Skip to main content
Top
Published in: CNS Drugs 12/2002

01-12-2002 | Review Article

Non-Cholinergic Strategies for Treating and Preventing Alzheimer’s Disease

Author: Dr P. Murali Doraiswamy

Published in: CNS Drugs | Issue 12/2002

Login to get access

Abstract

The pathophysiology of Alzheimer’s disease is complex and involves several different biochemical pathways. These include defective β-amyloid (Aβ) protein metabolism, abnormalities of glutamatergic, adrenergic, serotonergic and dopaminergic neurotransmission, and the potential involvement of inflammatory, oxidative and hormonal pathways. Consequently, these pathways are all potential targets for Alzheimer’s disease treatment and prevention strategies. Currently, the mainstay treatments for Alzheimer’s disease are the cholinesterase inhibitors, which increase the availability of acetylcholine at cholinergic synapses. Since the cholinesterase inhibitors confer only modest benefits, additional non-cholinergic Alzheimer’s disease therapies are urgently needed.
Several non-cholinergic agents are currently under development for the treatment and/or prevention of Alzheimer’s disease. These include anti-amyloid strategies (e.g. immunisation, aggregation inhibitors, secretase inhibitors), transition metal chelators (e.g. clioquinol), growth factors, hormones (e.g. estradiol), herbs (e.g. Ginkgo biloba), nonsteroidal anti-inflammatory drugs (NSAIDs, e.g. indomethacin), antioxidants, lipid-lowering agents, antihypertensives, selective phosphodiesterase inhibitors, vitamins (E, B12, B6, folic acid) and agents that target neurotransmitter or neuropeptide alterations. Neurotransmitter receptor-based approaches include agents that modulate certain receptors (e.g. nicotinic, muscarinic, α-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid [AMPA], γ-aminobutyric acid [GABA], N-methyl-D-aspartate [NMDA]) and agents that increase the availability of neurotransmitters (e.g. noradrenergic reuptake inhibitors).
Of these strategies, the NMDA receptor antagonist memantine is in the most advanced stage of development in the US and is already approved in Europe as the first treatment for moderately severe to severe Alzheimer’s disease. Memantine is proposed to counteract cellular damage due to pathological activation of NMDA receptors by glutamate. Results with Ginkgo biloba have been mixed. Data for neurotrophic therapies and vitamin E (tocopherol) appear promising but require confirmation. NSAIDs and conjugated estrogens have not proven to be of value to date for the treatment of Alzheimer’s disease. Statins may have a potential role in reducing the risk or delaying the onset of Alzheimer’s disease, although this has yet to be confirmed in randomised trials. There are currently no data to support the use of statins as a treatment for dementia.
This article provides an update on the current status of selected agents, focusing primarily on those agents with the most extensive clinical evidence at present.
Literature
1.
go back to reference Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’sdisease in the United States and the public health impact ofdelaying disease onset. Am J Public Health 1998 Sep; 88(9): 1337–42PubMedCrossRef Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’sdisease in the United States and the public health impact ofdelaying disease onset. Am J Public Health 1998 Sep; 88(9): 1337–42PubMedCrossRef
2.
go back to reference Grutzendler J, Morris JC. Cholinesterase inhibitors for Alzheimer’sdisease. Drugs 2001; 61(1): 41–52PubMedCrossRef Grutzendler J, Morris JC. Cholinesterase inhibitors for Alzheimer’sdisease. Drugs 2001; 61(1): 41–52PubMedCrossRef
3.
go back to reference Rocca P, Cocuzza E, Marchiaro L, et al. Donepezil in the treatment of Alzheimer’s disease: long-term efficacy and safety. Prog Neuropsychopharmacol Biol Psychiatry 2002 Feb; 26(2): 369–73PubMedCrossRef Rocca P, Cocuzza E, Marchiaro L, et al. Donepezil in the treatment of Alzheimer’s disease: long-term efficacy and safety. Prog Neuropsychopharmacol Biol Psychiatry 2002 Feb; 26(2): 369–73PubMedCrossRef
4.
go back to reference Wilkinson D, Murray J. Galantamine: a randomized, double-blind, dose comparison in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 2001 Sep; 16(9): 852–7PubMedCrossRef Wilkinson D, Murray J. Galantamine: a randomized, double-blind, dose comparison in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 2001 Sep; 16(9): 852–7PubMedCrossRef
5.
go back to reference Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology 2001 Aug 14; 57(3): 489–95PubMedCrossRef Winblad B, Engedal K, Soininen H, et al. A 1-year, randomized, placebo-controlled study of donepezil in patients with mild to moderate AD. Neurology 2001 Aug 14; 57(3): 489–95PubMedCrossRef
6.
go back to reference Birks J, Grimley Evans J, Iakovidou V, et al. Rivastigmine for Alzheimer’s disease. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software, 1997: CD001191 Birks J, Grimley Evans J, Iakovidou V, et al. Rivastigmine for Alzheimer’s disease. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 4. Oxford: Update Software, 1997: CD001191
7.
go back to reference Morris JC, Cyrus PA, Orazem J, et al. Metrifonate benefits cognitive, behavioral, and global function in patients with Alzheimer’s disease. Neurology 1998 May; 50(5): 1222–30PubMedCrossRef Morris JC, Cyrus PA, Orazem J, et al. Metrifonate benefits cognitive, behavioral, and global function in patients with Alzheimer’s disease. Neurology 1998 May; 50(5): 1222–30PubMedCrossRef
8.
go back to reference McLendon BM, Doraiswamy PM. Defining meaningful change in Alzheimer’s disease trials: the donepezil experience. J Geriatr Psychiatry Neurol 1999 Spring; 12(1): 39–48PubMedCrossRef McLendon BM, Doraiswamy PM. Defining meaningful change in Alzheimer’s disease trials: the donepezil experience. J Geriatr Psychiatry Neurol 1999 Spring; 12(1): 39–48PubMedCrossRef
9.
go back to reference Mohs RC, Doody RS, Morris JC, et al. A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology 2001 Aug 14; 57(3): 481–8PubMedCrossRef Mohs RC, Doody RS, Morris JC, et al. A 1-year, placebo-controlled preservation of function survival study of donepezil in AD patients. Neurology 2001 Aug 14; 57(3): 481–8PubMedCrossRef
10.
go back to reference Feldman H, Gauthier S, Hecker J, et al. A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer’s disease. Neurology 2001 Aug 28; 57(4): 613–20PubMedCrossRef Feldman H, Gauthier S, Hecker J, et al. A 24-week, randomized, double-blind study of donepezil in moderate to severe Alzheimer’s disease. Neurology 2001 Aug 28; 57(4): 613–20PubMedCrossRef
11.
go back to reference Muir JL. Acetylcholine, aging, and Alzheimer’s disease. Pharmacol Biochem Behav 1997 Apr; 56(4): 687–96PubMedCrossRef Muir JL. Acetylcholine, aging, and Alzheimer’s disease. Pharmacol Biochem Behav 1997 Apr; 56(4): 687–96PubMedCrossRef
12.
go back to reference Olney JW, Wozniak DF, Farber NB. Excitotoxic neurodegeneration in Alzheimer disease: new hypothesis and new therapeutic strategies. Arch Neurol 1997 Oct; 54(10): 1234–40PubMedCrossRef Olney JW, Wozniak DF, Farber NB. Excitotoxic neurodegeneration in Alzheimer disease: new hypothesis and new therapeutic strategies. Arch Neurol 1997 Oct; 54(10): 1234–40PubMedCrossRef
13.
go back to reference Emilien G, Beyreuther K, Masters CL, et al. Prospects for pharmacological intervention in Alzheimer disease. Arch Neurol 2000 Apr; 57(4): 454–9PubMedCrossRef Emilien G, Beyreuther K, Masters CL, et al. Prospects for pharmacological intervention in Alzheimer disease. Arch Neurol 2000 Apr; 57(4): 454–9PubMedCrossRef
14.
go back to reference Krieglstein J, Lippert K, Poch G. Apparent independent action of nimodipine and glutamate antagonists to protect cultured neurons against glutamate-induced damage. Neuropharmacology 1996; 35(12): 1737–42PubMedCrossRef Krieglstein J, Lippert K, Poch G. Apparent independent action of nimodipine and glutamate antagonists to protect cultured neurons against glutamate-induced damage. Neuropharmacology 1996; 35(12): 1737–42PubMedCrossRef
15.
go back to reference Watkins JC, Evans RH. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 1981; 21: 165–204PubMedCrossRef Watkins JC, Evans RH. Excitatory amino acid transmitters. Annu Rev Pharmacol Toxicol 1981; 21: 165–204PubMedCrossRef
16.
go back to reference Greenamyre JT, Maragos WF, Albin RL, et al. Glutamate transmission and toxicity in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 1988; 12(4): 421–30PubMedCrossRef Greenamyre JT, Maragos WF, Albin RL, et al. Glutamate transmission and toxicity in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 1988; 12(4): 421–30PubMedCrossRef
17.
go back to reference Arias C, Arrieta I, Tapia R. Beta-amyloid peptide fragment 25–35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. J Neurosci Res 1995 Jul 1; 41(4): 561–6PubMedCrossRef Arias C, Arrieta I, Tapia R. Beta-amyloid peptide fragment 25–35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. J Neurosci Res 1995 Jul 1; 41(4): 561–6PubMedCrossRef
18.
go back to reference Goodwin JL, Uemura E, Cunnick JE. Microglial release of nitric oxide by the synergistic action of beta-amyloid and IFN-gamma. Brain Res 1995 Sep 18; 692(1–2): 207–14PubMedCrossRef Goodwin JL, Uemura E, Cunnick JE. Microglial release of nitric oxide by the synergistic action of beta-amyloid and IFN-gamma. Brain Res 1995 Sep 18; 692(1–2): 207–14PubMedCrossRef
19.
go back to reference Lees GJ. Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 1993 May; 54(2): 287–322PubMedCrossRef Lees GJ. Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 1993 May; 54(2): 287–322PubMedCrossRef
20.
go back to reference Harris ME, Wang Y, Pedigo Jr NW, et al. Amyloid beta peptide (25–35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J Neurochem 1996 Jul; 67(1): 277–86PubMedCrossRef Harris ME, Wang Y, Pedigo Jr NW, et al. Amyloid beta peptide (25–35) inhibits Na+-dependent glutamate uptake in rat hippocampal astrocyte cultures. J Neurochem 1996 Jul; 67(1): 277–86PubMedCrossRef
21.
go back to reference Liang Z, Valla J, Sefidvash-Hockley S, et al. Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer’s disease patients. J Neurochem 2002 Mar; 80(5): 807–14PubMedCrossRef Liang Z, Valla J, Sefidvash-Hockley S, et al. Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer’s disease patients. J Neurochem 2002 Mar; 80(5): 807–14PubMedCrossRef
22.
go back to reference Topper R, Gehrmann J, Banati R, et al. Rapid appearance of beta-amyloid precursor protein immunoreactivity in glial cells following excitotoxic brain injury. Acta Neuropathol (Berl) 1995; 89(1): 23–8CrossRef Topper R, Gehrmann J, Banati R, et al. Rapid appearance of beta-amyloid precursor protein immunoreactivity in glial cells following excitotoxic brain injury. Acta Neuropathol (Berl) 1995; 89(1): 23–8CrossRef
23.
go back to reference Chen HS, Pellegrini JW, Aggarwal SK, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 1992 Nov; 12(11): 4427–36PubMed Chen HS, Pellegrini JW, Aggarwal SK, et al. Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine: therapeutic advantage against NMDA receptor-mediated neurotoxicity. J Neurosci 1992 Nov; 12(11): 4427–36PubMed
24.
go back to reference Wenk GL, Danysz W, Mobley SL. MK-801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis. Eur J Pharmacol 1995 Oct 6; 293(3): 267–70PubMedCrossRef Wenk GL, Danysz W, Mobley SL. MK-801, memantine and amantadine show neuroprotective activity in the nucleus basalis magnocellularis. Eur J Pharmacol 1995 Oct 6; 293(3): 267–70PubMedCrossRef
25.
go back to reference Wenk GL, Danysz W, Mobley SL. Investigations of neurotoxicity and neuroprotection within the nucleus basalis of the rat. Brain Res 1994 Aug 29; 655(1–2): 7–11PubMedCrossRef Wenk GL, Danysz W, Mobley SL. Investigations of neurotoxicity and neuroprotection within the nucleus basalis of the rat. Brain Res 1994 Aug 29; 655(1–2): 7–11PubMedCrossRef
26.
go back to reference Headley PM, Grillner S. Excitatory amino acids and synaptic transmission: the evidence for a physiological function. Trends Pharmacol Sei 1990 May; 11(5): 205–11CrossRef Headley PM, Grillner S. Excitatory amino acids and synaptic transmission: the evidence for a physiological function. Trends Pharmacol Sei 1990 May; 11(5): 205–11CrossRef
27.
go back to reference Misztal M, Frankiewicz T, Parsons CG, et al. Learning deficits induced by chronic intraventricular infusion of quinolinic acid: protection by MK-801 and memantine. Eur J Pharmacol 1996 Jan 18; 296(1): 1–8PubMedCrossRef Misztal M, Frankiewicz T, Parsons CG, et al. Learning deficits induced by chronic intraventricular infusion of quinolinic acid: protection by MK-801 and memantine. Eur J Pharmacol 1996 Jan 18; 296(1): 1–8PubMedCrossRef
28.
go back to reference Kornhuber J, Weiler M. Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol Psychiatry 1997 Jan 15; 41(2): 135–44PubMedCrossRef Kornhuber J, Weiler M. Psychotogenicity and N-methyl-D-aspartate receptor antagonism: implications for neuroprotective pharmacotherapy. Biol Psychiatry 1997 Jan 15; 41(2): 135–44PubMedCrossRef
29.
go back to reference Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist: a review of preclinical data. Neuropharmacology 1999 Jun; 38(6): 735–67PubMedCrossRef Parsons CG, Danysz W, Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist: a review of preclinical data. Neuropharmacology 1999 Jun; 38(6): 735–67PubMedCrossRef
30.
go back to reference Seif el Nasr M, Peruche B, Rossberg C, et al. Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur J Pharmacol 1990 Aug 21; 185(1): 19–24PubMedCrossRef Seif el Nasr M, Peruche B, Rossberg C, et al. Neuroprotective effect of memantine demonstrated in vivo and in vitro. Eur J Pharmacol 1990 Aug 21; 185(1): 19–24PubMedCrossRef
31.
go back to reference Parsons CG, Danysz W, Bartmann A, et al. Amino-alkyl-cyclohexanes are novel uncompetitive NMDA receptor antagonists with strong voltage-dependency and fast blocking kinetics: in vitro and in vivo characterization. Neuropharmacology 1999 Jan; 38(1): 85–108PubMedCrossRef Parsons CG, Danysz W, Bartmann A, et al. Amino-alkyl-cyclohexanes are novel uncompetitive NMDA receptor antagonists with strong voltage-dependency and fast blocking kinetics: in vitro and in vivo characterization. Neuropharmacology 1999 Jan; 38(1): 85–108PubMedCrossRef
32.
go back to reference Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, et al. Memantine prevents beta-amyloid-induced neurotoxicity and learning impairment in rats [abstract]. Neurobiol Aging 2002; 23: S102 Miguel-Hidalgo JJ, Alvarez XA, Cacabelos R, et al. Memantine prevents beta-amyloid-induced neurotoxicity and learning impairment in rats [abstract]. Neurobiol Aging 2002; 23: S102
33.
go back to reference Danysz W, Möbius H–J, Parsons CG, et al. Memantine provides neuroprotection in animal models at therapeutically relevant doses [abstract]. Am J Geriatr Psychiatry 2002; 10(2 Suppl. 1): 1–122 Danysz W, Möbius H–J, Parsons CG, et al. Memantine provides neuroprotection in animal models at therapeutically relevant doses [abstract]. Am J Geriatr Psychiatry 2002; 10(2 Suppl. 1): 1–122
34.
go back to reference Danysz W, Parsons CG, Möbius HJ, et al. Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease: a unified glutamatergic hypothesis on the mechanism of action. Neurotox Res 2000; 2: 85–97PubMedCrossRef Danysz W, Parsons CG, Möbius HJ, et al. Neuroprotective and symptomatological action of memantine relevant for Alzheimer’s disease: a unified glutamatergic hypothesis on the mechanism of action. Neurotox Res 2000; 2: 85–97PubMedCrossRef
35.
go back to reference Reisberg B, Stöffler A, Ferris S, et al. A placebo-controlled study of memantine in advanced Alzheimer’s disease [abstract]. Am J Geriatr Psychiatry 2002; 10(2 Suppl. 1): 1–122 Reisberg B, Stöffler A, Ferris S, et al. A placebo-controlled study of memantine in advanced Alzheimer’s disease [abstract]. Am J Geriatr Psychiatry 2002; 10(2 Suppl. 1): 1–122
36.
go back to reference Wimo A, Winblad B, Stöffler A, et al. Effect of long-term treatment with memantine, an NMDA antagonist, on costs associated with advanced Alzheimer’s disease: results of a 28-week, randomized, double-blind, placebo-controlled study [abstract]. Neurobiol Aging 2002; 23: S44 Wimo A, Winblad B, Stöffler A, et al. Effect of long-term treatment with memantine, an NMDA antagonist, on costs associated with advanced Alzheimer’s disease: results of a 28-week, randomized, double-blind, placebo-controlled study [abstract]. Neurobiol Aging 2002; 23: S44
37.
go back to reference Reisberg B, Ferris S, Möbius HJ, et al. Long-term treatment with the NMDA antagonist memantine: results of a 24-week, open-label extension study in moderately severe-to-severeAlzheimer’s disease [abstract]. Neurobiol Aging 2002; 23: S555CrossRef Reisberg B, Ferris S, Möbius HJ, et al. Long-term treatment with the NMDA antagonist memantine: results of a 24-week, open-label extension study in moderately severe-to-severeAlzheimer’s disease [abstract]. Neurobiol Aging 2002; 23: S555CrossRef
38.
go back to reference Galasko D. New approaches to diagnose and treat Alzheimer’s disease: a glimpse of the future. Clin Geriatr Med 2001 May; 17(2): 393–410PubMedCrossRef Galasko D. New approaches to diagnose and treat Alzheimer’s disease: a glimpse of the future. Clin Geriatr Med 2001 May; 17(2): 393–410PubMedCrossRef
39.
go back to reference Teunissen CE, de Vente J, Steinbusch HW, et al. Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging 2002 Jul–Aug; 23(4): 485–508PubMedCrossRef Teunissen CE, de Vente J, Steinbusch HW, et al. Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging 2002 Jul–Aug; 23(4): 485–508PubMedCrossRef
40.
go back to reference Rich JB, Rasmusson DX, Folstein MF, et al. Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease. Neurology 1995 Jan; 45(1): 51–5PubMedCrossRef Rich JB, Rasmusson DX, Folstein MF, et al. Nonsteroidal anti-inflammatory drugs in Alzheimer’s disease. Neurology 1995 Jan; 45(1): 51–5PubMedCrossRef
41.
go back to reference Doraiswamy PM, Bieber F, Kaiser L, et al. The Alzheimer’sDisease Assessment Scale: patterns and predictors of baselinecognitive performance in multicenter Alzheimer’s disease trials.Neurology 1997 Jun; 48(6): 1511–7PubMedCrossRef Doraiswamy PM, Bieber F, Kaiser L, et al. The Alzheimer’sDisease Assessment Scale: patterns and predictors of baselinecognitive performance in multicenter Alzheimer’s disease trials.Neurology 1997 Jun; 48(6): 1511–7PubMedCrossRef
42.
go back to reference Rogers J, Kirby LC, Hempelman SR, et al. Clinical trial ofindomethacin in Alzheimer’s disease. Neurology 1993 Aug;43(8): 1609–11PubMedCrossRef Rogers J, Kirby LC, Hempelman SR, et al. Clinical trial ofindomethacin in Alzheimer’s disease. Neurology 1993 Aug;43(8): 1609–11PubMedCrossRef
43.
go back to reference Scharf S, Mander A, Ugoni A, et al. A double-blind, placebo-controlledtrial of diclofenac/misoprostol in Alzheimer’s disease.Neurology 1999 Jul 13; 53(1): 197–201PubMedCrossRef Scharf S, Mander A, Ugoni A, et al. A double-blind, placebo-controlledtrial of diclofenac/misoprostol in Alzheimer’s disease.Neurology 1999 Jul 13; 53(1): 197–201PubMedCrossRef
44.
go back to reference Sainati SM, Ingram DM, Talwalker S, et al. Results of a double-blind,randomized, placebo-controlled study of celecoxib inthe treatment of progression of Alzheimer’s disease. 6th InternationalStockholm/Springfield Meeting on Advances inAlzheimer Therapy; 2000 Apr 5–8; Stockholm, Sweden Sainati SM, Ingram DM, Talwalker S, et al. Results of a double-blind,randomized, placebo-controlled study of celecoxib inthe treatment of progression of Alzheimer’s disease. 6th InternationalStockholm/Springfield Meeting on Advances inAlzheimer Therapy; 2000 Apr 5–8; Stockholm, Sweden
45.
go back to reference Aisen P, Schafer K, Grundman M, et al. Results of a multicentertrial of rofecoxib and naproxen in Alzheimer’s disease [abstract].Neurobiol Aging 2002; 23: S429 Aisen P, Schafer K, Grundman M, et al. Results of a multicentertrial of rofecoxib and naproxen in Alzheimer’s disease [abstract].Neurobiol Aging 2002; 23: S429
46.
go back to reference Block G, Norman B, Liu G, et al. A clinical trial of rofecoxib,a selective COX-2 inhibitor, for the treatment of Alzheimer’sdisease [abstract]. Neurobiol Aging 2002; 23: S73 Block G, Norman B, Liu G, et al. A clinical trial of rofecoxib,a selective COX-2 inhibitor, for the treatment of Alzheimer’sdisease [abstract]. Neurobiol Aging 2002; 23: S73
47.
go back to reference in t’Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidalantiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 2001 Nov 22; 345(21): 1515–21CrossRef in t’Veld BA, Ruitenberg A, Hofman A, et al. Nonsteroidalantiinflammatory drugs and the risk of Alzheimer’s disease. N Engl J Med 2001 Nov 22; 345(21): 1515–21CrossRef
48.
go back to reference Breteler MM, in t’Veld BA, Hofman A, et al. A beta-42 peptidelowering NSAIDs and Alzheimer’s disease. Neurobiol Aging2002; 23: S286 Breteler MM, in t’Veld BA, Hofman A, et al. A beta-42 peptidelowering NSAIDs and Alzheimer’s disease. Neurobiol Aging2002; 23: S286
49.
go back to reference Wolfson C, Perrault A, Moride Y, et al. A case-control analysisof nonsteroidal anti-inflammatory drugs and Alzheimer’s disease:are they protective? Neuroepidemiology 2002 Mar–Apr;21(2): 81–6PubMedCrossRef Wolfson C, Perrault A, Moride Y, et al. A case-control analysisof nonsteroidal anti-inflammatory drugs and Alzheimer’s disease:are they protective? Neuroepidemiology 2002 Mar–Apr;21(2): 81–6PubMedCrossRef
50.
go back to reference Stewart WF, Kawas C, Corrada M, et al. Risk of Alzheimer’sdisease and duration of NSAID use. Neurology 1997 Mar; 48(3): 626–32PubMedCrossRef Stewart WF, Kawas C, Corrada M, et al. Risk of Alzheimer’sdisease and duration of NSAID use. Neurology 1997 Mar; 48(3): 626–32PubMedCrossRef
51.
go back to reference Anthony JC, Breitner JC, Zandi PP, et al. Reduced prevalenceof AD in users of NSAIDs and H2 receptor antagonists: theCache County study. Neurology 2000 Jun 13; 54(11): 2066–71PubMedCrossRef Anthony JC, Breitner JC, Zandi PP, et al. Reduced prevalenceof AD in users of NSAIDs and H2 receptor antagonists: theCache County study. Neurology 2000 Jun 13; 54(11): 2066–71PubMedCrossRef
52.
go back to reference Breitner JC, Zandi PP. Do nonsteroidal antiinflammatory drugsreduce the risk of Alzheimer’s disease? N Engl J Med 2001Nov 22; 345(21): 1567–8PubMedCrossRef Breitner JC, Zandi PP. Do nonsteroidal antiinflammatory drugsreduce the risk of Alzheimer’s disease? N Engl J Med 2001Nov 22; 345(21): 1567–8PubMedCrossRef
53.
go back to reference Beal MF. Aging, energy, and oxidative stress in neurodegenerativediseases. Ann Neurol 1995 Sep; 38(3): 357–66PubMedCrossRef Beal MF. Aging, energy, and oxidative stress in neurodegenerativediseases. Ann Neurol 1995 Sep; 38(3): 357–66PubMedCrossRef
54.
go back to reference Benzi G, Moretti A. Are reactive oxygen species involved inAlzheimer’s disease? Neurobiol Aging 1995 Jul–Aug; 16(4):661–74PubMedCrossRef Benzi G, Moretti A. Are reactive oxygen species involved inAlzheimer’s disease? Neurobiol Aging 1995 Jul–Aug; 16(4):661–74PubMedCrossRef
55.
go back to reference McGeer PL, McGeer EG. The inflammatory response system ofbrain: implications for therapy of Alzheimer and other neurodegenerativediseases. Brain Res Brain Res Rev 1995 Sep; 21(2): 195–218PubMedCrossRef McGeer PL, McGeer EG. The inflammatory response system ofbrain: implications for therapy of Alzheimer and other neurodegenerativediseases. Brain Res Brain Res Rev 1995 Sep; 21(2): 195–218PubMedCrossRef
56.
go back to reference McGeer PL, McGeer EG. Anti-inflammatory drugs in the fightagainst Alzheimer’s disease. Ann N Y Acad Sci 1996 Jan 17;777: 213–20PubMedCrossRef McGeer PL, McGeer EG. Anti-inflammatory drugs in the fightagainst Alzheimer’s disease. Ann N Y Acad Sci 1996 Jan 17;777: 213–20PubMedCrossRef
57.
go back to reference Oken BS, Storzbach DM, Kaye JA. The efficacy of ginkgobiloba on cognitive function in Alzheimer disease. Arch Neurol 1998 Nov; 55(11): 1409–15PubMedCrossRef Oken BS, Storzbach DM, Kaye JA. The efficacy of ginkgobiloba on cognitive function in Alzheimer disease. Arch Neurol 1998 Nov; 55(11): 1409–15PubMedCrossRef
58.
go back to reference Wettstein A. Cholinesterase inhibitors and gingko extracts: arethey comparable in the treatment of dementia? Comparisonof published placebo-controlled efficacy studies of at least sixmonths’ duration. Phytomedicine 2000 Jan; 6(6): 393–401PubMedCrossRef Wettstein A. Cholinesterase inhibitors and gingko extracts: arethey comparable in the treatment of dementia? Comparisonof published placebo-controlled efficacy studies of at least sixmonths’ duration. Phytomedicine 2000 Jan; 6(6): 393–401PubMedCrossRef
59.
go back to reference van Dongen MC, van Rossum E, Kessels AG, et al. The efficacyof ginkgo for elderly people with dementia and age-associatedmemory impairment: new results of a randomized clinicaltrial. J Am Geriatr Soc 2000 Oct; 48(10): 1183–94PubMed van Dongen MC, van Rossum E, Kessels AG, et al. The efficacyof ginkgo for elderly people with dementia and age-associatedmemory impairment: new results of a randomized clinicaltrial. J Am Geriatr Soc 2000 Oct; 48(10): 1183–94PubMed
60.
go back to reference Schreiter Gasser U, Gasser T. A comparison of cholinesteraseinhibitors and ginkgo extract in treatment of Alzheimer dementia.Fortschr Med Orig 2001 Nov 29; 119(3–4): 135–8 Schreiter Gasser U, Gasser T. A comparison of cholinesteraseinhibitors and ginkgo extract in treatment of Alzheimer dementia.Fortschr Med Orig 2001 Nov 29; 119(3–4): 135–8
61.
go back to reference Stough C, Clarke J, Lloyd J, et al. Neuropsychological changesafter 30-day ginkgo biloba administration in healthy participants.Int J Neuropsychopharmacol 2001 Jun; 4(2): 131–4 Stough C, Clarke J, Lloyd J, et al. Neuropsychological changesafter 30-day ginkgo biloba administration in healthy participants.Int J Neuropsychopharmacol 2001 Jun; 4(2): 131–4
62.
go back to reference Solomon PR, Adams F, Silver A, et al. Ginkgo for memoryenhancement: a randomized controlled trial. JAMA 2002 Aug 21; 288(7): 835–40PubMedCrossRef Solomon PR, Adams F, Silver A, et al. Ginkgo for memoryenhancement: a randomized controlled trial. JAMA 2002 Aug 21; 288(7): 835–40PubMedCrossRef
63.
go back to reference Tuszynski MH, Sang H, Yoshida K, et al. Recombinant humannerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann Neurol 1991 Nov; 30(5): 625–36PubMedCrossRef Tuszynski MH, Sang H, Yoshida K, et al. Recombinant humannerve growth factor infusions prevent cholinergic neuronal degeneration in the adult primate brain. Ann Neurol 1991 Nov; 30(5): 625–36PubMedCrossRef
64.
go back to reference Olson L. NGF and the treatment of Alzheimer’s disease. ExpNeurol 1993 Nov; 124(1): 5–15 Olson L. NGF and the treatment of Alzheimer’s disease. ExpNeurol 1993 Nov; 124(1): 5–15
65.
go back to reference Ringheim GE. Glial modulating and neurotrophic properties ofpropentofylline and its application to Alzheimer’s disease andvascular dementia. Ann N Y Acad Sci 2000 Apr; 903: 529–34PubMedCrossRef Ringheim GE. Glial modulating and neurotrophic properties ofpropentofylline and its application to Alzheimer’s disease andvascular dementia. Ann N Y Acad Sci 2000 Apr; 903: 529–34PubMedCrossRef
66.
go back to reference Shimazu S, Tachikawa N, Iwamoto N, et al. The neurotrophic action and brain protective effect of cerebrolysin [abstract]. Neurobiol Aging 1992; 13 Suppl. 1: S50 Shimazu S, Tachikawa N, Iwamoto N, et al. The neurotrophic action and brain protective effect of cerebrolysin [abstract]. Neurobiol Aging 1992; 13 Suppl. 1: S50
67.
go back to reference Albrecht E, Hingel S, Crailsheim K, et al. The effects of cerebrolysin on survival and sprouting of neurons from cerebral hemispheres and from the brain stem of chicken embryos in vitro [abstract]. Neurobiol Aging 1992; 13 Suppl. 1: S127CrossRef Albrecht E, Hingel S, Crailsheim K, et al. The effects of cerebrolysin on survival and sprouting of neurons from cerebral hemispheres and from the brain stem of chicken embryos in vitro [abstract]. Neurobiol Aging 1992; 13 Suppl. 1: S127CrossRef
68.
go back to reference Bae CY, Cho CY, Cho K, et al. A double-blind, placebo-controlled, multicenter study of cerebrolysin for Alzheimer’s disease. J Am Geriatr Soc 2000 Dec; 48(12): 1566–71PubMed Bae CY, Cho CY, Cho K, et al. A double-blind, placebo-controlled, multicenter study of cerebrolysin for Alzheimer’s disease. J Am Geriatr Soc 2000 Dec; 48(12): 1566–71PubMed
69.
go back to reference Ruther E, Ritter R, Apecechea M, et al. Efficacy of the peptidergic nootropic drug cerebrolysin in patients with senile dementia of the Alzheimer type (SDAT). Pharmacopsychiatry 1994 Jan; 27(1): 32–40PubMedCrossRef Ruther E, Ritter R, Apecechea M, et al. Efficacy of the peptidergic nootropic drug cerebrolysin in patients with senile dementia of the Alzheimer type (SDAT). Pharmacopsychiatry 1994 Jan; 27(1): 32–40PubMedCrossRef
70.
go back to reference Ruther E, Ritter R, Apecechea M, et al. Sustained improvements in patients with dementia of Alzheimer’s type (DAT) 6 months after termination of cerebrolysin therapy. J Neural Transm 2000; 107(7): 815–29PubMedCrossRef Ruther E, Ritter R, Apecechea M, et al. Sustained improvements in patients with dementia of Alzheimer’s type (DAT) 6 months after termination of cerebrolysin therapy. J Neural Transm 2000; 107(7): 815–29PubMedCrossRef
71.
go back to reference Panisset M, Gauthier S, Moessler H, et al. Cerebrolysin in Alzheimer’s disease: a randomized, double-blind, placebocontrolled trial with a neurotrophic agent. J Neural Transm 2002 Jul; 109(7–8): 1089–104PubMedCrossRef Panisset M, Gauthier S, Moessler H, et al. Cerebrolysin in Alzheimer’s disease: a randomized, double-blind, placebocontrolled trial with a neurotrophic agent. J Neural Transm 2002 Jul; 109(7–8): 1089–104PubMedCrossRef
72.
go back to reference Rogers SL, Farlow MR, Doody RS, et al. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease: Donepezil Study Group. Neurology 1998 Jan; 50(1): 136–45PubMedCrossRef Rogers SL, Farlow MR, Doody RS, et al. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease: Donepezil Study Group. Neurology 1998 Jan; 50(1): 136–45PubMedCrossRef
73.
go back to reference Rainer M, Mucke HA, Kruger-Rainer C, et al. Cognitive relapse after discontinuation of drug therapy in Alzheimer’s disease: cholinesterase inhibitors versus nootropics. J Neural Transm 2001; 108(11): 1327–33PubMedCrossRef Rainer M, Mucke HA, Kruger-Rainer C, et al. Cognitive relapse after discontinuation of drug therapy in Alzheimer’s disease: cholinesterase inhibitors versus nootropics. J Neural Transm 2001; 108(11): 1327–33PubMedCrossRef
74.
go back to reference Refolo LM, Malester B, LaFrancois J, et al. Hypercholesterolemiaaccelerates the Alzheimer’s amyloid pathology in a transgenicmouse model. Neurobiol Dis 2000 Aug; 7(4): 321–31PubMedCrossRef Refolo LM, Malester B, LaFrancois J, et al. Hypercholesterolemiaaccelerates the Alzheimer’s amyloid pathology in a transgenicmouse model. Neurobiol Dis 2000 Aug; 7(4): 321–31PubMedCrossRef
75.
go back to reference Jick H, Zornberg GL, Jick SS, et al. Statins and the risk of dementia.Lancet 2000 Nov 11; 356(9242): 1627–31PubMedCrossRef Jick H, Zornberg GL, Jick SS, et al. Statins and the risk of dementia.Lancet 2000 Nov 11; 356(9242): 1627–31PubMedCrossRef
76.
go back to reference Wolozin B, Kellman W, Ruosseau P, et al. Decreased prevalenceof Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000 Oct; 57(10): 1439–43PubMedCrossRef Wolozin B, Kellman W, Ruosseau P, et al. Decreased prevalenceof Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 2000 Oct; 57(10): 1439–43PubMedCrossRef
77.
go back to reference Rockwood K, Kirkland S, Hogan DB, et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 2002 Feb; 59(2): 223–7PubMedCrossRef Rockwood K, Kirkland S, Hogan DB, et al. Use of lipid-lowering agents, indication bias, and the risk of dementia in community-dwelling elderly people. Arch Neurol 2002 Feb; 59(2): 223–7PubMedCrossRef
78.
go back to reference Fassbender K, Simons M, Bergmann C, et al. Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 2001 May 8; 98(10): 5856–61PubMedCrossRef Fassbender K, Simons M, Bergmann C, et al. Simvastatin strongly reduces levels of Alzheimer’s disease beta-amyloid peptides Abeta 42 and Abeta 40 in vitro and in vivo. Proc Natl Acad Sci U S A 2001 May 8; 98(10): 5856–61PubMedCrossRef
79.
go back to reference Sterzer P, Meintzschel F, Rosler A, et al. Pravastatin improves cerebral vasomotor reactivity in patients with subcortical small-vessel disease. Stroke 2001 Dec 1; 32(12): 2817–20PubMedCrossRef Sterzer P, Meintzschel F, Rosler A, et al. Pravastatin improves cerebral vasomotor reactivity in patients with subcortical small-vessel disease. Stroke 2001 Dec 1; 32(12): 2817–20PubMedCrossRef
80.
go back to reference Orsi A, Sherman O, Woldeselassie Z. Simvastatin-associated memory loss. Pharmacotherapy 2001 Jun; 21(6): 767–9PubMedCrossRef Orsi A, Sherman O, Woldeselassie Z. Simvastatin-associated memory loss. Pharmacotherapy 2001 Jun; 21(6): 767–9PubMedCrossRef
81.
go back to reference Barrett AM. Probable Alzheimer’s disease: gender-related issues. J Gend Specif Med 1999 Jan–Feb; 2(1): 55–60PubMed Barrett AM. Probable Alzheimer’s disease: gender-related issues. J Gend Specif Med 1999 Jan–Feb; 2(1): 55–60PubMed
82.
go back to reference Luine VN. Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Exp Neurol 1985 Aug; 89(2): 484–90PubMedCrossRef Luine VN. Estradiol increases choline acetyltransferase activity in specific basal forebrain nuclei and projection areas of female rats. Exp Neurol 1985 Aug; 89(2): 484–90PubMedCrossRef
83.
go back to reference Toran-Allerand CD, Miranda RC, Bentham WD, et al. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Proc Natl Acad Sci U S A 1992 May 15; 89(10): 4668–72PubMedCrossRef Toran-Allerand CD, Miranda RC, Bentham WD, et al. Estrogen receptors colocalize with low-affinity nerve growth factor receptors in cholinergic neurons of the basal forebrain. Proc Natl Acad Sci U S A 1992 May 15; 89(10): 4668–72PubMedCrossRef
84.
go back to reference Henderson VW. Estrogen, cognition, and a woman’s risk of Alzheimer’s disease. Am J Med 1997 Sep 22; 103(3A): 11S–8SPubMedCrossRef Henderson VW. Estrogen, cognition, and a woman’s risk of Alzheimer’s disease. Am J Med 1997 Sep 22; 103(3A): 11S–8SPubMedCrossRef
85.
go back to reference Birge SJ. The role of estrogen in the treatment and prevention of dementia: introduction. Am J Med 1997 Sep 22; 103(3A): 1S–2SPubMedCrossRef Birge SJ. The role of estrogen in the treatment and prevention of dementia: introduction. Am J Med 1997 Sep 22; 103(3A): 1S–2SPubMedCrossRef
86.
go back to reference Asthana S, Craft S, Baker LD, et al. Cognitive and neuroendocrineresponse to transdermal estrogen in postmenopausal womenwith Alzheimer’s disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinology 1999 Aug; 24(6): 657–77PubMedCrossRef Asthana S, Craft S, Baker LD, et al. Cognitive and neuroendocrineresponse to transdermal estrogen in postmenopausal womenwith Alzheimer’s disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinology 1999 Aug; 24(6): 657–77PubMedCrossRef
87.
go back to reference Wang PN, Liao SQ, Liu RS, et al. Effects of estrogen on cognition, mood, and cerebral blood flow in AD: a controlled study. Neurology 2000 Jun 13; 54(11): 2061–6PubMedCrossRef Wang PN, Liao SQ, Liu RS, et al. Effects of estrogen on cognition, mood, and cerebral blood flow in AD: a controlled study. Neurology 2000 Jun 13; 54(11): 2061–6PubMedCrossRef
88.
go back to reference Henderson VW, Paganini-Hill A, Miller BL, et al. Estrogen for Alzheimer’s disease in women: randomized, double-blind, placebo-controlled trial. Neurology 2000 Jan 25; 54(2): 295–301PubMedCrossRef Henderson VW, Paganini-Hill A, Miller BL, et al. Estrogen for Alzheimer’s disease in women: randomized, double-blind, placebo-controlled trial. Neurology 2000 Jan 25; 54(2): 295–301PubMedCrossRef
89.
go back to reference Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial: Alzheimer’s Disease Cooperative Study. JAMA 2000 Feb 23; 283(8): 1007–15PubMedCrossRef Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial: Alzheimer’s Disease Cooperative Study. JAMA 2000 Feb 23; 283(8): 1007–15PubMedCrossRef
90.
go back to reference Paganini-Hill A, Henderson VW. Estrogen deficiency and risk of Alzheimer’s disease in women. Am J Epidemiol 1994 Aug 1; 140(3): 256–61PubMed Paganini-Hill A, Henderson VW. Estrogen deficiency and risk of Alzheimer’s disease in women. Am J Epidemiol 1994 Aug 1; 140(3): 256–61PubMed
91.
go back to reference Henderson VW, Paganini-Hill A, Emanuel CK, et al. Estrogen replacement therapy in older women: comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 1994 Sep; 51(9): 896–900PubMedCrossRef Henderson VW, Paganini-Hill A, Emanuel CK, et al. Estrogen replacement therapy in older women: comparisons between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 1994 Sep; 51(9): 896–900PubMedCrossRef
92.
go back to reference Tang MX, Jacobs D, Stern Y, et al. Effect of oestrogen duringmenopause on risk and age at onset of Alzheimer’s disease. Lancet 1996 Aug 17; 348(9025): 429–32PubMedCrossRef Tang MX, Jacobs D, Stern Y, et al. Effect of oestrogen duringmenopause on risk and age at onset of Alzheimer’s disease. Lancet 1996 Aug 17; 348(9025): 429–32PubMedCrossRef
93.
go back to reference Baldereschi M, Di Carlo A, Lepore V, et al. Estrogen-replacementtherapy and Alzheimer’s disease in the Italian Longitudinal Study on Aging. Neurology 1998 Apr; 50(4): 996–1002PubMedCrossRef Baldereschi M, Di Carlo A, Lepore V, et al. Estrogen-replacementtherapy and Alzheimer’s disease in the Italian Longitudinal Study on Aging. Neurology 1998 Apr; 50(4): 996–1002PubMedCrossRef
94.
go back to reference Writing Group for the Women’s Health Initiative. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002 Jul 17; 288(3): 321–33CrossRef Writing Group for the Women’s Health Initiative. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the Women’s Health Initiative randomized controlled trial. JAMA 2002 Jul 17; 288(3): 321–33CrossRef
95.
go back to reference Markesbery WR, Carney JM. Oxidative alterations in Alzheimer’s disease. Brain Pathol 1999 Jan; 9(1): 133–46PubMedCrossRef Markesbery WR, Carney JM. Oxidative alterations in Alzheimer’s disease. Brain Pathol 1999 Jan; 9(1): 133–46PubMedCrossRef
96.
go back to reference McCaddon A, Davies G, Hudson P, et al. Total serum homocysteinein senile dementia of Alzheimer type. Int J Geriatr Psychiatry 1998 Apr; 13(4): 235–9PubMedCrossRef McCaddon A, Davies G, Hudson P, et al. Total serum homocysteinein senile dementia of Alzheimer type. Int J Geriatr Psychiatry 1998 Apr; 13(4): 235–9PubMedCrossRef
97.
go back to reference Lehmann M, Gottfries CG, Regland B. Identification of cognitiveimpairment in the elderly: homocysteine is an early marker. Dement Geriatr Cogn Disord 1999 Jan–Feb; 10(1): 12–20PubMedCrossRef Lehmann M, Gottfries CG, Regland B. Identification of cognitiveimpairment in the elderly: homocysteine is an early marker. Dement Geriatr Cogn Disord 1999 Jan–Feb; 10(1): 12–20PubMedCrossRef
98.
go back to reference Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002 Feb 14; 346(7): 476–83PubMedCrossRef Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer’s disease. N Engl J Med 2002 Feb 14; 346(7): 476–83PubMedCrossRef
99.
go back to reference Paleologos M, Cumming RG, Lazarus R. Cohort study of vitamin C intake and cognitive impairment. Am J Epidemiol 1998 Jul 1; 148(1): 45–50PubMedCrossRef Paleologos M, Cumming RG, Lazarus R. Cohort study of vitamin C intake and cognitive impairment. Am J Epidemiol 1998 Jul 1; 148(1): 45–50PubMedCrossRef
100.
go back to reference Morris MC, Beckett LA, Scherr PA, et al. Vitamin E and vitaminC supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc Disord 1998 Sep; 12(3): 121–6PubMedCrossRef Morris MC, Beckett LA, Scherr PA, et al. Vitamin E and vitaminC supplement use and risk of incident Alzheimer disease. Alzheimer Dis Assoc Disord 1998 Sep; 12(3): 121–6PubMedCrossRef
101.
go back to reference Sano M, Ernesto C, Thomas RG, et al. A controlled trial ofselegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease: the Alzheimer’s Disease Cooperative Study. N Engl J Med 1997 Apr 24; 336(17): 1216–22PubMedCrossRef Sano M, Ernesto C, Thomas RG, et al. A controlled trial ofselegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease: the Alzheimer’s Disease Cooperative Study. N Engl J Med 1997 Apr 24; 336(17): 1216–22PubMedCrossRef
102.
go back to reference Schenk D, Barbour R, Dunn W, et al. Immunization with amyloidbetaattenuates Alzheimer-disease-like pathology in the PDAPPmouse. Nature 1999 Jul 8; 400(6740): 173–7PubMedCrossRef Schenk D, Barbour R, Dunn W, et al. Immunization with amyloidbetaattenuates Alzheimer-disease-like pathology in the PDAPPmouse. Nature 1999 Jul 8; 400(6740): 173–7PubMedCrossRef
103.
go back to reference Elan Corporation & Wyeth-Ayerst Laboratories, 2002. (Data onfile) Elan Corporation & Wyeth-Ayerst Laboratories, 2002. (Data onfile)
104.
go back to reference Lee JY, Mook-Jung I, Koh JY. Histochemically reactive zincin plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J Neurosci 1999 Jun 1; 19(11): RC10PubMed Lee JY, Mook-Jung I, Koh JY. Histochemically reactive zincin plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J Neurosci 1999 Jun 1; 19(11): RC10PubMed
105.
go back to reference Smith MA, Harris PL, Sayre LM, et al. Iron accumulation inAlzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 1997 Sep 2; 94(18): 9866–8PubMedCrossRef Smith MA, Harris PL, Sayre LM, et al. Iron accumulation inAlzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A 1997 Sep 2; 94(18): 9866–8PubMedCrossRef
106.
go back to reference Lovell MA, Robertson JD, Teesdale WJ, et al. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 1998 Jun 11; 158(1): 47–52PubMedCrossRef Lovell MA, Robertson JD, Teesdale WJ, et al. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 1998 Jun 11; 158(1): 47–52PubMedCrossRef
107.
go back to reference Suh SW, Jensen KB, Jensen MS, et al. Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res 2000 Jan 10; 852(2): 274–8PubMedCrossRef Suh SW, Jensen KB, Jensen MS, et al. Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer’s diseased brains. Brain Res 2000 Jan 10; 852(2): 274–8PubMedCrossRef
108.
go back to reference Cherny RA, Legg JT, McLean CA, et al. Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. J Biol Chem 1999 Aug 13; 274(33): 23223–8PubMedCrossRef Cherny RA, Legg JT, McLean CA, et al. Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. J Biol Chem 1999 Aug 13; 274(33): 23223–8PubMedCrossRef
109.
go back to reference Cherny RA, Atwood CS, Xilinas ME, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 2001 Jun; 30(3): 665–76PubMedCrossRef Cherny RA, Atwood CS, Xilinas ME, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 2001 Jun; 30(3): 665–76PubMedCrossRef
110.
go back to reference Regland B, Lehmann W, Abedini I, et al. Treatment of Alzheimer’sdisease with clioquinol. Dement Geriatr Cogn Disord 2001 Nov–Dec; 12(6): 408–14PubMedCrossRef Regland B, Lehmann W, Abedini I, et al. Treatment of Alzheimer’sdisease with clioquinol. Dement Geriatr Cogn Disord 2001 Nov–Dec; 12(6): 408–14PubMedCrossRef
111.
112.
go back to reference Gualtieri F, Manetti D, Romanelli MN, et al. Design and studyof piracetam-like nootropics, controversial members of the problematic class of cognition-enhancing drugs. Curr Pharm Des 2002; 8(2): 125–38PubMedCrossRef Gualtieri F, Manetti D, Romanelli MN, et al. Design and studyof piracetam-like nootropics, controversial members of the problematic class of cognition-enhancing drugs. Curr Pharm Des 2002; 8(2): 125–38PubMedCrossRef
113.
go back to reference Danysz W, Parsons CG, Quack G. NMDA channel blockers: memantine and amino-aklylcyclohexanes: in vivo characterization. Amino Acids 2000; 19(1): 167–72PubMedCrossRef Danysz W, Parsons CG, Quack G. NMDA channel blockers: memantine and amino-aklylcyclohexanes: in vivo characterization. Amino Acids 2000; 19(1): 167–72PubMedCrossRef
114.
go back to reference Hoerr R, Noeldner M. Ensaculin (KA-672 HC1): a multi-transmitter approach to dementia treatment. CNS Drug Rev 2002 Sum; 8(2): 143–58PubMedCrossRef Hoerr R, Noeldner M. Ensaculin (KA-672 HC1): a multi-transmitter approach to dementia treatment. CNS Drug Rev 2002 Sum; 8(2): 143–58PubMedCrossRef
115.
go back to reference Schneider LS, Farlow MR, Henderson VW, et al. Effects of estrogen replacement therapy on response to tacrine in patients with Alzheimer’s disease. Neurology 1996 Jun; 46(6): 1580–4PubMedCrossRef Schneider LS, Farlow MR, Henderson VW, et al. Effects of estrogen replacement therapy on response to tacrine in patients with Alzheimer’s disease. Neurology 1996 Jun; 46(6): 1580–4PubMedCrossRef
Metadata
Title
Non-Cholinergic Strategies for Treating and Preventing Alzheimer’s Disease
Author
Dr P. Murali Doraiswamy
Publication date
01-12-2002
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 12/2002
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200216120-00003