(2): 159–67PubMedCrossRef Ubeda A, Montesinos C, Paya M, et al. Iron-reducing and free-radical-scavenging properties of apomorphine and some related benzylisoquinolines. Free Radic Biol Med 1993; 15(2): 159–67PubMedCrossRef
140.
go back to reference Gassen M, Youdim MBH. Free radical scavengers: chemical concepts and clinical relevance. J Neural Transm Suppl 1999; 56: 193–210PubMedCrossRef Gassen M, Youdim MBH. Free radical scavengers: chemical concepts and clinical relevance. J Neural Transm Suppl 1999; 56: 193–210PubMedCrossRef
141.
go back to reference Sawada H, Ibi M, Kihara T, et al. Dopamine D2-type agonists protect mesencephalic neurons from glutamate neurotoxicity: mechanisms of neuroprotective treatment against oxidative stress. Ann Neurol 1998; 44(1): 110–9PubMedCrossRef Sawada H, Ibi M, Kihara T, et al. Dopamine D2-type agonists protect mesencephalic neurons from glutamate neurotoxicity: mechanisms of neuroprotective treatment against oxidative stress. Ann Neurol 1998; 44(1): 110–9PubMedCrossRef
142.
go back to reference Takashima H, Tsujihata M, Kishikawa M, et al. Bromocriptine protects dopaminergic neurons from levodopa-induced toxicity by stimulating D(2) receptors. Exp Neurol 1999; 159(1): 98–104PubMedCrossRef Takashima H, Tsujihata M, Kishikawa M, et al. Bromocriptine protects dopaminergic neurons from levodopa-induced toxicity by stimulating D(2) receptors. Exp Neurol 1999; 159(1): 98–104PubMedCrossRef
143.
go back to reference Carvey PM, Ling ZD, Sortwell CE, et al. A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells for transplantation in Parkinson’s disease. Exp Neurol 2001; 171(1): 98–108PubMedCrossRef Carvey PM, Ling ZD, Sortwell CE, et al. A clonal line of mesencephalic progenitor cells converted to dopamine neurons by hematopoietic cytokines: a source of cells for transplantation in Parkinson’s disease. Exp Neurol 2001; 171(1): 98–108PubMedCrossRef
144.
go back to reference Le W, Jankovic J, Xie W, et al. Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J Neural Transm 2000; 107(10): 1165–73PubMedCrossRef Le W, Jankovic J, Xie W, et al. Antioxidant property of pramipexole independent of dopamine receptor activation in neuroprotection. J Neural Transm 2000; 107(10): 1165–73PubMedCrossRef
145.
go back to reference Kitamura Y, Kosaka T, Kakimura JI, et al. Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol 1998; 54(6): 1046–54PubMed Kitamura Y, Kosaka T, Kakimura JI, et al. Protective effects of the antiparkinsonian drugs talipexole and pramipexole against 1-methyl-4-phenylpyridinium-induced apoptotic death in human neuroblastoma SH-SY5Y cells. Mol Pharmacol 1998; 54(6): 1046–54PubMed
146.
go back to reference Abramova NA, Cassarino DS, Khan SM, et al. Inhibition by R (+) or S (−) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma. J Neurosci Res 2002; 67(4): 494–500PubMedCrossRef Abramova NA, Cassarino DS, Khan SM, et al. Inhibition by R (+) or S (−) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma. J Neurosci Res 2002; 67(4): 494–500PubMedCrossRef
147.
go back to reference Weinreb O, Mandel S, Youdim MBH. cDNA gene expression profile homology of antioxidants and their anti-apoptotic and pro-apoptotic activities in human neuroblastoma cells. FASEB J 2003; 17: 935–7PubMed Weinreb O, Mandel S, Youdim MBH. cDNA gene expression profile homology of antioxidants and their anti-apoptotic and pro-apoptotic activities in human neuroblastoma cells. FASEB J 2003; 17: 935–7PubMed
148.
go back to reference Marek K, Seibyl J, Shoulson I, et al. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002; 287(13): 1653–61CrossRef Marek K, Seibyl J, Shoulson I, et al. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002; 287(13): 1653–61CrossRef
149.
go back to reference Whone A, Remy P, Davis MR, et al. The REAL-PET study: slower progression in early Parkinson’s disease treated with ropinirole compared with L-dopa [abstract]. Neurology 2002; 58: A82–3 Whone A, Remy P, Davis MR, et al. The REAL-PET study: slower progression in early Parkinson’s disease treated with ropinirole compared with L-dopa [abstract]. Neurology 2002; 58: A82–3
150.
go back to reference Lees AJ, Stern GM. Sustained bromocriptine therapy in previously untreated patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1981; 44(11): 1020–3PubMedCrossRef Lees AJ, Stern GM. Sustained bromocriptine therapy in previously untreated patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 1981; 44(11): 1020–3PubMedCrossRef
151.
go back to reference Mizuno Y, Kondo T, Narabayashi H. Pergolide in the treatment of Parkinson’s disease. Neurology 1995; 45(3 Suppl. 3): S13–21PubMedCrossRef Mizuno Y, Kondo T, Narabayashi H. Pergolide in the treatment of Parkinson’s disease. Neurology 1995; 45(3 Suppl. 3): S13–21PubMedCrossRef
152.
go back to reference Carlsson M, Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia: implications for schizophrenia and Parkinson’s disease. Trends Neurosci 1990; 13(7): 272–6PubMedCrossRef Carlsson M, Carlsson A. Interactions between glutamatergic and monoaminergic systems within the basal ganglia: implications for schizophrenia and Parkinson’s disease. Trends Neurosci 1990; 13(7): 272–6PubMedCrossRef
153.
go back to reference Kornhuber J, Bormann J, Retz W, et al. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 1989; 166(3): 589–90PubMedCrossRef Kornhuber J, Bormann J, Retz W, et al. Memantine displaces [3H]MK-801 at therapeutic concentrations in postmortem human frontal cortex. Eur J Pharmacol 1989; 166(3): 589–90PubMedCrossRef
154.
go back to reference Riederer P, Lange KW, Kornhuber J, et al. Glutamate receptor antagonism: neurotoxicity, anti-akinetic effects, and psychosis. J Neural Transm Suppl 1991; 34: 203–10PubMed Riederer P, Lange KW, Kornhuber J, et al. Glutamate receptor antagonism: neurotoxicity, anti-akinetic effects, and psychosis. J Neural Transm Suppl 1991; 34: 203–10PubMed
155.
go back to reference Starr MS. Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synapse 1995; 19(4): 264–93PubMedCrossRef Starr MS. Glutamate/dopamine D1/D2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synapse 1995; 19(4): 264–93PubMedCrossRef
156.
go back to reference Klockgether T, Turski L. Toward an understanding of the role of glutamate in experimental parkinsonism: agonist-sensitive sites in the basal ganglia. Ann Neurol 1993; 34(4): 585–93PubMedCrossRef Klockgether T, Turski L. Toward an understanding of the role of glutamate in experimental parkinsonism: agonist-sensitive sites in the basal ganglia. Ann Neurol 1993; 34(4): 585–93PubMedCrossRef
158.
go back to reference Small DL, Buchan AM. NMDA antagonists: their role in neuroprotection. Int Rev Neurobiol 1997; 40: 137–71PubMedCrossRef Small DL, Buchan AM. NMDA antagonists: their role in neuroprotection. Int Rev Neurobiol 1997; 40: 137–71PubMedCrossRef
159.
go back to reference McGeer PL, Itagaki S, McGeer EG. Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol 1988; 76(6): 550–7PubMedCrossRef McGeer PL, Itagaki S, McGeer EG. Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol 1988; 76(6): 550–7PubMedCrossRef
160.
go back to reference Jellinger K, Paulus W, Grundke-Iqbal I, et al. Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm Park Dis Dement Sect 1990; 2: 327–40PubMedCrossRef Jellinger K, Paulus W, Grundke-Iqbal I, et al. Brain iron and ferritin in Parkinson’s and Alzheimer’s diseases. J Neural Transm Park Dis Dement Sect 1990; 2: 327–40PubMedCrossRef
161.
go back to reference Mogi M, Harada M, Kondo T, et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 1994; 180(2): 147–50PubMedCrossRef Mogi M, Harada M, Kondo T, et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 1994; 180(2): 147–50PubMedCrossRef
162.
go back to reference Mogi M, Harada M, Kondo T, et al. Brain beta 2-microglobulin levels are elevated in the striatum in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1995; 9(1): 87–92PubMedCrossRef Mogi M, Harada M, Kondo T, et al. Brain beta 2-microglobulin levels are elevated in the striatum in Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1995; 9(1): 87–92PubMedCrossRef
163.
go back to reference Mogi M, Harada M, Narabayashi H, et al. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 1996; 211(0304-3940): 13–6PubMedCrossRef Mogi M, Harada M, Narabayashi H, et al. Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett 1996; 211(0304-3940): 13–6PubMedCrossRef
164.
go back to reference Mogi M, Harada M, Riederer P, et al. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 1994; 165(1-2): 208–10PubMedCrossRef Mogi M, Harada M, Riederer P, et al. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 1994; 165(1-2): 208–10PubMedCrossRef
165.
go back to reference Blum-Degen D, Muller T, Kuhn W, et al. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995; 202(1–2): 17–20PubMedCrossRef Blum-Degen D, Muller T, Kuhn W, et al. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995; 202(1–2): 17–20PubMedCrossRef
166.
go back to reference Katsuura G, Gottschall PE, Dahl RR, et al. Interleukin-1 beta increases prostaglandin E2 in rat astrocyte cultures: modulatory effect of neuropeptides. Endocrinology 1989; 124(6): 3125–7PubMedCrossRef Katsuura G, Gottschall PE, Dahl RR, et al. Interleukin-1 beta increases prostaglandin E2 in rat astrocyte cultures: modulatory effect of neuropeptides. Endocrinology 1989; 124(6): 3125–7PubMedCrossRef
167.
go back to reference Bezzi P, Carmignoto G, Pasti L, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 1998; 391(6664): 281–5PubMedCrossRef Bezzi P, Carmignoto G, Pasti L, et al. Prostaglandins stimulate calcium-dependent glutamate release in astrocytes. Nature 1998; 391(6664): 281–5PubMedCrossRef
168.
go back to reference Robinson MB, Djali S, Buchhalter JR. Inhibition of glutamate uptake with L-trans-pyrrolidine-2,4-dicarboxylate potentiates glutamate toxicity in primary hippocampal cultures. J Neurochem 1993; 61(6): 2099–103PubMedCrossRef Robinson MB, Djali S, Buchhalter JR. Inhibition of glutamate uptake with L-trans-pyrrolidine-2,4-dicarboxylate potentiates glutamate toxicity in primary hippocampal cultures. J Neurochem 1993; 61(6): 2099–103PubMedCrossRef
169.
go back to reference Rothstein JD, Jin L, Dykes-Hoberg M, et al. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci U S A 1993; 90(14): 6591–5PubMedCrossRef Rothstein JD, Jin L, Dykes-Hoberg M, et al. Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity. Proc Natl Acad Sci U S A 1993; 90(14): 6591–5PubMedCrossRef
170.
go back to reference Schwab RS, England Jr AC, Poskanzer DC, et al. Amantadine in the treatment of Parkinson’s disease. JAMA 1969; 208(7): 1168–70PubMedCrossRef Schwab RS, England Jr AC, Poskanzer DC, et al. Amantadine in the treatment of Parkinson’s disease. JAMA 1969; 208(7): 1168–70PubMedCrossRef
171.
go back to reference Davies WL, Grunert RR, Haff RF, et al. Antiviral activity of l-adamantanamine (amantadine). Science 1964; 144: 862–3PubMedCrossRef Davies WL, Grunert RR, Haff RF, et al. Antiviral activity of l-adamantanamine (amantadine). Science 1964; 144: 862–3PubMedCrossRef
172.
go back to reference Nastuk WL, Su P, Doubilet P. Anticholinergic and membrane activities of amantadine in neuromuscular transmission. Nature 1976; 264(5581): 76–9PubMedCrossRef Nastuk WL, Su P, Doubilet P. Anticholinergic and membrane activities of amantadine in neuromuscular transmission. Nature 1976; 264(5581): 76–9PubMedCrossRef
173.
go back to reference Gianutsos G, Chute S, Dunn JP. Pharmacological changes in dopaminergic systems induced by long-term administration of amantadine. Eur J Pharmacol 1985; 110(3): 357–61PubMedCrossRef Gianutsos G, Chute S, Dunn JP. Pharmacological changes in dopaminergic systems induced by long-term administration of amantadine. Eur J Pharmacol 1985; 110(3): 357–61PubMedCrossRef
174.
go back to reference Kornhuber J, Mack-Burkhardt F, Riederer P, et al. [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 1989; 77(2-3): 231–6PubMedCrossRef Kornhuber J, Mack-Burkhardt F, Riederer P, et al. [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 1989; 77(2-3): 231–6PubMedCrossRef
175.
go back to reference Chen HS, Pellegrini JW, Aggarwal SK, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 1992; 12(11): 4427–36PubMed Chen HS, Pellegrini JW, Aggarwal SK, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 1992; 12(11): 4427–36PubMed
176.
go back to reference Lustig HS, Ahern KV, Greenberg DA. Antiparkinsonian drugs and in vitro excitotoxicity. Brain Res 1992; 597(1): 148–50PubMedCrossRef Lustig HS, Ahern KV, Greenberg DA. Antiparkinsonian drugs and in vitro excitotoxicity. Brain Res 1992; 597(1): 148–50PubMedCrossRef
177.
go back to reference Rojas P, Altagracia M, Kravsov J, et al. Partially protective effect of amantadine in the MPTP model of Parkinson’s disease. Proc West Pharmacol Soc 1992; 35: 33–5PubMed Rojas P, Altagracia M, Kravsov J, et al. Partially protective effect of amantadine in the MPTP model of Parkinson’s disease. Proc West Pharmacol Soc 1992; 35: 33–5PubMed
178.
go back to reference Schwab RS, Poskanzer DC, England Jr AC, et al. Amantadine in Parkinson’s disease: review of more than two years’ experience. JAMA 1972; 222(7): 792–5PubMedCrossRef Schwab RS, Poskanzer DC, England Jr AC, et al. Amantadine in Parkinson’s disease: review of more than two years’ experience. JAMA 1972; 222(7): 792–5PubMedCrossRef
179.
go back to reference Dallos V, Heathfield K, Stone P, et al. Use of amantadine in Parkinson’s disease: results of a double-blind trial. BMJ 1970; 4(726): 24–6PubMedCrossRef Dallos V, Heathfield K, Stone P, et al. Use of amantadine in Parkinson’s disease: results of a double-blind trial. BMJ 1970; 4(726): 24–6PubMedCrossRef
180.
go back to reference Mann DC, Pearce LA, Waterbury LD. Amantadine for Parkinson’s disease. Neurology 1971; 21(9): 958–62PubMedCrossRef Mann DC, Pearce LA, Waterbury LD. Amantadine for Parkinson’s disease. Neurology 1971; 21(9): 958–62PubMedCrossRef
181.
go back to reference Parkes JD, Baxter RC, Curzon G, et al. Treatment of Parkinson’s disease with amantadine and levodopa: a one-year study. Lancet 1971; I (7709): 1083–6 Parkes JD, Baxter RC, Curzon G, et al. Treatment of Parkinson’s disease with amantadine and levodopa: a one-year study. Lancet 1971; I (7709): 1083–6
182.
go back to reference Fahn S, Isgreen WP. Long-term evaluation of amantadine and levodopa combination in parkinsonism by double-blind crossover analyses. Neurology 1975; 25(8): 695–700PubMedCrossRef Fahn S, Isgreen WP. Long-term evaluation of amantadine and levodopa combination in parkinsonism by double-blind crossover analyses. Neurology 1975; 25(8): 695–700PubMedCrossRef
183.
go back to reference Savery F. Amantadine and a fixed combination of levodopa and carbidopa in the treatment of Parkinson’s disease. Dis Nerv Syst 1977; 38(8): 605–8PubMed Savery F. Amantadine and a fixed combination of levodopa and carbidopa in the treatment of Parkinson’s disease. Dis Nerv Syst 1977; 38(8): 605–8PubMed
184.
go back to reference Luginger E, Wenning GK, Bosch S, et al. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord 2000; 15(5): 873–8PubMedCrossRef Luginger E, Wenning GK, Bosch S, et al. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord 2000; 15(5): 873–8PubMedCrossRef
185.
go back to reference Snow BJ, Macdonald L, McAuley D, et al. The effect of amantadine on levodopa-induced dyskinesias in Parkinson’s disease: a double-blind, placebo-controlled study. Clin Neuro-pharmacol 2000; 23(2): 82–5 Snow BJ, Macdonald L, McAuley D, et al. The effect of amantadine on levodopa-induced dyskinesias in Parkinson’s disease: a double-blind, placebo-controlled study. Clin Neuro-pharmacol 2000; 23(2): 82–5
186.
go back to reference Del Dotto P, Pavese N, Gambaccini G, et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Mov Disord 2001; 16(3): 515–20PubMedCrossRef Del Dotto P, Pavese N, Gambaccini G, et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Mov Disord 2001; 16(3): 515–20PubMedCrossRef
187.
go back to reference Paci C, Thomas A, Onofrj M. Amantadine for dyskinesia in patients affected by severe Parkinson’s disease. Neurol Sci 2001; 22(1): 75–6PubMedCrossRef Paci C, Thomas A, Onofrj M. Amantadine for dyskinesia in patients affected by severe Parkinson’s disease. Neurol Sci 2001; 22(1): 75–6PubMedCrossRef
188.
go back to reference Gerlach M, Riederer PF. Time sequences of dopaminergic cell death in Parkinson’s disease: indications for neuroprotective studies. Adv Neurol 1999; 80: 219–25PubMed Gerlach M, Riederer PF. Time sequences of dopaminergic cell death in Parkinson’s disease: indications for neuroprotective studies. Adv Neurol 1999; 80: 219–25PubMed
189.
go back to reference Wilson JA, Farquhar DL, Primrose WR, et al. Long term amantadine treatment: the danger of withdrawal. Scott Med J 1987; 32(5): 135PubMed Wilson JA, Farquhar DL, Primrose WR, et al. Long term amantadine treatment: the danger of withdrawal. Scott Med J 1987; 32(5): 135PubMed
190.
go back to reference Danielczyk W. Therapy of akinetic crises. Med Welt 1973; 24(33): 1278–82PubMed Danielczyk W. Therapy of akinetic crises. Med Welt 1973; 24(33): 1278–82PubMed
192.
go back to reference Seif el Nasr M, Peruche B, Rossberg C, et al. Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur J Pharmacol 1990; 185(1): 19–24PubMedCrossRef Seif el Nasr M, Peruche B, Rossberg C, et al. Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur J Pharmacol 1990; 185(1): 19–24PubMedCrossRef
193.
go back to reference Kornhuber J, Bormann J, Hubers M, et al. Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol 1991; 206(4): 297–300PubMedCrossRef Kornhuber J, Bormann J, Hubers M, et al. Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human postmortem brain study. Eur J Pharmacol 1991; 206(4): 297–300PubMedCrossRef
194.
go back to reference Erdo SL, Schafer M. Memantine is highly potent in protecting cortical cultures against excitotoxic cell death evoked by glutamate and N-methyl-D-aspartate. Eur J Pharmacol 1991; 198(2–3): 215–7PubMedCrossRef Erdo SL, Schafer M. Memantine is highly potent in protecting cortical cultures against excitotoxic cell death evoked by glutamate and N-methyl-D-aspartate. Eur J Pharmacol 1991; 198(2–3): 215–7PubMedCrossRef
195.
go back to reference Marvanova M, Lakso M, Pirhonen J, et al. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol Cell Neurosci 2001; 18(3): 247–58PubMedCrossRef Marvanova M, Lakso M, Pirhonen J, et al. The neuroprotective agent memantine induces brain-derived neurotrophic factor and trkB receptor expression in rat brain. Mol Cell Neurosci 2001; 18(3): 247–58PubMedCrossRef
196.
go back to reference Storch A, Burkhardt K, Ludolph AC, et al. Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism. J Neurochem 2000; 75(6): 2259–69PubMedCrossRef Storch A, Burkhardt K, Ludolph AC, et al. Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism. J Neurochem 2000; 75(6): 2259–69PubMedCrossRef
197.
go back to reference Araki T, Muramatsu Y, Tanaka K, et al. Riluzole (2-amino-6-trifluoromethoxy benzothiazole) attenuates MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Neurosci Lett 2001; 312(1): 50–4PubMedCrossRef Araki T, Muramatsu Y, Tanaka K, et al. Riluzole (2-amino-6-trifluoromethoxy benzothiazole) attenuates MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) neurotoxicity in mice. Neurosci Lett 2001; 312(1): 50–4PubMedCrossRef
198.
go back to reference Obinu MC, Reibaud M, Blanchard V, et al. Neuroprotective effect of riluzole in a primate model of Parkinson’s disease: behavioral and histological evidence. Mov Disord 2002; 17(1): 13–9PubMedCrossRef Obinu MC, Reibaud M, Blanchard V, et al. Neuroprotective effect of riluzole in a primate model of Parkinson’s disease: behavioral and histological evidence. Mov Disord 2002; 17(1): 13–9PubMedCrossRef
199.
go back to reference Jankovic J, Hunter C. A double-blind, placebo-controlled and longitudinal study of riluzole in early Parkinson’s disease. Parkinsonism Relat Disord 2002; 8(4): 271–6PubMedCrossRef Jankovic J, Hunter C. A double-blind, placebo-controlled and longitudinal study of riluzole in early Parkinson’s disease. Parkinsonism Relat Disord 2002; 8(4): 271–6PubMedCrossRef
200.
go back to reference Riederer P, Sofic E, Rausch W, et al. Dopaminforschung heute und morgen-L-dopa in der zukunft. In: Riederer PUH, editor. L-dopa-substitution der Parkinson-krankheit. Vienna: Springer-Verlag, 1985: 127–44CrossRef Riederer P, Sofic E, Rausch W, et al. Dopaminforschung heute und morgen-L-dopa in der zukunft. In: Riederer PUH, editor. L-dopa-substitution der Parkinson-krankheit. Vienna: Springer-Verlag, 1985: 127–44CrossRef
201.
go back to reference Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989; 52(2): 381–9PubMedCrossRef Dexter DT, Carter CJ, Wells FR, et al. Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J Neurochem 1989; 52(2): 381–9PubMedCrossRef
202.
go back to reference Sofic E, Paulus W, Jellinger K, et al. Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 1991; 56(3): 978–82PubMedCrossRef Sofic E, Paulus W, Jellinger K, et al. Selective increase of iron in substantia nigra zona compacta of parkinsonian brains. J Neurochem 1991; 56(3): 978–82PubMedCrossRef
203.
go back to reference Ostrerova-Golts N, Petrucelli L, Hardy J, et al. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 2000; 20(16): 6048–54PubMed Ostrerova-Golts N, Petrucelli L, Hardy J, et al. The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J Neurosci 2000; 20(16): 6048–54PubMed
204.
go back to reference Uversky VN, Li J, Fink AL. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 2001; 276(14): 10737–44PubMedCrossRef Uversky VN, Li J, Fink AL. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J Biol Chem 2001; 276(14): 10737–44PubMedCrossRef
205.
go back to reference Turnbull S, Tabner BJ, El-Agnaf OM, et al. alpha-Synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radic Biol Med 2001; 30(10): 1163–70PubMedCrossRef Turnbull S, Tabner BJ, El-Agnaf OM, et al. alpha-Synuclein implicated in Parkinson’s disease catalyses the formation of hydrogen peroxide in vitro. Free Radic Biol Med 2001; 30(10): 1163–70PubMedCrossRef
206.
go back to reference Ebadi M, Govitrapong P, Sharma S, et al. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. Biol Signals Recept 2001; 10(3–4): 224–53PubMedCrossRef Ebadi M, Govitrapong P, Sharma S, et al. Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease. Biol Signals Recept 2001; 10(3–4): 224–53PubMedCrossRef
207.
go back to reference Monteiro HP, Winterbourn CC. 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 1989; 38(23): 4177–82PubMedCrossRef Monteiro HP, Winterbourn CC. 6-Hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation. Biochem Pharmacol 1989; 38(23): 4177–82PubMedCrossRef
208.
go back to reference Mochizuki H, Imai H, Endo K, et al. Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci Lett 1994; 168(1–2): 251–3PubMedCrossRef Mochizuki H, Imai H, Endo K, et al. Iron accumulation in the substantia nigra of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced hemiparkinsonian monkeys. Neurosci Lett 1994; 168(1–2): 251–3PubMedCrossRef
209.
go back to reference Oestreicher E, Sengstock GJ, Riederer P, et al. Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 1994; 660(1): 8–18PubMedCrossRef Oestreicher E, Sengstock GJ, Riederer P, et al. Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study. Brain Res 1994; 660(1): 8–18PubMedCrossRef
210.
go back to reference Temlett JA, Landsberg JP, Watt F, et al. Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 1994; 62(1): 134–46PubMedCrossRef Temlett JA, Landsberg JP, Watt F, et al. Increased iron in the substantia nigra compacta of the MPTP-lesioned hemiparkinsonian African green monkey: evidence from proton microprobe elemental microanalysis. J Neurochem 1994; 62(1): 134–46PubMedCrossRef
211.
go back to reference Ben-Shachar D, Youdim MB. Intranigral iron injection induces behavioral and biochemical ‘parkinsonism’ in rats. J Neurochem 1991; 57(6): 2133–5PubMedCrossRef Ben-Shachar D, Youdim MB. Intranigral iron injection induces behavioral and biochemical ‘parkinsonism’ in rats. J Neurochem 1991; 57(6): 2133–5PubMedCrossRef
212.
go back to reference Levites Y, Weinreb O, Maor G, et al. Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,-3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001; 78: 1073–82PubMedCrossRef Levites Y, Weinreb O, Maor G, et al. Green tea polyphenol (−)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,-3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001; 78: 1073–82PubMedCrossRef
213.
go back to reference LaVaute T, Smith S, Cooperman S, et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 2001; 27(2): 209–14PubMedCrossRef LaVaute T, Smith S, Cooperman S, et al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat Genet 2001; 27(2): 209–14PubMedCrossRef
214.
go back to reference Bruehlmeier M, Leenders KL, Vontobel P, et al. Increased cerebral iron uptake in Wilson’s disease: a 52Fe-citrate PET study. J Nucl Med 2000; 41(5): 781–7PubMed Bruehlmeier M, Leenders KL, Vontobel P, et al. Increased cerebral iron uptake in Wilson’s disease: a 52Fe-citrate PET study. J Nucl Med 2000; 41(5): 781–7PubMed
215.
go back to reference Curtis AR, Fey C, Morris CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 2001; 28(4): 350–4PubMedCrossRef Curtis AR, Fey C, Morris CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet 2001; 28(4): 350–4PubMedCrossRef
216.
go back to reference Zhou B, Westaway SK, Levinson B, et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 2001; 28(4): 345–9PubMedCrossRef Zhou B, Westaway SK, Levinson B, et al. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 2001; 28(4): 345–9PubMedCrossRef
217.
go back to reference Miyajima H, Takahashi Y, Kamata T, et al. Use of desferriox-amine in the treatment of aceruloplasminemia. Ann Neurol 1997; 41(3): 404–7PubMedCrossRef Miyajima H, Takahashi Y, Kamata T, et al. Use of desferriox-amine in the treatment of aceruloplasminemia. Ann Neurol 1997; 41(3): 404–7PubMedCrossRef
218.
go back to reference Guo Q, Zhao B, Li M, et al. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1996; 1304(3): 210–22PubMedCrossRef Guo Q, Zhao B, Li M, et al. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers. Biochim Biophys Acta 1996; 1304(3): 210–22PubMedCrossRef
219.
go back to reference Suganuma M, Okabe S, Oniyama M, et al. Wide distribution of [3H](−)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 1998; 19: 1771–6PubMedCrossRef Suganuma M, Okabe S, Oniyama M, et al. Wide distribution of [3H](−)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 1998; 19: 1771–6PubMedCrossRef
220.
go back to reference Vatassery GT, Bauer T, Dysken M. High doses of vitamin E in the treatment of disorders of the central nervous system in the aged. Am J Clin Nutr 1999; 70(5): 793–801PubMed Vatassery GT, Bauer T, Dysken M. High doses of vitamin E in the treatment of disorders of the central nervous system in the aged. Am J Clin Nutr 1999; 70(5): 793–801PubMed
221.
go back to reference McCay PB. Vitamin E: interactions with free radicals and ascorbate. Annu Rev Nutr 1985; 5: 323–40PubMedCrossRef McCay PB. Vitamin E: interactions with free radicals and ascorbate. Annu Rev Nutr 1985; 5: 323–40PubMedCrossRef
222.
go back to reference Hall ED, Yonkers PA, Andrus PK, et al. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 1992; 9Suppl. 2: S425–42PubMed Hall ED, Yonkers PA, Andrus PK, et al. Biochemistry and pharmacology of lipid antioxidants in acute brain and spinal cord injury. J Neurotrauma 1992; 9Suppl. 2: S425–42PubMed
223.
go back to reference Packer L, Tritschler HJ, Wessel K. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 1997; 22(1-2): 359–78PubMedCrossRef Packer L, Tritschler HJ, Wessel K. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic Biol Med 1997; 22(1-2): 359–78PubMedCrossRef
224.
go back to reference Behl C. Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17-beta estradiol and induces the activity of the transcription factor NF-kappaB. J Neural Transm 2000; 107(4): 393–407PubMedCrossRef Behl C. Vitamin E protects neurons against oxidative cell death in vitro more effectively than 17-beta estradiol and induces the activity of the transcription factor NF-kappaB. J Neural Transm 2000; 107(4): 393–407PubMedCrossRef
225.
go back to reference Kilander L, Ohrvall M. Alpha-tocopherol and Alzheimer’s disease. N Engl J Med 1997; 337(8): 572–3PubMedCrossRef Kilander L, Ohrvall M. Alpha-tocopherol and Alzheimer’s disease. N Engl J Med 1997; 337(8): 572–3PubMedCrossRef
226.
go back to reference Dufresne C, Farnworth E. A review of latest research findings on the health promotion properties of tea. J Nutr Biochem 2001; 12(7): 404–21PubMedCrossRef Dufresne C, Farnworth E. A review of latest research findings on the health promotion properties of tea. J Nutr Biochem 2001; 12(7): 404–21PubMedCrossRef
227.
go back to reference Schroeter H, Williams RJ, Matin R, et al. Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein. Free Radic Biol Med 2000; 29(12): 1222–33PubMedCrossRef Schroeter H, Williams RJ, Matin R, et al. Phenolic antioxidants attenuate neuronal cell death following uptake of oxidized low-density lipoprotein. Free Radic Biol Med 2000; 29(12): 1222–33PubMedCrossRef
228.
go back to reference Hibatallah J, Carduner C, Poelman MC. In-vivo and in-vitro assessment of the free-radical-scavenger activity of ginkgo flavone glycosides at high concentration. J Pharm Pharmacol 1999; 51(12): 1435–40PubMedCrossRef Hibatallah J, Carduner C, Poelman MC. In-vivo and in-vitro assessment of the free-radical-scavenger activity of ginkgo flavone glycosides at high concentration. J Pharm Pharmacol 1999; 51(12): 1435–40PubMedCrossRef
229.
go back to reference Bastianetto S, Ramassamy C, Dore S, et al. The ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid. Eur J Neurosci 2000; 12(6): 1882–90PubMedCrossRef Bastianetto S, Ramassamy C, Dore S, et al. The ginkgo biloba extract (EGb 761) protects hippocampal neurons against cell death induced by beta-amyloid. Eur J Neurosci 2000; 12(6): 1882–90PubMedCrossRef
230.
go back to reference Bastianetto S, Zheng WH, Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 2000; 131(4): 711–20PubMedCrossRef Bastianetto S, Zheng WH, Quirion R. Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 2000; 131(4): 711–20PubMedCrossRef
231.
go back to reference Joseph JA, Shukitt-Hale B, Denisova NA, et al. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 1999; 19(18): 8114–21PubMed Joseph JA, Shukitt-Hale B, Denisova NA, et al. Reversals of age-related declines in neuronal signal transduction, cognitive, and motor behavioral deficits with blueberry, spinach, or strawberry dietary supplementation. J Neurosci 1999; 19(18): 8114–21PubMed
232.
go back to reference Pratico D, Delanty N. Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease. Am J Med 2000; 109(7): 577–85PubMedCrossRef Pratico D, Delanty N. Oxidative injury in diseases of the central nervous system: focus on Alzheimer’s disease. Am J Med 2000; 109(7): 577–85PubMedCrossRef
233.
go back to reference Clostre F. Ginkgo biloba extract (EGb 761): state of knowledge in the dawn of the year 2000 [French]. Ann Pharm Fr 1999; 57Suppl. 1: 18–88 Clostre F. Ginkgo biloba extract (EGb 761): state of knowledge in the dawn of the year 2000 [French]. Ann Pharm Fr 1999; 57Suppl. 1: 18–88
234.
go back to reference Wang ZY, Huang MT, Lou YR, et al. Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz[a]anthracene-initiated SKH-1 mice. Cancer Res 1994; 54(13): 3428–55PubMed Wang ZY, Huang MT, Lou YR, et al. Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7,12-dimethylbenz[a]anthracene-initiated SKH-1 mice. Cancer Res 1994; 54(13): 3428–55PubMed
235.
go back to reference Haqqi TM, Anthony DD, Gupta S, et al. Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci U S A 1999; 96(8): 4524–9PubMedCrossRef Haqqi TM, Anthony DD, Gupta S, et al. Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proc Natl Acad Sci U S A 1999; 96(8): 4524–9PubMedCrossRef
236.
go back to reference Pan MH, Lin-Shiau SY, Ho CT, et al. Suppression of lypo-polysaccharide-induced nuclear factor kappaB activity by theaflavin-3,3t?-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages. 2000; 59(12): 357–67 Pan MH, Lin-Shiau SY, Ho CT, et al. Suppression of lypo-polysaccharide-induced nuclear factor kappaB activity by theaflavin-3,3t?-digallate from black tea and other polyphenols through down-regulation of IkappaB kinase activity in macrophages. 2000; 59(12): 357–67
237.
go back to reference Lin YL, Tsai SH, Lin-Shiau SY, et al. Theaflavin-3,3t?-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-kappaB in macrophages. Eur J Pharmacol 1999; 367(2–3): 379–88PubMedCrossRef Lin YL, Tsai SH, Lin-Shiau SY, et al. Theaflavin-3,3t?-digallate from black tea blocks the nitric oxide synthase by down-regulating the activation of NF-kappaB in macrophages. Eur J Pharmacol 1999; 367(2–3): 379–88PubMedCrossRef
238.
go back to reference Salah N, Miller NJ, Paganga G, et al. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophy 1995; 322(2): 339–46CrossRef Salah N, Miller NJ, Paganga G, et al. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophy 1995; 322(2): 339–46CrossRef
239.
go back to reference Nanjo F, Goto K, Seto R, et al. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med 1996; 21(6): 895–902PubMedCrossRef Nanjo F, Goto K, Seto R, et al. Scavenging effects of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhydrazyl radical. Free Radic Biol Med 1996; 21(6): 895–902PubMedCrossRef
240.
go back to reference Morel I, Lescoat G, Cogrel P, et al. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 1999; 45(1): 13–9CrossRef Morel I, Lescoat G, Cogrel P, et al. Antioxidant and iron-chelating activities of the flavonoids catechin, quercetin and diosmetin on iron-loaded rat hepatocyte cultures. Biochem Pharmacol 1999; 45(1): 13–9CrossRef
241.
go back to reference Guo Q, Zhao B, Li M, et al. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta 1996; 1304(3): 210–22PubMedCrossRef Guo Q, Zhao B, Li M, et al. Studies on protective mechanisms of four components of green tea polyphenols against lipid peroxidation in synaptosomes. Biochim Biophys Acta 1996; 1304(3): 210–22PubMedCrossRef
242.
go back to reference Grinberg LN, Newmark H, Kitrossky N, et al. Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem Pharmacol 1997; 54(9): 973–8PubMedCrossRef Grinberg LN, Newmark H, Kitrossky N, et al. Protective effects of tea polyphenols against oxidative damage to red blood cells. Biochem Pharmacol 1997; 54(9): 973–8PubMedCrossRef
243.
go back to reference Levites Y, Youdim MBH, Maor G, et al. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 2002; 63(1): 21–9PubMedCrossRef Levites Y, Youdim MBH, Maor G, et al. Attenuation of 6-hydroxydopamine (6-OHDA)-induced nuclear factor-kappaB (NF-kappaB) activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 2002; 63(1): 21–9PubMedCrossRef
244.
go back to reference Levites Y, Amit T, Youdim MB, et al. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol, (−)-epigallocatechin-3-gallate neuroprotective action. J Biol Chem 2002 Aug 23; 277(34): 30574–80PubMedCrossRef Levites Y, Amit T, Youdim MB, et al. Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol, (−)-epigallocatechin-3-gallate neuroprotective action. J Biol Chem 2002 Aug 23; 277(34): 30574–80PubMedCrossRef
245.
go back to reference Matsuoka Y, Hasegawa H, Okuda S, et al. Ameliorative effects of tea catechins on active oxygen-related nerve cell injuries. J Pharmacol Exp Ther 1995; 274(2): 602–8PubMed Matsuoka Y, Hasegawa H, Okuda S, et al. Ameliorative effects of tea catechins on active oxygen-related nerve cell injuries. J Pharmacol Exp Ther 1995; 274(2): 602–8PubMed
246.
go back to reference Lee S, Suh S, Kim S. Protective effects of the green tea polyphenol (−)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 2000; 287(3): 191–4PubMedCrossRef Lee S, Suh S, Kim S. Protective effects of the green tea polyphenol (−)-epigallocatechin gallate against hippocampal neuronal damage after transient global ischemia in gerbils. Neurosci Lett 2000; 287(3): 191–4PubMedCrossRef
247.
go back to reference van Acker SA, van den Berg DJ, Tromp MN, et al. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 1996; 20(3): 331–42PubMedCrossRef van Acker SA, van den Berg DJ, Tromp MN, et al. Structural aspects of antioxidant activity of flavonoids. Free Radic Biol Med 1996; 20(3): 331–42PubMedCrossRef
248.
go back to reference Checkoway H, Powers K, Smith-Weller T, et al. Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 2002; 155(8): 732–8PubMedCrossRef Checkoway H, Powers K, Smith-Weller T, et al. Parkinson’s disease risks associated with cigarette smoking, alcohol consumption, and caffeine intake. Am J Epidemiol 2002; 155(8): 732–8PubMedCrossRef
249.
go back to reference Hirsch EC, Hunot S, Damier P, et al. Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol 1998; 44 (3 Suppl. 1): S1 15–20 Hirsch EC, Hunot S, Damier P, et al. Glial cells and inflammation in Parkinson’s disease: a role in neurodegeneration? Ann Neurol 1998; 44 (3 Suppl. 1): S1 15–20
250.
go back to reference Luo Y, Umegaki H, Wang X, et al. Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 1998; 273(6): 3756–64PubMedCrossRef Luo Y, Umegaki H, Wang X, et al. Dopamine induces apoptosis through an oxidation-involved SAPK/JNK activation pathway. J Biol Chem 1998; 273(6): 3756–64PubMedCrossRef
251.
go back to reference Oo TF, Henchcliffe C, James D, et al. Expression of c-fos, c-jun, and c-jun N-terminal kinase (JNK) in a developmental model of induced apoptotic death in neurons of the substantia nigra. J Neurochem 1999; 72(2): 557–64PubMedCrossRef Oo TF, Henchcliffe C, James D, et al. Expression of c-fos, c-jun, and c-jun N-terminal kinase (JNK) in a developmental model of induced apoptotic death in neurons of the substantia nigra. J Neurochem 1999; 72(2): 557–64PubMedCrossRef
252.
go back to reference Perez-Otano I, Mandelzys A, Morgan JI. MPTP-Parkinsonism is accompanied by persistent expression of a delta-FosB-like protein in dopaminergic pathways. Brain Res Mol Brain Res 1998; 53(1-2): 41–52PubMedCrossRef Perez-Otano I, Mandelzys A, Morgan JI. MPTP-Parkinsonism is accompanied by persistent expression of a delta-FosB-like protein in dopaminergic pathways. Brain Res Mol Brain Res 1998; 53(1-2): 41–52PubMedCrossRef
253.
go back to reference McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neuro-degenerative diseases. Brain Res Brain Res Rev 1995; 21(2): 195–218PubMedCrossRef McGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neuro-degenerative diseases. Brain Res Brain Res Rev 1995; 21(2): 195–218PubMedCrossRef
254.
go back to reference Adams J, Collaco-Moraes Y, de Belleroche J. Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J Neurochem 1996; 66(1): 6–13PubMedCrossRef Adams J, Collaco-Moraes Y, de Belleroche J. Cyclooxygenase-2 induction in cerebral cortex: an intracellular response to synaptic excitation. J Neurochem 1996; 66(1): 6–13PubMedCrossRef
255.
go back to reference Westwick JK, Weitzel C, Minden A, et al. Tumor necrosis factor alpha stimulates AP-1 activity through prolonged activation of the c-Jun kinase. J Biol Chem 1994; 269(42): 26396–401PubMed Westwick JK, Weitzel C, Minden A, et al. Tumor necrosis factor alpha stimulates AP-1 activity through prolonged activation of the c-Jun kinase. J Biol Chem 1994; 269(42): 26396–401PubMed
256.
go back to reference Yamamoto K, Arakawa T, Ueda N, et al. Transcriptional roles of nuclear factor kappab and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxy-genase-2 in MC3T3-E1 cells. J Biol Chem 1995; 270(52): 31315–20PubMedCrossRef Yamamoto K, Arakawa T, Ueda N, et al. Transcriptional roles of nuclear factor kappab and nuclear factor-interleukin-6 in the tumor necrosis factor alpha-dependent induction of cyclooxy-genase-2 in MC3T3-E1 cells. J Biol Chem 1995; 270(52): 31315–20PubMedCrossRef
257.
go back to reference Aubin N, Curet O, Deffois A, et al. Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice. J Neurochem 1998; 71(4): 1635–42PubMedCrossRef Aubin N, Curet O, Deffois A, et al. Aspirin and salicylate protect against MPTP-induced dopamine depletion in mice. J Neurochem 1998; 71(4): 1635–42PubMedCrossRef
258.
go back to reference Ferger B, Teismann P, Earl CD, et al. Salicylate protects against MPTP-induced impairments in dopaminergic neurotransmission at the striatal and nigral level in mice. Naunyn Schmiedebergs Arch Pharmacol 1999; 360(3): 256–61PubMedCrossRef Ferger B, Teismann P, Earl CD, et al. Salicylate protects against MPTP-induced impairments in dopaminergic neurotransmission at the striatal and nigral level in mice. Naunyn Schmiedebergs Arch Pharmacol 1999; 360(3): 256–61PubMedCrossRef
259.
go back to reference Teismann P, Ferger B. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 2001; 39(2): 167–74PubMedCrossRef Teismann P, Ferger B. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson’s disease. Synapse 2001; 39(2): 167–74PubMedCrossRef
260.
go back to reference Grilli M, Pizzi M, Memo M, et al. Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science 1996; 274(5291): 1383–5PubMedCrossRef Grilli M, Pizzi M, Memo M, et al. Neuroprotection by aspirin and sodium salicylate through blockade of NF-kappaB activation. Science 1996; 274(5291): 1383–5PubMedCrossRef
261.
go back to reference Amin AR, Vyas P, Attur M, et al. The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc Natl Acad Sci U S A 1995; 92(17): 7926–30PubMedCrossRef Amin AR, Vyas P, Attur M, et al. The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc Natl Acad Sci U S A 1995; 92(17): 7926–30PubMedCrossRef
262.
go back to reference Casper D, Yaparpalvi U, Rempel N, et al. Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. Neurosci Lett 2000; 289(3): 201–4PubMedCrossRef Casper D, Yaparpalvi U, Rempel N, et al. Ibuprofen protects dopaminergic neurons against glutamate toxicity in vitro. Neurosci Lett 2000; 289(3): 201–4PubMedCrossRef
263.
go back to reference Jackson LM, Hawkey CJ. COX-2 selective nonsteroidal anti-inflammatory drugs: do they really offer any advantages? Drugs 2000; 59(6): 1207–16PubMedCrossRef Jackson LM, Hawkey CJ. COX-2 selective nonsteroidal anti-inflammatory drugs: do they really offer any advantages? Drugs 2000; 59(6): 1207–16PubMedCrossRef
264.
go back to reference Heinemann S, Boulter J, Connolly J, et al. The nicotinic receptor genes. Clin Neuropharmacol 1991; 14Suppl. 1: S45–61PubMedCrossRef Heinemann S, Boulter J, Connolly J, et al. The nicotinic receptor genes. Clin Neuropharmacol 1991; 14Suppl. 1: S45–61PubMedCrossRef
265.
go back to reference Anand R, Conroy WG, Schoepfer R, et al. Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J Biol Chem 1991; 266(17): 11192–8PubMed Anand R, Conroy WG, Schoepfer R, et al. Neuronal nicotinic acetylcholine receptors expressed in Xenopus oocytes have a pentameric quaternary structure. J Biol Chem 1991; 266(17): 11192–8PubMed
266.
go back to reference Wonnacott S, Irons J, Rapier C, et al. Presynaptic modulation of transmitter release by nicotinic receptors. Prog Brain Res 1989; 79: 157–63PubMedCrossRef Wonnacott S, Irons J, Rapier C, et al. Presynaptic modulation of transmitter release by nicotinic receptors. Prog Brain Res 1989; 79: 157–63PubMedCrossRef
267.
go back to reference Rowell PP, Winkler DL. Nicotinic stimulation of [3H]acetylcholine release from mouse cerebral cortical synaptosomes. J Neurochem 1984; 43(6): 1593–8PubMedCrossRef Rowell PP, Winkler DL. Nicotinic stimulation of [3H]acetylcholine release from mouse cerebral cortical synaptosomes. J Neurochem 1984; 43(6): 1593–8PubMedCrossRef
268.
go back to reference Quirion R, Richard J, Wilson A. Muscarinic and nicotinic modulation of cortical acetylcholine release monitored by in vivo microdialysis in freely moving adult rats. Synapse 1994; 17(2): 92–100PubMedCrossRef Quirion R, Richard J, Wilson A. Muscarinic and nicotinic modulation of cortical acetylcholine release monitored by in vivo microdialysis in freely moving adult rats. Synapse 1994; 17(2): 92–100PubMedCrossRef
269.
go back to reference Whitehouse PJ, Hedreen JC, White III CL, et al. Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 1983; 13(3): 243–8PubMedCrossRef Whitehouse PJ, Hedreen JC, White III CL, et al. Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 1983; 13(3): 243–8PubMedCrossRef
270.
go back to reference Perry EK, Curtis M, Dick DJ, et al. Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1985; 48(5): 413–21PubMedCrossRef Perry EK, Curtis M, Dick DJ, et al. Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1985; 48(5): 413–21PubMedCrossRef
271.
go back to reference Whitehouse PJ, Martino AM, Marcus KA, et al. Reductions in acetylcholine and nicotine binding in several degenerative diseases. Arch Neurol 1988; 45(7): 722–4PubMedCrossRef Whitehouse PJ, Martino AM, Marcus KA, et al. Reductions in acetylcholine and nicotine binding in several degenerative diseases. Arch Neurol 1988; 45(7): 722–4PubMedCrossRef
272.
go back to reference Baron J. Epidemiology of smoking and Parkinson’s disease [abstract]. In: Clarke P, Quik M, Thurau K, et al., editors. Effects of nicotine on biological systems II. Boston: Birkhauser, 1994: s42 Baron J. Epidemiology of smoking and Parkinson’s disease [abstract]. In: Clarke P, Quik M, Thurau K, et al., editors. Effects of nicotine on biological systems II. Boston: Birkhauser, 1994: s42
273.
go back to reference Allam MF. Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study [letter]. Neurology 2002; 58(7): 1133PubMedCrossRef Allam MF. Transdermal nicotine in PD: a randomized, double-blind, placebo-controlled study [letter]. Neurology 2002; 58(7): 1133PubMedCrossRef
274.
go back to reference Mitsuoka T, Kaseda Y, Yamashita H, et al. Effects of nicotine chewing gum on UPDRS score and P300 in early-onset parkinsonism. Hiroshima J Med Sci 2002; 51(1): 33–9PubMed Mitsuoka T, Kaseda Y, Yamashita H, et al. Effects of nicotine chewing gum on UPDRS score and P300 in early-onset parkinsonism. Hiroshima J Med Sci 2002; 51(1): 33–9PubMed
275.
go back to reference Morens DM, Grandinetti A, Reed D, et al. Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue? Neurology 1995; 45(6): 1041–51PubMedCrossRef Morens DM, Grandinetti A, Reed D, et al. Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue? Neurology 1995; 45(6): 1041–51PubMedCrossRef
276.
go back to reference Paulson GW. Addiction to nicotine is due to high intrinsic levels of dopamine. Med Hypotheses 1992; 38(3): 206–7PubMedCrossRef Paulson GW. Addiction to nicotine is due to high intrinsic levels of dopamine. Med Hypotheses 1992; 38(3): 206–7PubMedCrossRef
277.
go back to reference Zheng JQ, Felder M, Connor JA, et al. Turning of nerve growth cones induced by neurotransmitters. Nature 1994; 368(6467): 140–4PubMedCrossRef Zheng JQ, Felder M, Connor JA, et al. Turning of nerve growth cones induced by neurotransmitters. Nature 1994; 368(6467): 140–4PubMedCrossRef
278.
go back to reference Hedin CA. Smoker’s melanosis may explain the lower hearing loss and lower frequency of Parkinson’s disease found among tobacco smokers: a new hypothesis. Med Hypotheses 1991; 35(3): 247–9PubMedCrossRef Hedin CA. Smoker’s melanosis may explain the lower hearing loss and lower frequency of Parkinson’s disease found among tobacco smokers: a new hypothesis. Med Hypotheses 1991; 35(3): 247–9PubMedCrossRef
279.
go back to reference Gresham LS, Molgaard CA, Smith RA. Induction of cytochrome P-450 enzymes via tobacco smoke: a potential mechanism for developing resistance to environmental toxins as related to parkinsonism and other neurologic diseases. Neuro-epidemiology 1993; 12(2): 114–6 Gresham LS, Molgaard CA, Smith RA. Induction of cytochrome P-450 enzymes via tobacco smoke: a potential mechanism for developing resistance to environmental toxins as related to parkinsonism and other neurologic diseases. Neuro-epidemiology 1993; 12(2): 114–6
280.
go back to reference Yong VW, Perry TL. Monoamine oxidase B, smoking, and Parkinson’s disease. J Neurol Sci 1986; 72(2–3): 265–72PubMedCrossRef Yong VW, Perry TL. Monoamine oxidase B, smoking, and Parkinson’s disease. J Neurol Sci 1986; 72(2–3): 265–72PubMedCrossRef
281.
go back to reference Quik M, Jeyarasasingam G. Nicotinic receptors and Parkinson’s disease. Eur J Pharmacol 2000; 393(1–3): 223–30PubMedCrossRef Quik M, Jeyarasasingam G. Nicotinic receptors and Parkinson’s disease. Eur J Pharmacol 2000; 393(1–3): 223–30PubMedCrossRef
282.
go back to reference Jeyarasasingam G, Tompkins L, Quik M. Stimulation of non-alpha7 nicotinic receptors partially protects dopaminergic neurons from 1-methyl-4-phenylpyridinium-induced toxicity in culture. Neuroscience 2002; 109(2): 275–85PubMedCrossRef Jeyarasasingam G, Tompkins L, Quik M. Stimulation of non-alpha7 nicotinic receptors partially protects dopaminergic neurons from 1-methyl-4-phenylpyridinium-induced toxicity in culture. Neuroscience 2002; 109(2): 275–85PubMedCrossRef
283.
go back to reference Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, et al. Effects of (−)-nicotine and (−)-cotinine on 6-hydroxy-dopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson’s disease. Biochem Pharmacol 2002; 64(1): 125–35PubMedCrossRef Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, et al. Effects of (−)-nicotine and (−)-cotinine on 6-hydroxy-dopamine-induced oxidative stress and neurotoxicity: relevance for Parkinson’s disease. Biochem Pharmacol 2002; 64(1): 125–35PubMedCrossRef
284.
go back to reference Janson AM, Meana JJ, Goiny M, et al. Chronic nicotine treatment counteracts the decrease in extracellular neostriatal dopamine induced by a unilateral transection at the mesodiencephalic junction in rats: a microdialysis study. Neurosci Lett 1991; 134(1): 88–92PubMedCrossRef Janson AM, Meana JJ, Goiny M, et al. Chronic nicotine treatment counteracts the decrease in extracellular neostriatal dopamine induced by a unilateral transection at the mesodiencephalic junction in rats: a microdialysis study. Neurosci Lett 1991; 134(1): 88–92PubMedCrossRef
285.
go back to reference Janson AM, Fuxe K, Agnati LF, et al. Chronic nicotine treatment counteracts the disappearance of tyrosine-hydroxylase-immunoreactive nerve cell bodies, dendrites and terminals in the mesostriatal dopamine system of the male rat after partial hemitransection. Brain Res 1988; 455(2): 332–45PubMedCrossRef Janson AM, Fuxe K, Agnati LF, et al. Chronic nicotine treatment counteracts the disappearance of tyrosine-hydroxylase-immunoreactive nerve cell bodies, dendrites and terminals in the mesostriatal dopamine system of the male rat after partial hemitransection. Brain Res 1988; 455(2): 332–45PubMedCrossRef
286.
go back to reference Janson AM, Fuxe K, Sundstrom E, et al. Chronic nicotine treatment partly protects against the 1-methyl-4-phenyl-2,3,6-tetrahydropyridine-induced degeneration of nigrostriatal dopamine neurons in the black mouse. Acta Physiol Scand 1988; 132(4): 589–91PubMedCrossRef Janson AM, Fuxe K, Sundstrom E, et al. Chronic nicotine treatment partly protects against the 1-methyl-4-phenyl-2,3,6-tetrahydropyridine-induced degeneration of nigrostriatal dopamine neurons in the black mouse. Acta Physiol Scand 1988; 132(4): 589–91PubMedCrossRef
287.
go back to reference Ryan RE, Ross SA, Drago J, et al. Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in alpha4 nicotinic receptor subunit knockout mice. Br J Pharmacol 2001; 132(8): 1650–6PubMedCrossRef Ryan RE, Ross SA, Drago J, et al. Dose-related neuroprotective effects of chronic nicotine in 6-hydroxydopamine treated rats, and loss of neuroprotection in alpha4 nicotinic receptor subunit knockout mice. Br J Pharmacol 2001; 132(8): 1650–6PubMedCrossRef
288.
go back to reference Bannon AW, Decker MW, Holladay MW, et al. Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 1998; 279(5347): 77–81PubMedCrossRef Bannon AW, Decker MW, Holladay MW, et al. Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 1998; 279(5347): 77–81PubMedCrossRef
289.
go back to reference Lloyd GK, Menzaghi F, Bontempi B, et al. The potential of subtype-selective neuronal nicotinic acetylcholine receptor agonists as therapeutic agents. Life Sci 1998; 62(17–18): 1601–6PubMedCrossRef Lloyd GK, Menzaghi F, Bontempi B, et al. The potential of subtype-selective neuronal nicotinic acetylcholine receptor agonists as therapeutic agents. Life Sci 1998; 62(17–18): 1601–6PubMedCrossRef
290.
go back to reference Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000; 290(5492): 767–73PubMedCrossRef Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000; 290(5492): 767–73PubMedCrossRef
291.
go back to reference Palfi S, Leventhal L, Chu Y, et al. Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 2002; 22(12): 4942–54PubMed Palfi S, Leventhal L, Chu Y, et al. Lentivirally delivered glial cell line-derived neurotrophic factor increases the number of striatal dopaminergic neurons in primate models of nigrostriatal degeneration. J Neurosci 2002; 22(12): 4942–54PubMed
292.
go back to reference Kordower JH, Palfi S, Chen EY, et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 1999; 46(3): 419–24PubMedCrossRef Kordower JH, Palfi S, Chen EY, et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol 1999; 46(3): 419–24PubMedCrossRef
293.
go back to reference Gill SS, Patel NK, Hotton GR, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003; 9(5): 589–95PubMedCrossRef Gill SS, Patel NK, Hotton GR, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003; 9(5): 589–95PubMedCrossRef
294.
go back to reference Beal MF. Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann Neurol 2003; 53Suppl. 3: S39–47; discussion S47-8PubMedCrossRef Beal MF. Bioenergetic approaches for neuroprotection in Parkinson’s disease. Ann Neurol 2003; 53Suppl. 3: S39–47; discussion S47-8PubMedCrossRef
295.
go back to reference Kitamura Y, Itano Y, Kubo T, et al. Suppressive effect of FK-506, a novel immunosuppressant, against MPTP-induced dopamine depletion in the striatum of young C57BL/6 mice. J Neuroimmunol 1994; 50(2): 221–4PubMedCrossRef Kitamura Y, Itano Y, Kubo T, et al. Suppressive effect of FK-506, a novel immunosuppressant, against MPTP-induced dopamine depletion in the striatum of young C57BL/6 mice. J Neuroimmunol 1994; 50(2): 221–4PubMedCrossRef
296.
go back to reference Akao Y, Maruyama W, Shimizu S, et al. Mitochondrial permeability transition mediates apoptosis induced by N-methyl (R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1 (R)-aminoindan. J Neurochem 2002; 82(4): 913–23PubMedCrossRef Akao Y, Maruyama W, Shimizu S, et al. Mitochondrial permeability transition mediates apoptosis induced by N-methyl (R)salsolinol, an endogenous neurotoxin, and is inhibited by Bcl-2 and rasagiline, N-propargyl-1 (R)-aminoindan. J Neurochem 2002; 82(4): 913–23PubMedCrossRef
297.
go back to reference Kaminski Schierle GS, Hansson O, Brundin P. Flunarizine improves the survival of grafted dopaminergic neurons. Neuroscience 1999; 94(1): 17–20PubMedCrossRef Kaminski Schierle GS, Hansson O, Brundin P. Flunarizine improves the survival of grafted dopaminergic neurons. Neuroscience 1999; 94(1): 17–20PubMedCrossRef
298.
go back to reference Terland O, Flatmark T. Drug-induced parkinsonism: cinnarizine and flunarizine are potent uncouplers of the vacuolar H+-ATPase in catecholamine storage vesicles. Neuro-pharmacology 1999; 38(6): 879–82 Terland O, Flatmark T. Drug-induced parkinsonism: cinnarizine and flunarizine are potent uncouplers of the vacuolar H+-ATPase in catecholamine storage vesicles. Neuro-pharmacology 1999; 38(6): 879–82
299.
go back to reference Hartmann A, Hunot S, Michel PP, et al. Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 2000; 97(6): 2875–80PubMedCrossRef Hartmann A, Hunot S, Michel PP, et al. Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease. Proc Natl Acad Sci USA 2000; 97(6): 2875–80PubMedCrossRef
300.
go back to reference Robertson GS, Crocker SJ, Nicholson DW, et al. Neuroprotection by the inhibition of apoptosis. Brain Pathol 2000; 10(2): 283–92PubMedCrossRef Robertson GS, Crocker SJ, Nicholson DW, et al. Neuroprotection by the inhibition of apoptosis. Brain Pathol 2000; 10(2): 283–92PubMedCrossRef
301.
go back to reference Cheng EH, Wei MC, Weiler S, et al. BCL-2, BCL-X (L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001; 8(3): 705–11PubMedCrossRef Cheng EH, Wei MC, Weiler S, et al. BCL-2, BCL-X (L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001; 8(3): 705–11PubMedCrossRef
302.
go back to reference Hartmann A, Troadec JD, Hunot S, et al. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 2001; 21(7): 2247–55PubMed Hartmann A, Troadec JD, Hunot S, et al. Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 2001; 21(7): 2247–55PubMed
303.
go back to reference Mechoulam R. The pharmacohistory of cannabis sativa. In: Mechoulam R, editor. Cannabinoids as therapeutic agents. Boca Raton: CRC, 1986: 1–19 Mechoulam R. The pharmacohistory of cannabis sativa. In: Mechoulam R, editor. Cannabinoids as therapeutic agents. Boca Raton: CRC, 1986: 1–19
304.
go back to reference Annas GJ. Reefer madness: the federal response to California’s medical-marijuana law. N Engl J Med 1997; 337(6): 435–9PubMedCrossRef Annas GJ. Reefer madness: the federal response to California’s medical-marijuana law. N Engl J Med 1997; 337(6): 435–9PubMedCrossRef
305.
go back to reference Mechoulam R, Vogel Z, Barg J. CNS cannabinoid receptors: role and therapeutic implications for CNS disorders. CNS Drugs 1994; 2(4): 255–60CrossRef Mechoulam R, Vogel Z, Barg J. CNS cannabinoid receptors: role and therapeutic implications for CNS disorders. CNS Drugs 1994; 2(4): 255–60CrossRef
306.
307.
go back to reference Devane WA, Dysarz III FA, Johnson MR, et al. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988; 34(5): 605–13PubMed Devane WA, Dysarz III FA, Johnson MR, et al. Determination and characterization of a cannabinoid receptor in rat brain. Mol Pharmacol 1988; 34(5): 605–13PubMed
308.
go back to reference Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258(5090): 1946–9PubMedCrossRef Devane WA, Hanus L, Breuer A, et al. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 1992; 258(5090): 1946–9PubMedCrossRef
309.
go back to reference Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995; 50(1): 83–90PubMedCrossRef Mechoulam R, Ben-Shabat S, Hanus L, et al. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 1995; 50(1): 83–90PubMedCrossRef
310.
go back to reference Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995; 215(1): 89–97PubMedCrossRef Sugiura T, Kondo S, Sukagawa A, et al. 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 1995; 215(1): 89–97PubMedCrossRef
311.
go back to reference Di Marzo V, Melck D, Bisogno T, et al. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 1998; 21(12): 521–8PubMedCrossRef Di Marzo V, Melck D, Bisogno T, et al. Endocannabinoids: endogenous cannabinoid receptor ligands with neuromodulatory action. Trends Neurosci 1998; 21(12): 521–8PubMedCrossRef
312.
go back to reference Herkenham M, Lynn AB, de Costa BR, et al. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res 1991; 547(2): 267–74PubMedCrossRef Herkenham M, Lynn AB, de Costa BR, et al. Neuronal localization of cannabinoid receptors in the basal ganglia of the rat. Brain Res 1991; 547(2): 267–74PubMedCrossRef
313.
go back to reference Glass M, Brotchie JM, Maneuf YP. Modulation of neurotransmission by cannabinoids in the basal ganglia. Eur J Neurosci 1997; 9(2): 199–203PubMedCrossRef Glass M, Brotchie JM, Maneuf YP. Modulation of neurotransmission by cannabinoids in the basal ganglia. Eur J Neurosci 1997; 9(2): 199–203PubMedCrossRef
314.
go back to reference Romero J, Garcia L, Cebeira M, et al. The endogenous cannabinoid receptor ligand, anandamide, inhibits the motor behavior: role of nigrostriatal dopaminergic neurons. Life Sci 1995; 56(23–24): 2033–40PubMedCrossRef Romero J, Garcia L, Cebeira M, et al. The endogenous cannabinoid receptor ligand, anandamide, inhibits the motor behavior: role of nigrostriatal dopaminergic neurons. Life Sci 1995; 56(23–24): 2033–40PubMedCrossRef
315.
go back to reference Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 1997; 74(2): 129–80PubMedCrossRef Pertwee RG. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 1997; 74(2): 129–80PubMedCrossRef
316.
go back to reference Jeon YJ, Yang KH, Pulaski JT, et al. Attenuation of inducible nitric oxide synthase gene expression by delta 9-tetrahydrocannabinol is mediated through the inhibition of nuclear factor-kappa B/Rel activation. Mol Pharmacol 1996; 50(2): 334–41PubMed Jeon YJ, Yang KH, Pulaski JT, et al. Attenuation of inducible nitric oxide synthase gene expression by delta 9-tetrahydrocannabinol is mediated through the inhibition of nuclear factor-kappa B/Rel activation. Mol Pharmacol 1996; 50(2): 334–41PubMed
317.
go back to reference Skaper SD, Buriani A, Dal Toso R, et al. The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci U S A 1996; 93(9): 3984–9PubMedCrossRef Skaper SD, Buriani A, Dal Toso R, et al. The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci U S A 1996; 93(9): 3984–9PubMedCrossRef
318.
go back to reference Hampson AJ, Bornheim LM, Scanziani M, et al. Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J Neurochem 1998; 70(2): 671–6PubMedCrossRef Hampson AJ, Bornheim LM, Scanziani M, et al. Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission. J Neurochem 1998; 70(2): 671–6PubMedCrossRef
319.
go back to reference Shen M, Thayer SA. Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol Pharmacol 1998; 54(3): 459–62PubMed Shen M, Thayer SA. Cannabinoid receptor agonists protect cultured rat hippocampal neurons from excitotoxicity. Mol Pharmacol 1998; 54(3): 459–62PubMed
320.
go back to reference Hampson AJ, Grimaldi M, Axelrod J, et al. Cannabidiol and (−)delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A 1998; 95(14): 8268–73PubMedCrossRef Hampson AJ, Grimaldi M, Axelrod J, et al. Cannabidiol and (−)delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A 1998; 95(14): 8268–73PubMedCrossRef
321.
go back to reference Giuffrida A, Beltramo M, Piomelli D. Mechanisms of endocan-nabinoid inactivation: biochemistry and pharmacology. J Pharmacol Exp Ther 2001; 298(1): 7–14PubMed Giuffrida A, Beltramo M, Piomelli D. Mechanisms of endocan-nabinoid inactivation: biochemistry and pharmacology. J Pharmacol Exp Ther 2001; 298(1): 7–14PubMed
322.
go back to reference Meschler JP, Howlett AC, Madras BK. Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology (Berl) 2001; 156(1): 79–85CrossRef Meschler JP, Howlett AC, Madras BK. Cannabinoid receptor agonist and antagonist effects on motor function in normal and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP)-treated non-human primates. Psychopharmacology (Berl) 2001; 156(1): 79–85CrossRef
323.
go back to reference Frankel JP, Hughes A, Lees AJ, et al. Marijuana for parkinsonian tremor [letter]. J Neurol Neurosurg Psychiatry 1990; 53(5): 436PubMedCrossRef Frankel JP, Hughes A, Lees AJ, et al. Marijuana for parkinsonian tremor [letter]. J Neurol Neurosurg Psychiatry 1990; 53(5): 436PubMedCrossRef
324.
go back to reference Commins DL, Vosmer G, Virus RM, et al. Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 1987; 241(1): 338–45PubMed Commins DL, Vosmer G, Virus RM, et al. Biochemical and histological evidence that methylenedioxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. J Pharmacol Exp Ther 1987; 241(1): 338–45PubMed
325.
go back to reference Schmidt CJ. Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther 1987; 240(1): 1–7PubMed Schmidt CJ. Neurotoxicity of the psychedelic amphetamine, methylenedioxymethamphetamine. J Pharmacol Exp Ther 1987; 240(1): 1–7PubMed
326.
go back to reference Logan BJ, Laverty R, Sanderson WD, et al. Differences between rats and mice in MDMA (methylenedioxymethy-lamphetamine) neurotoxicity. Eur J Pharmacol 1988; 152(3): 227–34PubMedCrossRef Logan BJ, Laverty R, Sanderson WD, et al. Differences between rats and mice in MDMA (methylenedioxymethy-lamphetamine) neurotoxicity. Eur J Pharmacol 1988; 152(3): 227–34PubMedCrossRef
327.
go back to reference O’Callaghan JP, Miller DB. Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 1994; 270(2): 741–51PubMed O’Callaghan JP, Miller DB. Neurotoxicity profiles of substituted amphetamines in the C57BL/6J mouse. J Pharmacol Exp Ther 1994; 270(2): 741–51PubMed
328.
go back to reference Stone DM, Stahl DC, Hanson GR, et al. The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 1986; 128(1–2): 41–8PubMedCrossRef Stone DM, Stahl DC, Hanson GR, et al. The effects of 3,4-methylenedioxymethamphetamine (MDMA) and 3,4-methylenedioxyamphetamine (MDA) on monoaminergic systems in the rat brain. Eur J Pharmacol 1986; 128(1–2): 41–8PubMedCrossRef
329.
go back to reference Nash JF, Nichols DE. Microdialysis studies on 3,4-methylenedi-oxyamphetamine and structurally related analogues. Eur J Pharmacol 1991; 200(1): 53–8PubMedCrossRef Nash JF, Nichols DE. Microdialysis studies on 3,4-methylenedi-oxyamphetamine and structurally related analogues. Eur J Pharmacol 1991; 200(1): 53–8PubMedCrossRef
331.
go back to reference Ricaurte GA, Yuan J, Hatzidimitriou G, et al. Severe dopaminergic neurotoxicity in primates after a common recreational dose regimen of MDMA (“Ecstasy”). Science 2002; 297(5590): 2260–3PubMedCrossRef Ricaurte GA, Yuan J, Hatzidimitriou G, et al. Severe dopaminergic neurotoxicity in primates after a common recreational dose regimen of MDMA (“Ecstasy”). Science 2002; 297(5590): 2260–3PubMedCrossRef
332.
go back to reference von Sydow K, Lieb R, Pfister H, et al. Use, abuse and dependence of ecstasy and related drugs in adolescents and young adults-a transient phenomenon? Results from a longitudinal community study. Drug Alcohol Depend 2002; 66(2): 147–59CrossRef von Sydow K, Lieb R, Pfister H, et al. Use, abuse and dependence of ecstasy and related drugs in adolescents and young adults-a transient phenomenon? Results from a longitudinal community study. Drug Alcohol Depend 2002; 66(2): 147–59CrossRef
333.
go back to reference Youdim MB, Lavie L. Selective MAO-A and B inhibitors, radical scavengers and nitric oxide synthase inhibitors in Parkinson’s disease. Life Sci 1994; 55(25–26): 2077–82PubMedCrossRef Youdim MB, Lavie L. Selective MAO-A and B inhibitors, radical scavengers and nitric oxide synthase inhibitors in Parkinson’s disease. Life Sci 1994; 55(25–26): 2077–82PubMedCrossRef
334.
go back to reference Colangelo V, Schurr J, Ball MJ, et al. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 2002; 70(3): 462–73PubMedCrossRef Colangelo V, Schurr J, Ball MJ, et al. Gene expression profiling of 12633 genes in Alzheimer hippocampal CA1: transcription and neurotrophic factor down-regulation and up-regulation of apoptotic and pro-inflammatory signaling. J Neurosci Res 2002; 70(3): 462–73PubMedCrossRef
335.
go back to reference Jin K, Mao XO, Eshoo MW, et al. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 2001; 50(1): 93–103PubMedCrossRef Jin K, Mao XO, Eshoo MW, et al. Microarray analysis of hippocampal gene expression in global cerebral ischemia. Ann Neurol 2001; 50(1): 93–103PubMedCrossRef
336.
go back to reference Aronowski J, Strong R, Shirzadi A, et al. Ethanol plus caffeine (caffeinol) for treatment of ischemic stroke: preclinical experience. Stroke 2003; 34(5): 1246-51PubMedCrossRef Aronowski J, Strong R, Shirzadi A, et al. Ethanol plus caffeine (caffeinol) for treatment of ischemic stroke: preclinical experience. Stroke 2003; 34(5): 1246-51PubMedCrossRef
Metadata
Title
Neuroprotective Strategies in Parkinson’s Disease
An Update on Progress
Authors
Silvia Mandel
Edna Grünblatt
Peter Riederer
Manfred Gerlach
Yona Levites
Dr Moussa B. H. Youdim
Publication date
01-08-2003
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 10/2003
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200317100-00004

Other articles of this Issue 10/2003

CNS Drugs 10/2003 Go to the issue