Skip to main content
Top
Published in: CNS Drugs 10/2002

01-10-2002 | Review Article

Pharmacological and Therapeutic Properties of Valproate

A Summary After 35 Years of Clinical Experience

Author: Dr Emilio Perucca

Published in: CNS Drugs | Issue 10/2002

Login to get access

Abstract

Thirty-five years since its introduction into clinical use, valproate (valproic acid) has become the most widely prescribed antiepileptic drug (AED) worldwide. Its pharmacological effects involve a variety of mechanisms, including increased γ-aminobutyric acid (GABA)-ergic transmission, reduced release and/or effects of excitatory amino acids, blockade of voltage-gated sodium channels and modulation of dopaminergic and serotoninergic transmission.
Valproate is available in different dosage forms for parenteral and oral use. All available oral formulations are almost completely bioavailable, but they differ in dissolution characteristics and absorption rates. In particular, sustained-release formulations are available that minimise fluctuations in serum drug concentrations during a dosing interval and can therefore be given once or twice daily.
Valproic acid is about 90% bound to plasma proteins, and the degree of binding decreases with increasing drug concentration within the clinically occurring range. Valproic acid is extensively metabolised by microsomal glucuronide conjugation, mitochondrial β-oxidation and cytochrome P450-dependent ω-, (ω-1)- and (ω-2)-oxidation. The elimination half-life is in the order of 9 to 18 hours, but shorter values (5 to 12 hours) are observed in patients comedicated with enzyme-inducing agents such as phenytoin, carbamazepine and barbiturates. Valproate itself is devoid of enzyme-inducing properties, but it has the potential of inhibiting drug metabolism and can increase by this mechanism the plasma concentrations of certain coadministered drugs, including phenobarbital (phenobarbitone), lamotrigine and zidovudine.
Valproate is a broad spectrum AED, being effective against all seizure types. In patients with newly diagnosed partial seizures (with or without secondary generalisation) and/or primarily generalised tonic-clonic seizures, the efficacy of valproate is comparable to that of phenytoin, carbamazepine and phenobarbital, although in most comparative trials the tolerability of phenobarbital was inferior to that of the other drugs. Valproate is generally regarded as a first-choice agent for most forms of idiopathic and symptomatic generalised epilepsies. Many of these syndromes are associated with multiple seizure types, including tonic-clonic, myoclonic and absence seizures, and prescription of a broad-spectrum drug such as valproate has clear advantages in this situation. A number of reports have also suggested that intravenous valproate could be of value in the treatment of convulsive and nonconvulsive status epilepticus, but further studies are required to establish in more detail the role of the drug in this indication.
The most commonly reported adverse effects of valproate include gastrointestinal disturbances, tremor and bodyweight gain. Other notable adverse effects include encephalopathy symptoms (at times associated with hyperammonaemia), platelet disorders, pancreatitis, liver toxicity (with an overall incidence of 1 in 20 000, but a frequency as high as 1 in 600 or 1 in 800 in high-risk groups such as infants below 2 years of age receiving anticonvulsant polytherapy) and teratogenicity, including a 1 to 3% risk of neural tube defects. Some studies have also suggested that menstrual disorders and certain clinical, ultrasound or endocrine manifestations of reproductive system disorders, including polycystic ovary syndrome, may be more common in women treated with valproate than in those treated with other AEDs. However, the precise relevance of the latter findings remains to be evaluated in large, prospective, randomised studies.
Footnotes
1
Use of tradenames is for product identification only and does not imply endorsement.
 
Literature
1.
go back to reference Hauser WA, Hesdorffer DC. Epilepsy: frequency, causes and consequences. New York: Demos, 1990 Hauser WA, Hesdorffer DC. Epilepsy: frequency, causes and consequences. New York: Demos, 1990
2.
go back to reference Annegers JF. Epidemiology of epilepsy. In: Wyllie E, editor. The treatment of epilepsy: principles and practice. 2nd ed. Baltimore (MD): Williams & Wilkins, 1997: 165–72 Annegers JF. Epidemiology of epilepsy. In: Wyllie E, editor. The treatment of epilepsy: principles and practice. 2nd ed. Baltimore (MD): Williams & Wilkins, 1997: 165–72
3.
go back to reference Hauser WA, Annegers JF, Kurland LT. Prevalence of epilepsy in Rochester, Minnesota, 1940-80. Epilepsia 1991; 32: 429–45PubMedCrossRef Hauser WA, Annegers JF, Kurland LT. Prevalence of epilepsy in Rochester, Minnesota, 1940-80. Epilepsia 1991; 32: 429–45PubMedCrossRef
4.
go back to reference Perucca E, Beghi E, Dulac O, et al. Assessing risk to benefit ratio in antiepileptic drug therapy. Epilepsy Res 2000; 41: 107–39PubMedCrossRef Perucca E, Beghi E, Dulac O, et al. Assessing risk to benefit ratio in antiepileptic drug therapy. Epilepsy Res 2000; 41: 107–39PubMedCrossRef
5.
go back to reference Moinier H, Carraz G, Moinier Y, et al. Propriété pharmacodynamique de la site N-dipropylacétique. Mémoire: propriété anti-épileptique. Thérapie 1963; 18: 435–8 Moinier H, Carraz G, Moinier Y, et al. Propriété pharmacodynamique de la site N-dipropylacétique. Mémoire: propriété anti-épileptique. Thérapie 1963; 18: 435–8
6.
go back to reference Löscher W. Valproate: reappraisal of its pharmacodynamic properties and mechanism of action. Prog Neurobiol 1999; 58: 31–59PubMedCrossRef Löscher W. Valproate: reappraisal of its pharmacodynamic properties and mechanism of action. Prog Neurobiol 1999; 58: 31–59PubMedCrossRef
7.
go back to reference Löscher W. Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochem Res 1993; 18: 485–502PubMedCrossRef Löscher W. Effects of the antiepileptic drug valproate on metabolism and function of inhibitory and excitatory amino acids in the brain. Neurochem Res 1993; 18: 485–502PubMedCrossRef
8.
go back to reference Gean PW, Huang CC, Hung CR, et al. Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices. Brain Res Bull 1994; 33(3): 333–6PubMedCrossRef Gean PW, Huang CC, Hung CR, et al. Valproic acid suppresses the synaptic response mediated by the NMDA receptors in rat amygdalar slices. Brain Res Bull 1994; 33(3): 333–6PubMedCrossRef
9.
go back to reference McLean MJ, Macdonald RL. Sodium valproate, but not etho-suximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 237(3): 1001–11PubMed McLean MJ, Macdonald RL. Sodium valproate, but not etho-suximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 237(3): 1001–11PubMed
10.
go back to reference Davis R, Peters DH, McTavish D. Valproic acid: a reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1994; 47: 332–72PubMedCrossRef Davis R, Peters DH, McTavish D. Valproic acid: a reappraisal of its pharmacological properties and clinical efficacy in epilepsy. Drugs 1994; 47: 332–72PubMedCrossRef
11.
go back to reference Perucca E, Gatti G, Frigo GM, et al. Pharmacokinetics of valproic acid after oral and intravenous administration. Br J Clin Pharmacol 1978; 5: 313–8CrossRef Perucca E, Gatti G, Frigo GM, et al. Pharmacokinetics of valproic acid after oral and intravenous administration. Br J Clin Pharmacol 1978; 5: 313–8CrossRef
12.
go back to reference Perucca E, Gatti G, Frigo GM, et al. Disposition of sodium valproate in epileptic patients. Br J Clin Pharmacol 1978; 5: 495–9PubMedCrossRef Perucca E, Gatti G, Frigo GM, et al. Disposition of sodium valproate in epileptic patients. Br J Clin Pharmacol 1978; 5: 495–9PubMedCrossRef
13.
go back to reference Gugler R, von Unruh GE. Clinical pharmacokinetics of valproic acid. Clin Pharmacokinet 1980; 5: 67–83PubMedCrossRef Gugler R, von Unruh GE. Clinical pharmacokinetics of valproic acid. Clin Pharmacokinet 1980; 5: 67–83PubMedCrossRef
14.
go back to reference Zaccara G, Messori A, Moroni F. Clinical pharmacokinetics of valproic acid: 1988. Clin Pharmacokinet 1988; 55: 367–89CrossRef Zaccara G, Messori A, Moroni F. Clinical pharmacokinetics of valproic acid: 1988. Clin Pharmacokinet 1988; 55: 367–89CrossRef
15.
go back to reference Barre J, Berger Y. Pharmacokinetics of a newly developed sustained-release form of sodium valproate. In: Chadwick D, editor. Proceedings of the Fourth International Symposium on Sodium Valproate and Epilepsy, International Congress and Symposium Series No. 152. London: Royal Society of Medicine Services, 1989: 178–84 Barre J, Berger Y. Pharmacokinetics of a newly developed sustained-release form of sodium valproate. In: Chadwick D, editor. Proceedings of the Fourth International Symposium on Sodium Valproate and Epilepsy, International Congress and Symposium Series No. 152. London: Royal Society of Medicine Services, 1989: 178–84
16.
go back to reference Levy RH, Cenraud B, Loiseau P, et al. Meal-dependent absorption of enteric coated sodium valproate. Epilepsia 1980; 21: 273–80PubMedCrossRef Levy RH, Cenraud B, Loiseau P, et al. Meal-dependent absorption of enteric coated sodium valproate. Epilepsia 1980; 21: 273–80PubMedCrossRef
17.
go back to reference Royer-Morrot MJ, Zhiri A, Jacob F, et al. Influence of food intake on the pharmacokinetics of a sustained release formulation of sodium valproate. Biopharm Drug Dispos 1993; 14: 511–8PubMedCrossRef Royer-Morrot MJ, Zhiri A, Jacob F, et al. Influence of food intake on the pharmacokinetics of a sustained release formulation of sodium valproate. Biopharm Drug Dispos 1993; 14: 511–8PubMedCrossRef
18.
go back to reference Cramer JA, Mattson RH. Valproic acid: in vitro plasma protein binding and interaction with phenytoin. Ther Drug Monit 1979; 1: 105–16PubMedCrossRef Cramer JA, Mattson RH. Valproic acid: in vitro plasma protein binding and interaction with phenytoin. Ther Drug Monit 1979; 1: 105–16PubMedCrossRef
19.
go back to reference Gram L, Flachs H, Wurtz-Jorgensen A, et al. Sodium valproate, serum level and clinical effect in epilepsy: a controlled study. Epilepsia 1979; 20: 303–12PubMedCrossRef Gram L, Flachs H, Wurtz-Jorgensen A, et al. Sodium valproate, serum level and clinical effect in epilepsy: a controlled study. Epilepsia 1979; 20: 303–12PubMedCrossRef
20.
go back to reference Bowdle TA, Patel IH, Levy RH, et al. Valproic acid dosage and plasma protein binding and clearance. Clin Pharmacol Ther 1980; 28: 486–92PubMedCrossRef Bowdle TA, Patel IH, Levy RH, et al. Valproic acid dosage and plasma protein binding and clearance. Clin Pharmacol Ther 1980; 28: 486–92PubMedCrossRef
21.
go back to reference Shen DD, Ojemann GA, Rappaport RL, et al. Low and variable presence of valproic acid in human brain. Neurology 1992; 42: 582–5PubMedCrossRef Shen DD, Ojemann GA, Rappaport RL, et al. Low and variable presence of valproic acid in human brain. Neurology 1992; 42: 582–5PubMedCrossRef
22.
go back to reference Levy RH, Shen D, Abbott F, et al. Valproic acid: chemistry, biotransformation and pharmacokinetics. In: Levy RH, Mattson BS, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: 780–800 Levy RH, Shen D, Abbott F, et al. Valproic acid: chemistry, biotransformation and pharmacokinetics. In: Levy RH, Mattson BS, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: 780–800
23.
go back to reference Frey HH, Löscher W. Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology 1978; 17: 637–42PubMedCrossRef Frey HH, Löscher W. Distribution of valproate across the interface between blood and cerebrospinal fluid. Neuropharmacology 1978; 17: 637–42PubMedCrossRef
24.
go back to reference Löscher W, Frey HH. Kinetics of penetration of common anti-epileptic drugs into cerebrospinal fluid. Epilepsia 1984; 25: 346–52PubMedCrossRef Löscher W, Frey HH. Kinetics of penetration of common anti-epileptic drugs into cerebrospinal fluid. Epilepsia 1984; 25: 346–52PubMedCrossRef
25.
go back to reference Perucca E, Grimaldi R, Gatti G, et al. Pharmacokinetics of valproic acid in the elderly. Br J Clin Pharmacol 1984; 17: 665–9PubMedCrossRef Perucca E, Grimaldi R, Gatti G, et al. Pharmacokinetics of valproic acid in the elderly. Br J Clin Pharmacol 1984; 17: 665–9PubMedCrossRef
26.
go back to reference Koerner M, Yerby M, Friel P, et al. Valproic acid disposition and protein binding in pregnancy. Ther Drug Monit 1989; 11: 228–30PubMedCrossRef Koerner M, Yerby M, Friel P, et al. Valproic acid disposition and protein binding in pregnancy. Ther Drug Monit 1989; 11: 228–30PubMedCrossRef
27.
go back to reference Henriksen O, Johannessen SI. Clinical and pharmacokinetic observations on sodium valproate: a 5-year follow-up study in 100 children with epilepsy. Acta Neurol Scand 1982; 65: 504–23PubMedCrossRef Henriksen O, Johannessen SI. Clinical and pharmacokinetic observations on sodium valproate: a 5-year follow-up study in 100 children with epilepsy. Acta Neurol Scand 1982; 65: 504–23PubMedCrossRef
28.
go back to reference Hoffmann F, von Unruh GE, Jancik BC. Valproic acid disposition in epileptic patients during combined antiepileptic maintenance therapy. Eur J Clin Pharmacol 1981; 19: 383–5PubMedCrossRef Hoffmann F, von Unruh GE, Jancik BC. Valproic acid disposition in epileptic patients during combined antiepileptic maintenance therapy. Eur J Clin Pharmacol 1981; 19: 383–5PubMedCrossRef
30.
go back to reference May TW, Rambeck B. Serum concentration of valproic acid: influence of dose and co-medication. Ther Drug Monit 1985; 7: 387–90PubMedCrossRef May TW, Rambeck B. Serum concentration of valproic acid: influence of dose and co-medication. Ther Drug Monit 1985; 7: 387–90PubMedCrossRef
31.
go back to reference Patsalos PN, Froscher W, Pisani F, et al. The importance of drug interactions in epilepsy therapy. Epilepsia 2002; 43: 365–85PubMedCrossRef Patsalos PN, Froscher W, Pisani F, et al. The importance of drug interactions in epilepsy therapy. Epilepsia 2002; 43: 365–85PubMedCrossRef
32.
go back to reference Scheyer RD. Valproic acid: drug interactions. In: Levy RH, Mattson BS, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: 801–7 Scheyer RD. Valproic acid: drug interactions. In: Levy RH, Mattson BS, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: 801–7
33.
go back to reference Bruni J, Wilder BJ, Perchalski RJ, et al. Valproic acid and plasma levels of phenobarbital. Neurology 1980; 30: 94–7PubMedCrossRef Bruni J, Wilder BJ, Perchalski RJ, et al. Valproic acid and plasma levels of phenobarbital. Neurology 1980; 30: 94–7PubMedCrossRef
34.
go back to reference Kanner AM, Frey M. Adding valproate to lamotrigine: a study of their pharmacokinetic interaction. Neurology 2000; 55: 588–91PubMedCrossRef Kanner AM, Frey M. Adding valproate to lamotrigine: a study of their pharmacokinetic interaction. Neurology 2000; 55: 588–91PubMedCrossRef
35.
go back to reference Morris RG, Black AB, Lam E, et al. Clinical study of lamotrigine and valproic acid in patients with epilepsy: using a drug interaction to advantage? Ther Drug Monit 2000; 22: 656–60PubMedCrossRef Morris RG, Black AB, Lam E, et al. Clinical study of lamotrigine and valproic acid in patients with epilepsy: using a drug interaction to advantage? Ther Drug Monit 2000; 22: 656–60PubMedCrossRef
36.
go back to reference McKee JW, Blacklaw J, Butler E, et al. Variability and clinical relevance of the interaction between sodium valproate and carbamazepine in epileptic patients. Epilepsy Res 1992; 11: 193–8PubMedCrossRef McKee JW, Blacklaw J, Butler E, et al. Variability and clinical relevance of the interaction between sodium valproate and carbamazepine in epileptic patients. Epilepsy Res 1992; 11: 193–8PubMedCrossRef
37.
go back to reference Pisani F, Fazio A, Oteri G, et al. Sodium valproate and valpromide: differential interactions with carbamazepine in epileptic patients. Epilepsia 1986; 27: 548–52PubMedCrossRef Pisani F, Fazio A, Oteri G, et al. Sodium valproate and valpromide: differential interactions with carbamazepine in epileptic patients. Epilepsia 1986; 27: 548–52PubMedCrossRef
38.
go back to reference Robbins DK, Wedlund PJ, Kuhn R, et al. Inhibition of epoxide hydrolase by valproic acid in epileptic patients receiving carbamazepine. Br J Clin Pharmacol 1990; 29: 759–62PubMedCrossRef Robbins DK, Wedlund PJ, Kuhn R, et al. Inhibition of epoxide hydrolase by valproic acid in epileptic patients receiving carbamazepine. Br J Clin Pharmacol 1990; 29: 759–62PubMedCrossRef
39.
go back to reference Anderson GD, Gidal BE, Kantor ED, et al. Lorazepam-valproate interaction: studies in normal subjects and isolated perfused rat liver. Epilepsia 1994; 35: 221–5PubMedCrossRef Anderson GD, Gidal BE, Kantor ED, et al. Lorazepam-valproate interaction: studies in normal subjects and isolated perfused rat liver. Epilepsia 1994; 35: 221–5PubMedCrossRef
40.
go back to reference Lertora JJL, Rege AB, Greespan DL, et al. Pharmacokinetic interaction between zidovudine and valproic acid in patients infected with human immunodeficiency virus. Clin Pharmacol Ther 1994; 56: 272–8PubMedCrossRef Lertora JJL, Rege AB, Greespan DL, et al. Pharmacokinetic interaction between zidovudine and valproic acid in patients infected with human immunodeficiency virus. Clin Pharmacol Ther 1994; 56: 272–8PubMedCrossRef
41.
go back to reference Wong SL, Cavanaugh J, Shi H, et al. Effects of divalproex sodium on amitriptyline and nortriptyline pharmacokinetics. Clin Pharmacol Ther 1996; 60: 48–53PubMedCrossRef Wong SL, Cavanaugh J, Shi H, et al. Effects of divalproex sodium on amitriptyline and nortriptyline pharmacokinetics. Clin Pharmacol Ther 1996; 60: 48–53PubMedCrossRef
42.
go back to reference Tartara A, Galimberti CA, Manni R, et al. Differential effects of valproic acid and enzyme inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients. Br J Clin Pharmacol 1991; 32: 335–40PubMedCrossRef Tartara A, Galimberti CA, Manni R, et al. Differential effects of valproic acid and enzyme inducing anticonvulsants on nimodipine pharmacokinetics in epileptic patients. Br J Clin Pharmacol 1991; 32: 335–40PubMedCrossRef
43.
go back to reference Pisani F, Narbone MC, Trunfio C, et al. Valproic acid-ethosuximide interaction: a pharmacokinetic study. Epilepsia 1984; 25: 229–33PubMedCrossRef Pisani F, Narbone MC, Trunfio C, et al. Valproic acid-ethosuximide interaction: a pharmacokinetic study. Epilepsia 1984; 25: 229–33PubMedCrossRef
44.
go back to reference Tsanaclis LM, Allen J, Perucca E, et al. Effect of valproate on free plasma phenytoin concentrations. Br J Pharmacol 1984; 18: 17–20CrossRef Tsanaclis LM, Allen J, Perucca E, et al. Effect of valproate on free plasma phenytoin concentrations. Br J Pharmacol 1984; 18: 17–20CrossRef
45.
go back to reference Perucca E, Hebdige S, Frigo GM, et al. Interaction between phenytoin and valproic acid: plasma protein binding and metabolic effects. Clin Pharmacol Ther 1980; 28: 779–89PubMedCrossRef Perucca E, Hebdige S, Frigo GM, et al. Interaction between phenytoin and valproic acid: plasma protein binding and metabolic effects. Clin Pharmacol Ther 1980; 28: 779–89PubMedCrossRef
46.
go back to reference Rowan AJ, Meijer JWA, de Beer-Pawlikowski N, et al. Valproate-ethosuximide combination therapy for refractory absence seizures. Arch Neurol 1983; 40: 797–802PubMedCrossRef Rowan AJ, Meijer JWA, de Beer-Pawlikowski N, et al. Valproate-ethosuximide combination therapy for refractory absence seizures. Arch Neurol 1983; 40: 797–802PubMedCrossRef
47.
go back to reference Perucca E. Pharmacological principles as a basis for polytherapy. Acta Neurol Scand Suppl 1995; 162: 31–4PubMed Perucca E. Pharmacological principles as a basis for polytherapy. Acta Neurol Scand Suppl 1995; 162: 31–4PubMed
48.
go back to reference Brodie MJ, Yuen AWC. Lamotrigine substitution study: evidence for synergism with sodium valproate: 105 Study Group. Epilepsy Res 1997; 26: 423–32PubMedCrossRef Brodie MJ, Yuen AWC. Lamotrigine substitution study: evidence for synergism with sodium valproate: 105 Study Group. Epilepsy Res 1997; 26: 423–32PubMedCrossRef
49.
go back to reference Pisani F, Oteri G, Russo MF, et al. The efficacy of valproatelamotrigine comedication in refractory complex partial seizures: evidence for a pharmacodynamic interaction. Epilepsia 1999; 40: 1141–6PubMedCrossRef Pisani F, Oteri G, Russo MF, et al. The efficacy of valproatelamotrigine comedication in refractory complex partial seizures: evidence for a pharmacodynamic interaction. Epilepsia 1999; 40: 1141–6PubMedCrossRef
50.
go back to reference Panayiotopoulos CP, Ferrie CD, Knott C, et al. Interaction of lamotrigine with sodium valproate [letter]. Lancet 1993; 341: 445PubMedCrossRef Panayiotopoulos CP, Ferrie CD, Knott C, et al. Interaction of lamotrigine with sodium valproate [letter]. Lancet 1993; 341: 445PubMedCrossRef
51.
go back to reference Bergmann A, Schmidt D, Hutt HJ, et al. Epilepsietherapie mit retardierter valproinsäure: erfahrungen mit 1172 patienten [Results of a pragmatic study on 1172 patients treated with Depakine Chrono]. Aktuelle Neurol 1999; 26: 121–6CrossRef Bergmann A, Schmidt D, Hutt HJ, et al. Epilepsietherapie mit retardierter valproinsäure: erfahrungen mit 1172 patienten [Results of a pragmatic study on 1172 patients treated with Depakine Chrono]. Aktuelle Neurol 1999; 26: 121–6CrossRef
52.
go back to reference Brasfield KH. Pilot study of divalproex sodium valproate versus valproic acid: drug acquisition costs versus all related costs. Curr Ther Res Clin Exp 1999; 60: 138–44CrossRef Brasfield KH. Pilot study of divalproex sodium valproate versus valproic acid: drug acquisition costs versus all related costs. Curr Ther Res Clin Exp 1999; 60: 138–44CrossRef
53.
go back to reference Cranor CW, Sawyer WT, Carson SW, et al. Clinical and economic impact of replacing divalproex sodium with valproic acid. Am J Health Syst Pharm 1997; 54: 1716–22PubMed Cranor CW, Sawyer WT, Carson SW, et al. Clinical and economic impact of replacing divalproex sodium with valproic acid. Am J Health Syst Pharm 1997; 54: 1716–22PubMed
54.
go back to reference Perucca E, Dulac O, Shorvon S, et al. Harnessing the clinical potential of antiepileptic drug therapy: dosage optimisation. CNS Drugs 2001; 15: 209–621CrossRef Perucca E, Dulac O, Shorvon S, et al. Harnessing the clinical potential of antiepileptic drug therapy: dosage optimisation. CNS Drugs 2001; 15: 209–621CrossRef
55.
56.
go back to reference Covanis A, Jeavons PM. Once daily sodium valproate in the treatment of epilepsy. Dev Med Child Neurol 1980; 22: 202–4PubMedCrossRef Covanis A, Jeavons PM. Once daily sodium valproate in the treatment of epilepsy. Dev Med Child Neurol 1980; 22: 202–4PubMedCrossRef
57.
go back to reference Richens A, Davidson DLW, Cartlidge NEF, et al. A multicentre comparative trial of sodium valproate and carbamazepine in adult onset epilepsy: the Adult EPITEG Collaborative Group. J Neurol Neurosurg 1994; 57: 682–7CrossRef Richens A, Davidson DLW, Cartlidge NEF, et al. A multicentre comparative trial of sodium valproate and carbamazepine in adult onset epilepsy: the Adult EPITEG Collaborative Group. J Neurol Neurosurg 1994; 57: 682–7CrossRef
58.
go back to reference Commission on Antiepileptic Drugs, International League against Epilepsy. Guidelines for therapeutic monitoring on antiepileptic drugs. Epilepsia 1993; 34: 585–7CrossRef Commission on Antiepileptic Drugs, International League against Epilepsy. Guidelines for therapeutic monitoring on antiepileptic drugs. Epilepsia 1993; 34: 585–7CrossRef
59.
go back to reference Lundberg B, Nergardh A, Boreus LO. Plasma concentrations of valproate during maintenance therapy in epileptic children. J Neurol 1982; 228: 133–41PubMedCrossRef Lundberg B, Nergardh A, Boreus LO. Plasma concentrations of valproate during maintenance therapy in epileptic children. J Neurol 1982; 228: 133–41PubMedCrossRef
60.
go back to reference Pinder RM, Brogden RN, Speight TM, et al. Sodium valproate: a review of its pharmacological properties and therapeutic efficacy in epilepsy. Drugs 1977; 13: 81–123PubMedCrossRef Pinder RM, Brogden RN, Speight TM, et al. Sodium valproate: a review of its pharmacological properties and therapeutic efficacy in epilepsy. Drugs 1977; 13: 81–123PubMedCrossRef
61.
go back to reference Seino M. A comment on the efficacy of valproate in the treatment of partial seizures. Epilepsia 1994; 35Suppl. 5: S101–4PubMedCrossRef Seino M. A comment on the efficacy of valproate in the treatment of partial seizures. Epilepsia 1994; 35Suppl. 5: S101–4PubMedCrossRef
62.
go back to reference Turnbull DM, Howel D, Rawlins MD, et al. Which drag for the adult epileptic patient: phenytoin or valproate? BMJ 1985; 290: 815–9PubMedCrossRef Turnbull DM, Howel D, Rawlins MD, et al. Which drag for the adult epileptic patient: phenytoin or valproate? BMJ 1985; 290: 815–9PubMedCrossRef
63.
go back to reference Callaghan N, Kenny RA, O’Neill B, et al. A prospective study between carbamazepine, phenytoin and sodium valproate as monotherapy in previously untreated and recently diagnosed patients with epilepsy. J Neurol Neurosurg Psychiatry 1985; 48: 639–44PubMedCrossRef Callaghan N, Kenny RA, O’Neill B, et al. A prospective study between carbamazepine, phenytoin and sodium valproate as monotherapy in previously untreated and recently diagnosed patients with epilepsy. J Neurol Neurosurg Psychiatry 1985; 48: 639–44PubMedCrossRef
64.
go back to reference Mattson RH, Cramer JA, Collins JF. A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults: the Department of the Veteran Affairs Epilepsy Cooperative Study Group. N Engl J Med 1992; 327: 765–71PubMedCrossRef Mattson RH, Cramer JA, Collins JF. A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults: the Department of the Veteran Affairs Epilepsy Cooperative Study Group. N Engl J Med 1992; 327: 765–71PubMedCrossRef
65.
go back to reference Ramsay RE, Wilder BJ, Murphy JV, et al. Efficacy and safety of valproic acid versus phenytoin as sole therapy for newly diagnosed primary generalised tonic-clonic seizures. J Epilepsy 1992; 5: 55–60CrossRef Ramsay RE, Wilder BJ, Murphy JV, et al. Efficacy and safety of valproic acid versus phenytoin as sole therapy for newly diagnosed primary generalised tonic-clonic seizures. J Epilepsy 1992; 5: 55–60CrossRef
66.
go back to reference Heller AJ, Chesterman P, Elwes RDC, et al. Phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed adult epilepsy: a randomised comparative monotherapy trial. J Neurol Neurosurg Psychiatry 1995; 58: 44–50PubMedCrossRef Heller AJ, Chesterman P, Elwes RDC, et al. Phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed adult epilepsy: a randomised comparative monotherapy trial. J Neurol Neurosurg Psychiatry 1995; 58: 44–50PubMedCrossRef
67.
go back to reference Verity CM, Hosking G, Easter DJ. A multicenter comparative trial of sodium valproate and carbamazepine in paediatric epilepsy: the Paediatric EPITEG Collaborative Group. Dev Med Child Neurol 1995; 37: 97–108PubMedCrossRef Verity CM, Hosking G, Easter DJ. A multicenter comparative trial of sodium valproate and carbamazepine in paediatric epilepsy: the Paediatric EPITEG Collaborative Group. Dev Med Child Neurol 1995; 37: 97–108PubMedCrossRef
68.
go back to reference De Silva M, MacArdle B, McGowan M, et al. Randomised comparative monotherapy trial of phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed childhood epilepsy. Lancet 1996; 347: 709–13PubMedCrossRef De Silva M, MacArdle B, McGowan M, et al. Randomised comparative monotherapy trial of phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed childhood epilepsy. Lancet 1996; 347: 709–13PubMedCrossRef
69.
go back to reference Thilothammal N, Banu K, Ratnam RS. Comparison of phenobarbitone, phenytoin with sodium valproate: randomized, double-blind study. Indian Pediatr 1996; 33: 549–55PubMed Thilothammal N, Banu K, Ratnam RS. Comparison of phenobarbitone, phenytoin with sodium valproate: randomized, double-blind study. Indian Pediatr 1996; 33: 549–55PubMed
70.
go back to reference Turnbull DM, Rawlins MD, Weightman D, et al. A comparison of phenytoin and valproate in previously untreated adult epileptic patients. J Neurol Neurosurg Psychiatry 1982; 45: 55–9PubMedCrossRef Turnbull DM, Rawlins MD, Weightman D, et al. A comparison of phenytoin and valproate in previously untreated adult epileptic patients. J Neurol Neurosurg Psychiatry 1982; 45: 55–9PubMedCrossRef
71.
go back to reference Reynolds EH, Heller AJ, Chadwick D. Valproate versus carbamazepine for seizures. N Engl J Med 1993; 328: 207–8PubMedCrossRef Reynolds EH, Heller AJ, Chadwick D. Valproate versus carbamazepine for seizures. N Engl J Med 1993; 328: 207–8PubMedCrossRef
72.
go back to reference Monfort JC. Valproate versus carbamazepine for seizures. N Engl J Med 1993; 328: 208–9PubMed Monfort JC. Valproate versus carbamazepine for seizures. N Engl J Med 1993; 328: 208–9PubMed
73.
go back to reference Beydoun A, Sackellares JC, Shu V. Safety and efficacy of divalproex sodium monotherapy in partial epilepsy: a double-blind, concentration-response design clinical trial. Depakote Monotherapy for Partial Seizures Study Group. Neurology 1997; 48(1): 182–8 Beydoun A, Sackellares JC, Shu V. Safety and efficacy of divalproex sodium monotherapy in partial epilepsy: a double-blind, concentration-response design clinical trial. Depakote Monotherapy for Partial Seizures Study Group. Neurology 1997; 48(1): 182–8
74.
75.
go back to reference Gram L, Rasmussen KE, Flachs H, et al. Valproate sodium: a controlled clinical trial including monitoring of serum levels. Epilepsia 1977; 18: 141–8PubMedCrossRef Gram L, Rasmussen KE, Flachs H, et al. Valproate sodium: a controlled clinical trial including monitoring of serum levels. Epilepsia 1977; 18: 141–8PubMedCrossRef
76.
go back to reference Tudur Smith C, Marson AG, Williamson PR. Phenytoin versus valproate monotherapy for partial onset seizures and generalized onset tonic-clonic seizures. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 3. Oxford: Oxford Update Software, 2000 Tudur Smith C, Marson AG, Williamson PR. Phenytoin versus valproate monotherapy for partial onset seizures and generalized onset tonic-clonic seizures. Available in The Cochrane Library [database on disk and CD ROM]. Updated quarterly. The Cochrane Collaboration; issue 3. Oxford: Oxford Update Software, 2000
77.
go back to reference Marson AG, Williamson PR, Clough H, et al. Carbamazepine versus valproate monotherapy for epilepsy: a meta-analysis. Epilepsia 2002; 43: 505–13PubMedCrossRef Marson AG, Williamson PR, Clough H, et al. Carbamazepine versus valproate monotherapy for epilepsy: a meta-analysis. Epilepsia 2002; 43: 505–13PubMedCrossRef
78.
go back to reference Christe W, Kramer G, Vigonius U, et al. A double-blind, controlled clinical trial of oxcarbazepine versus sodium valproate in adults with newly diagnosed epilepsy. Epilepsy Res 1997; 26: 451–60PubMedCrossRef Christe W, Kramer G, Vigonius U, et al. A double-blind, controlled clinical trial of oxcarbazepine versus sodium valproate in adults with newly diagnosed epilepsy. Epilepsy Res 1997; 26: 451–60PubMedCrossRef
79.
go back to reference Perucca E, Tomson T. Monotherapy trials with the new antiepileptic drugs: study designs, practical relevance and ethical implications. Epilepsy Res 1999; 33: 247–62PubMedCrossRef Perucca E, Tomson T. Monotherapy trials with the new antiepileptic drugs: study designs, practical relevance and ethical implications. Epilepsy Res 1999; 33: 247–62PubMedCrossRef
80.
go back to reference Richens A, Perucca E. Clinical pharmacology and medical treatment. In: Laidlaw J, Richens A, Chadwick D, editors. A textbook of epilepsy. Edinburgh: Churchill-Livingstone, 1993: 495–559 Richens A, Perucca E. Clinical pharmacology and medical treatment. In: Laidlaw J, Richens A, Chadwick D, editors. A textbook of epilepsy. Edinburgh: Churchill-Livingstone, 1993: 495–559
81.
go back to reference Wolf P. Treatment of the idiopathic (primary) generalized epilepsies. In: Shorvon S, Dreifuss F, Fish D, et al., editors. The treatment of epilepsy. Oxford: Blackwell Science Ltd, 1996: 238–46 Wolf P. Treatment of the idiopathic (primary) generalized epilepsies. In: Shorvon S, Dreifuss F, Fish D, et al., editors. The treatment of epilepsy. Oxford: Blackwell Science Ltd, 1996: 238–46
82.
go back to reference Perucca E. Principles of drug treatment. In: Shorvon SD, Dreifuss F, Fish D, et al., editors. The treatment of epilepsy. Oxford: Blackwell Science Ltd, 1996: 152–68 Perucca E. Principles of drug treatment. In: Shorvon SD, Dreifuss F, Fish D, et al., editors. The treatment of epilepsy. Oxford: Blackwell Science Ltd, 1996: 152–68
83.
go back to reference Perucca E. A reappraisal of valproate within today’s therapeutic environment: with perspective of seizure types and syndromes. Seizure 2002. In press Perucca E. A reappraisal of valproate within today’s therapeutic environment: with perspective of seizure types and syndromes. Seizure 2002. In press
84.
go back to reference Beghi E, Perucca E. The management of epilepsy in the 1990s: acquisitions, uncertainties, and perspectives for future research. Drugs 1995; 49: 680–94PubMedCrossRef Beghi E, Perucca E. The management of epilepsy in the 1990s: acquisitions, uncertainties, and perspectives for future research. Drugs 1995; 49: 680–94PubMedCrossRef
85.
go back to reference Bauer J. Seizure-inducing effects of antiepileptic drags: a review. Acta Neurol Scand 1996; 94: 367–77PubMedCrossRef Bauer J. Seizure-inducing effects of antiepileptic drags: a review. Acta Neurol Scand 1996; 94: 367–77PubMedCrossRef
86.
go back to reference Perucca E, Gram L, Avanzini G, et al. Antiepileptic drugs as a cause of worsening of seizures. Epilepsia 1998; 39: 5–17PubMedCrossRef Perucca E, Gram L, Avanzini G, et al. Antiepileptic drugs as a cause of worsening of seizures. Epilepsia 1998; 39: 5–17PubMedCrossRef
87.
go back to reference Perucca E. Seizures provoked by antiepileptic drags and by other medications. Neurologia 2001; 16 Suppl. 2: 43–51 Perucca E. Seizures provoked by antiepileptic drags and by other medications. Neurologia 2001; 16 Suppl. 2: 43–51
88.
go back to reference Osorio I, Reed RC, Peltzer JN. Refractory idiopathic absence status epilepticus: a probable paradoxical effect of phenytoin and carbamazepine. Epilepsia 2000; 41: 887–94PubMedCrossRef Osorio I, Reed RC, Peltzer JN. Refractory idiopathic absence status epilepticus: a probable paradoxical effect of phenytoin and carbamazepine. Epilepsia 2000; 41: 887–94PubMedCrossRef
89.
go back to reference Maheshwari MC, Jeavons PM. Proceedings: the effect of sodium valproate (Epilim) on the EEG [abstract]. Electroencephalogr Clin Neurophysiol 1975; 39: 429 Maheshwari MC, Jeavons PM. Proceedings: the effect of sodium valproate (Epilim) on the EEG [abstract]. Electroencephalogr Clin Neurophysiol 1975; 39: 429
90.
go back to reference Braathen G, Theorell K, Persson A, et al. Valproate in the treatment of absence epilepsy in children: a study of dose-response relationships. Epilepsia 1988; 29: 548–52PubMedCrossRef Braathen G, Theorell K, Persson A, et al. Valproate in the treatment of absence epilepsy in children: a study of dose-response relationships. Epilepsia 1988; 29: 548–52PubMedCrossRef
91.
go back to reference Villarreal HJ, Wilder BJ, Willmore LJ, et al. Effect of valproic acid on spike and wave discharges in patients with absence seizures. Neurology 1978; 28: 886–91PubMedCrossRef Villarreal HJ, Wilder BJ, Willmore LJ, et al. Effect of valproic acid on spike and wave discharges in patients with absence seizures. Neurology 1978; 28: 886–91PubMedCrossRef
92.
go back to reference Callaghan N, O’Hare J, O’Driscoll D, et al. Comparative study of ethosuximide and sodium valproate in the treatment of typical absence seizures (petit mal). Dev Med Child Neurol 1982; 24: 830–6PubMedCrossRef Callaghan N, O’Hare J, O’Driscoll D, et al. Comparative study of ethosuximide and sodium valproate in the treatment of typical absence seizures (petit mal). Dev Med Child Neurol 1982; 24: 830–6PubMedCrossRef
93.
go back to reference Sato S, White BG, Penry JK, et al. Valproic acid versus ethosuximide in the treatment of absence seizures. Neurology 1982; 32: 157–63PubMedCrossRef Sato S, White BG, Penry JK, et al. Valproic acid versus ethosuximide in the treatment of absence seizures. Neurology 1982; 32: 157–63PubMedCrossRef
94.
go back to reference Bourgeois B, Beaumanoir A, Blajev B, et al. Monotherapy with valproate in primary generalized epilepsies. Epilepsia 1987; 28Suppl. 2: S8–11PubMedCrossRef Bourgeois B, Beaumanoir A, Blajev B, et al. Monotherapy with valproate in primary generalized epilepsies. Epilepsia 1987; 28Suppl. 2: S8–11PubMedCrossRef
95.
go back to reference Berkovic SF, Andermann F, Guberman A, et al. Valproate prevents the recurrence of absence status. Neurology 1989; 39: 1294–7PubMedCrossRef Berkovic SF, Andermann F, Guberman A, et al. Valproate prevents the recurrence of absence status. Neurology 1989; 39: 1294–7PubMedCrossRef
96.
go back to reference Covanis A, Gupta AK, Jeavons PM. Sodium valproate: monotherapy and polytherapy. Epilepsia 1982; 23: 582–93CrossRef Covanis A, Gupta AK, Jeavons PM. Sodium valproate: monotherapy and polytherapy. Epilepsia 1982; 23: 582–93CrossRef
97.
98.
go back to reference Pavone L, Incorpora G, La Rosa M, et al. Treatment of infantile spasms with sodium dipropylacetic acid. Dev Med Child Neurol 1981; 23: 454–61PubMedCrossRef Pavone L, Incorpora G, La Rosa M, et al. Treatment of infantile spasms with sodium dipropylacetic acid. Dev Med Child Neurol 1981; 23: 454–61PubMedCrossRef
99.
go back to reference Siemes H, Spohr HL, Michael T, et al. Therapy of infantile spasms with valproate: results of a prospective study. Epilepsia 1988; 29: 553–60PubMedCrossRef Siemes H, Spohr HL, Michael T, et al. Therapy of infantile spasms with valproate: results of a prospective study. Epilepsia 1988; 29: 553–60PubMedCrossRef
100.
go back to reference Lee K, Melchior JC. Sodium valproate versus phenobarbital in the prophylactic treatment of febrile convulsions in childhood. Eur J Pediatr 1981; 137: 151–3PubMed Lee K, Melchior JC. Sodium valproate versus phenobarbital in the prophylactic treatment of febrile convulsions in childhood. Eur J Pediatr 1981; 137: 151–3PubMed
101.
go back to reference Herranz JL, Armijo JA, Arteaga R. Effectiveness and toxicity of phenobarbital, primidone, and sodium valproate in the prevention of febrile convulsions, controlled by plasma levels. Epilepsia 1984; 25: 89–95PubMedCrossRef Herranz JL, Armijo JA, Arteaga R. Effectiveness and toxicity of phenobarbital, primidone, and sodium valproate in the prevention of febrile convulsions, controlled by plasma levels. Epilepsia 1984; 25: 89–95PubMedCrossRef
102.
go back to reference Mamelle N, Mamelle JC, Plasse JC, et al. Prevention of recurrent febrile convulsions. A randomized therapeutic assay: sodium valproate, phenobarbital and placebo. Neuropediatrics 1984; 15: 37–42 Mamelle N, Mamelle JC, Plasse JC, et al. Prevention of recurrent febrile convulsions. A randomized therapeutic assay: sodium valproate, phenobarbital and placebo. Neuropediatrics 1984; 15: 37–42
103.
go back to reference Newton RW. Randomised controlled trials of phenobarbitone and valproate in febrile convulsions. Arch Dis Child 1988; 63: 1189–91PubMedCrossRef Newton RW. Randomised controlled trials of phenobarbitone and valproate in febrile convulsions. Arch Dis Child 1988; 63: 1189–91PubMedCrossRef
104.
go back to reference American Academy of Pediatrics Committee on Quality Improvements, Subcommittee on Febrile Seizures. Practice parameter: long-term treatment of the child with simple febrile seizures. Pediatrics 1999; 103: 1307–9CrossRef American Academy of Pediatrics Committee on Quality Improvements, Subcommittee on Febrile Seizures. Practice parameter: long-term treatment of the child with simple febrile seizures. Pediatrics 1999; 103: 1307–9CrossRef
105.
go back to reference Bourgeois BFD. Valproic acid: clinical efficacy and use in epilepsy. In: Levy RH, Mattson BS, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: 808–17 Bourgeois BFD. Valproic acid: clinical efficacy and use in epilepsy. In: Levy RH, Mattson BS, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: 808–17
106.
go back to reference Treiman DM. Status epilepticus. In: Laidlaw J, Richens A, Chadwick E, editors. A textbook of epilepsy. 4th ed. Edinburgh: Churchill Livingstone, 1993: 205–20 Treiman DM. Status epilepticus. In: Laidlaw J, Richens A, Chadwick E, editors. A textbook of epilepsy. 4th ed. Edinburgh: Churchill Livingstone, 1993: 205–20
107.
go back to reference Morton LD, Towne AR, Garnett LK, et al. Safety and efficacy of intravenous valproate in status epilepticus. Epilepsia 2000; 41 Suppl. 7: 252 Morton LD, Towne AR, Garnett LK, et al. Safety and efficacy of intravenous valproate in status epilepticus. Epilepsia 2000; 41 Suppl. 7: 252
108.
go back to reference Katragadda SB, Aluri BC, Burdette DE. Intravenous administration of valproate in 12 patients [abstract]. Epilepsia 2000; 41 Suppl. 7: 3 Katragadda SB, Aluri BC, Burdette DE. Intravenous administration of valproate in 12 patients [abstract]. Epilepsia 2000; 41 Suppl. 7: 3
109.
go back to reference Cantrell DT, Ramsay ER, Collings SD, et al. Rapid infusions of Depakon are safe and well tolerated [abstract]. Epilepsia 2000; 41 Suppl. 7: 253 Cantrell DT, Ramsay ER, Collings SD, et al. Rapid infusions of Depakon are safe and well tolerated [abstract]. Epilepsia 2000; 41 Suppl. 7: 253
110.
111.
go back to reference Giroud M, Gras D, Escousse A, et al. Use of injectable valproic acid in status epilepticus: a pilot study. Drug Invest 1993; 5: 154–9CrossRef Giroud M, Gras D, Escousse A, et al. Use of injectable valproic acid in status epilepticus: a pilot study. Drug Invest 1993; 5: 154–9CrossRef
112.
go back to reference Czapinski P, Terczynski A. Intravenous valproic acid administration in status epilepticus [in Polish]. Neurol Neurochir Pol 1998; 32: 11–22PubMed Czapinski P, Terczynski A. Intravenous valproic acid administration in status epilepticus [in Polish]. Neurol Neurochir Pol 1998; 32: 11–22PubMed
113.
go back to reference Lowe MR, DeToledo JC, Vilavizza N, et al. Efficacy, safety, and tolerability of fast i.v. loading of valproate in patients with seizures and status epilepticus [abstract]. Epilepsia 1998; 39 Suppl. 6: 235 Lowe MR, DeToledo JC, Vilavizza N, et al. Efficacy, safety, and tolerability of fast i.v. loading of valproate in patients with seizures and status epilepticus [abstract]. Epilepsia 1998; 39 Suppl. 6: 235
114.
go back to reference Sinha S, Naritoku DK. Intravenous valproate is well tolerated in unstable patients with status epilepticus. Neurology 2000; 55: 722–4PubMedCrossRef Sinha S, Naritoku DK. Intravenous valproate is well tolerated in unstable patients with status epilepticus. Neurology 2000; 55: 722–4PubMedCrossRef
115.
go back to reference Hovinga CA, Chicella MF, Rose DF, et al. Use of intravenous valproate in three pediatric patients with nonconvulsive or convulsive status epilepticus. Ann Pharmacother 1999; 33(5): 579–84PubMedCrossRef Hovinga CA, Chicella MF, Rose DF, et al. Use of intravenous valproate in three pediatric patients with nonconvulsive or convulsive status epilepticus. Ann Pharmacother 1999; 33(5): 579–84PubMedCrossRef
116.
go back to reference Alfonso I, Alvarez LA, Gilman J, et al. Intravenous valproate dosing in neonates. J Child Neurol 2000; 15: 827–9PubMedCrossRef Alfonso I, Alvarez LA, Gilman J, et al. Intravenous valproate dosing in neonates. J Child Neurol 2000; 15: 827–9PubMedCrossRef
117.
go back to reference Haafiz A, Kissoon N. Status epilepticus: current concepts. Pediatr Emerg Care 1999; 15(2): 119–29PubMedCrossRef Haafiz A, Kissoon N. Status epilepticus: current concepts. Pediatr Emerg Care 1999; 15(2): 119–29PubMedCrossRef
118.
go back to reference Chez MG, Hammer MS, Loeffel M, et al. Clinical experience of three pediatrie and one adult case of spike-and-wave status epilepticus treated with injectable valproic acid. J Child Neurol 1999; 14: 239–42PubMedCrossRef Chez MG, Hammer MS, Loeffel M, et al. Clinical experience of three pediatrie and one adult case of spike-and-wave status epilepticus treated with injectable valproic acid. J Child Neurol 1999; 14: 239–42PubMedCrossRef
119.
go back to reference Alehan FK, Morton LD, Pellock JM. Treatment of absence status with intravenous valproate. Neurology 1999; 52: 889–90PubMedCrossRef Alehan FK, Morton LD, Pellock JM. Treatment of absence status with intravenous valproate. Neurology 1999; 52: 889–90PubMedCrossRef
120.
go back to reference Kaplan PW. Intravenous valproate treatment of generalized nonconvulsive status epilepticus. Clin Electroencephalogr 1999; 30: 1–4PubMed Kaplan PW. Intravenous valproate treatment of generalized nonconvulsive status epilepticus. Clin Electroencephalogr 1999; 30: 1–4PubMed
121.
go back to reference Genton P, Gelisse P. Valproic acid: adverse effects. In: Levy RH, Mattson BS, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: 837–51 Genton P, Gelisse P. Valproic acid: adverse effects. In: Levy RH, Mattson BS, Meldrum BS, et al., editors. Antiepileptic drugs. 5th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2002: 837–51
122.
go back to reference Schmidt D. Adverse effects of valproate. Epilepsia 1984; 15Suppl. 1: S44–9CrossRef Schmidt D. Adverse effects of valproate. Epilepsia 1984; 15Suppl. 1: S44–9CrossRef
123.
go back to reference Wagner PG, Welton SR, Hammond CM. Gastrointestinal adverse effects with divalproex sodium and valproic acid. J Clin Psychiatry 2000; 61: 302–3PubMedCrossRef Wagner PG, Welton SR, Hammond CM. Gastrointestinal adverse effects with divalproex sodium and valproic acid. J Clin Psychiatry 2000; 61: 302–3PubMedCrossRef
124.
125.
go back to reference Craig I, Tallis R. Impact of valproate and phenytoin on cognitive function in elderly patients: results of a single-blind, randomized, comparative study. Epilepsia 1994; 35: 381–90PubMedCrossRef Craig I, Tallis R. Impact of valproate and phenytoin on cognitive function in elderly patients: results of a single-blind, randomized, comparative study. Epilepsia 1994; 35: 381–90PubMedCrossRef
126.
go back to reference Perucca E. Evaluation of drug treatment outcome in epilepsy: a clinical perspective. Pharmacy World Science 1997; 19: 217–22PubMedCrossRef Perucca E. Evaluation of drug treatment outcome in epilepsy: a clinical perspective. Pharmacy World Science 1997; 19: 217–22PubMedCrossRef
127.
go back to reference Battino D, Dukes MNG, Perucca E. Anticonvulsants. In: Dukes MNG, Aronson JK, editors. Meyler’s side effects of drugs. 14th ed. Amsterdam: Elsevier Science BV, 2000: 164–97 Battino D, Dukes MNG, Perucca E. Anticonvulsants. In: Dukes MNG, Aronson JK, editors. Meyler’s side effects of drugs. 14th ed. Amsterdam: Elsevier Science BV, 2000: 164–97
128.
go back to reference Guerrini R, Belmonte A, Campichi R, et al. Reversible pseudoatrophy of the brain and mental deterioration associated with valproate treatment. Epilepsia 1998; 39(1): 27–32PubMedCrossRef Guerrini R, Belmonte A, Campichi R, et al. Reversible pseudoatrophy of the brain and mental deterioration associated with valproate treatment. Epilepsia 1998; 39(1): 27–32PubMedCrossRef
129.
go back to reference Dinesen H, Gram L, Andersen T, et al. Weight gain during treatment with valproate. Acta Neurol Scand 1984; 70: 65–9PubMedCrossRef Dinesen H, Gram L, Andersen T, et al. Weight gain during treatment with valproate. Acta Neurol Scand 1984; 70: 65–9PubMedCrossRef
130.
go back to reference Isojarvi JIT, Tauboll E, Pakarinen AJ, et al. Altered ovarian function and cardiovascular risk factors in valproate-treated women. Am J Med 2001; 111: 290–6PubMedCrossRef Isojarvi JIT, Tauboll E, Pakarinen AJ, et al. Altered ovarian function and cardiovascular risk factors in valproate-treated women. Am J Med 2001; 111: 290–6PubMedCrossRef
131.
go back to reference Isojarvi JI, Laatikainen TJ, Pakarinen AJ, et al. Polycystic ovaries and hyperandrogenism in women taking valproate for epilepsy. N Engl J Med 1993; 329: 1383–8PubMedCrossRef Isojarvi JI, Laatikainen TJ, Pakarinen AJ, et al. Polycystic ovaries and hyperandrogenism in women taking valproate for epilepsy. N Engl J Med 1993; 329: 1383–8PubMedCrossRef
132.
go back to reference Frank S. Polycystic ovary syndrome: a changing perspective. Clin Endocrinol 1989; 31: 87–120CrossRef Frank S. Polycystic ovary syndrome: a changing perspective. Clin Endocrinol 1989; 31: 87–120CrossRef
133.
go back to reference Chappell KA, Markowitz JS, Jackson CW. Is valproate pharmacotherapy associated with polycystic ovaries? Ann Pharmacother 1999; 33: 1211–6PubMedCrossRef Chappell KA, Markowitz JS, Jackson CW. Is valproate pharmacotherapy associated with polycystic ovaries? Ann Pharmacother 1999; 33: 1211–6PubMedCrossRef
134.
go back to reference Genton P, Bauer J, Duncan S, et al. On the association between valproate and policystic ovary syndrome. Epilepsia 2001; 42: 295–304PubMedCrossRef Genton P, Bauer J, Duncan S, et al. On the association between valproate and policystic ovary syndrome. Epilepsia 2001; 42: 295–304PubMedCrossRef
135.
go back to reference Isojarvi JIT, Tauboll E, Tapanainen JS, et al. On the association between valproate and policystic ovary syndrome: a response and an alternative view. Epilepsia 2001; 42: 305–10PubMedCrossRef Isojarvi JIT, Tauboll E, Tapanainen JS, et al. On the association between valproate and policystic ovary syndrome: a response and an alternative view. Epilepsia 2001; 42: 305–10PubMedCrossRef
136.
go back to reference Herzog AG, Schachter SC. Valproate and policystic ovary syndrome: final thoughts. Epilepsia 2001; 42: 311–5PubMedCrossRef Herzog AG, Schachter SC. Valproate and policystic ovary syndrome: final thoughts. Epilepsia 2001; 42: 311–5PubMedCrossRef
137.
go back to reference Isojarvi JIT, Rättyä J, Myllylä VV, et al. Valproate, lamotrigine, and insulin-mediated risks in women with epilepsy. Ann Neurol 1998; 43: 446–51PubMedCrossRef Isojarvi JIT, Rättyä J, Myllylä VV, et al. Valproate, lamotrigine, and insulin-mediated risks in women with epilepsy. Ann Neurol 1998; 43: 446–51PubMedCrossRef
138.
go back to reference Beghi E, Bizzi A, Codegoni AM, et al. Valproate, carnitine metabolism, and biochemical indicators of liver function. Epilepsia 1990; 33: 346–52CrossRef Beghi E, Bizzi A, Codegoni AM, et al. Valproate, carnitine metabolism, and biochemical indicators of liver function. Epilepsia 1990; 33: 346–52CrossRef
139.
go back to reference De Vivo DC, Bohan TP, Coulter DL, et al. L-carnitine supplementation in childhood epilepsy: current perspectives. Epilepsia 1998; 39: 1216–25PubMedCrossRef De Vivo DC, Bohan TP, Coulter DL, et al. L-carnitine supplementation in childhood epilepsy: current perspectives. Epilepsia 1998; 39: 1216–25PubMedCrossRef
140.
go back to reference Sato Y, Kondo I, Ishida S, et al. Decreased bone mass and increased bone turnover with valproate therapy in adults with epilepsy. Neurology 2001; 57: 445–9PubMedCrossRef Sato Y, Kondo I, Ishida S, et al. Decreased bone mass and increased bone turnover with valproate therapy in adults with epilepsy. Neurology 2001; 57: 445–9PubMedCrossRef
141.
go back to reference Acharya S, Bussel JB. Hematologic toxicity of sodium valproate. J Pediatr Hematol Oncol 2000; 22: 62–5PubMedCrossRef Acharya S, Bussel JB. Hematologic toxicity of sodium valproate. J Pediatr Hematol Oncol 2000; 22: 62–5PubMedCrossRef
142.
go back to reference Chambers HG, Weinstein CH, Mubarak SJ, et al. The effect of valproic acid on blood loss in patients with cerebral palsy. J Pediatr Orthop 1999; 19: 792–5PubMed Chambers HG, Weinstein CH, Mubarak SJ, et al. The effect of valproic acid on blood loss in patients with cerebral palsy. J Pediatr Orthop 1999; 19: 792–5PubMed
143.
go back to reference Anderson GD, Lyn YX, Berge C, et al. Absence of bleeding complications in patients undergoing cortical surgery while receiving valproate treatment. J Neurosurg 1977; 87: 252–6 Anderson GD, Lyn YX, Berge C, et al. Absence of bleeding complications in patients undergoing cortical surgery while receiving valproate treatment. J Neurosurg 1977; 87: 252–6
144.
go back to reference Asconape JJ, Penry JK, Dreifuss FE, et al. Valproate associated pancreatitis. Epilepsia 1993; 34: 177–83PubMedCrossRef Asconape JJ, Penry JK, Dreifuss FE, et al. Valproate associated pancreatitis. Epilepsia 1993; 34: 177–83PubMedCrossRef
145.
go back to reference Chapman SA, Wachsman GP, Patterson BD. Pancreatitis associated with valproic acid: a review of the literature. Pharmacotherapy 2001; 21: 1549–60PubMedCrossRef Chapman SA, Wachsman GP, Patterson BD. Pancreatitis associated with valproic acid: a review of the literature. Pharmacotherapy 2001; 21: 1549–60PubMedCrossRef
146.
go back to reference Buzan RD, Firestone D, Thomas M, et al. Valproate-associated pancreatitis and cholecystitis in six mentally retarded adults. J Clin Psychiatry 1995; 56: 529–32PubMed Buzan RD, Firestone D, Thomas M, et al. Valproate-associated pancreatitis and cholecystitis in six mentally retarded adults. J Clin Psychiatry 1995; 56: 529–32PubMed
147.
go back to reference Moreiras Plaza M, Rodrigues Goyanes G, Cuina L, et al. On the toxicity of valproic acid. Clin Nephrol 1999; 51: 187–9PubMed Moreiras Plaza M, Rodrigues Goyanes G, Cuina L, et al. On the toxicity of valproic acid. Clin Nephrol 1999; 51: 187–9PubMed
148.
go back to reference Dreifuss FE, Langer DH, Moline KA, et al. Valproic acid hepatic fatalities. I: US experience since 1984. Neurology 1989; 39: 201–7 Dreifuss FE, Langer DH, Moline KA, et al. Valproic acid hepatic fatalities. I: US experience since 1984. Neurology 1989; 39: 201–7
149.
go back to reference Bryant III AE, Dreifuss FE. Valproic acid hepatic fatalities. III: US experience since 1986. Neurology 1996; 46: 465–9PubMedCrossRef Bryant III AE, Dreifuss FE. Valproic acid hepatic fatalities. III: US experience since 1986. Neurology 1996; 46: 465–9PubMedCrossRef
150.
go back to reference König SA, Siemes H, Blacker F, et al. Severe hepatotoxicity during valproate therapy: an update and report of eight new fatalities. Epilepsia 1994; 35: 1005–15PubMedCrossRef König SA, Siemes H, Blacker F, et al. Severe hepatotoxicity during valproate therapy: an update and report of eight new fatalities. Epilepsia 1994; 35: 1005–15PubMedCrossRef
151.
go back to reference Bohan TP, Helton E, McDonald I, et al. Effect of L-carnitine treatment for valproate-induced hepatotoxicity. Neurology 2001; 56: 1405–9PubMedCrossRef Bohan TP, Helton E, McDonald I, et al. Effect of L-carnitine treatment for valproate-induced hepatotoxicity. Neurology 2001; 56: 1405–9PubMedCrossRef
152.
go back to reference Raskind JY, El-Chaar GM. The role of carnitine supplementation during valproic acid therapy. Ann Pharmacother 2000; 34: 630–8PubMedCrossRef Raskind JY, El-Chaar GM. The role of carnitine supplementation during valproic acid therapy. Ann Pharmacother 2000; 34: 630–8PubMedCrossRef
153.
go back to reference Ahmed J, Brown C. In-utero exposure to valproate and neural tube defects. Lancet 1996; I: 1392–3 Ahmed J, Brown C. In-utero exposure to valproate and neural tube defects. Lancet 1996; I: 1392–3
154.
go back to reference Lindhout D, Hoppener RJ, Meinardi H. Teratogenicity of anti-epileptic drug combinations with special emphasis on epoxidation (of carbamazepine). Epilepsia 1984; 25: 77–83PubMedCrossRef Lindhout D, Hoppener RJ, Meinardi H. Teratogenicity of anti-epileptic drug combinations with special emphasis on epoxidation (of carbamazepine). Epilepsia 1984; 25: 77–83PubMedCrossRef
155.
go back to reference Lindhout D, Omtzight JG. Teratogenic effects of antiepileptic drugs: implications for management of epilepsy in women of childbearing age. Epilepsia 1994; 35Suppl. 4: S19–28PubMedCrossRef Lindhout D, Omtzight JG. Teratogenic effects of antiepileptic drugs: implications for management of epilepsy in women of childbearing age. Epilepsia 1994; 35Suppl. 4: S19–28PubMedCrossRef
156.
go back to reference Samren EB, Van Duijn CM, Hiilesmaa VK, et al. Maternal use of antiepileptic drugs and the risk of major congenital malformations: a joint European perspective study of human teratogenesis associated with maternal epilepsy. Epilepsia 1997; 38: 981–90PubMedCrossRef Samren EB, Van Duijn CM, Hiilesmaa VK, et al. Maternal use of antiepileptic drugs and the risk of major congenital malformations: a joint European perspective study of human teratogenesis associated with maternal epilepsy. Epilepsia 1997; 38: 981–90PubMedCrossRef
157.
go back to reference Samren EB, Van Duijn CM, Christiaens GC, et al. Antiepileptic drug regimens and major congenital abnormalities in the offspring. Ann Neurol 1999; 46: 739–46PubMedCrossRef Samren EB, Van Duijn CM, Christiaens GC, et al. Antiepileptic drug regimens and major congenital abnormalities in the offspring. Ann Neurol 1999; 46: 739–46PubMedCrossRef
158.
go back to reference Kaneko S, Battino D, Andermann E, et al. Congenital malformations due to antiepileptic drugs. Epilepsy Res 1999; 33: 145–58PubMedCrossRef Kaneko S, Battino D, Andermann E, et al. Congenital malformations due to antiepileptic drugs. Epilepsy Res 1999; 33: 145–58PubMedCrossRef
159.
go back to reference Canger R, Battino D, Canevini MP, et al. Malformations in the offspring of women with epilepsy: a prospective study. Epilepsia 1999; 40: 1231–6PubMedCrossRef Canger R, Battino D, Canevini MP, et al. Malformations in the offspring of women with epilepsy: a prospective study. Epilepsia 1999; 40: 1231–6PubMedCrossRef
160.
go back to reference Holmes LB, Harvey EA, Coull BA, et al. The teratogenicity of anticonvulsant drugs. N Engl J Med 2001; 344: 1132–8PubMedCrossRef Holmes LB, Harvey EA, Coull BA, et al. The teratogenicity of anticonvulsant drugs. N Engl J Med 2001; 344: 1132–8PubMedCrossRef
161.
go back to reference Adab N, Jacoby A, Smith D, et al. Additional educational needs in children born to mothers with epilepsy. J Neurol Neurosurg Psych 2001; 70: 15–21CrossRef Adab N, Jacoby A, Smith D, et al. Additional educational needs in children born to mothers with epilepsy. J Neurol Neurosurg Psych 2001; 70: 15–21CrossRef
162.
go back to reference Zahn CA, Morrell MJ, Collins SD, et al. Management issues for women with epilepsy: a review of the literature. Neurology 1998; 15: 949–56CrossRef Zahn CA, Morrell MJ, Collins SD, et al. Management issues for women with epilepsy: a review of the literature. Neurology 1998; 15: 949–56CrossRef
163.
164.
go back to reference Nau H, Ralf-Siegbert H, Ehlers K. Valproic acid-induced neural tube defects in mouse and human: aspects of chirality, alternative drug development, pharmacokinetics and possible mechanisms. Pharmacol Toxicol 1991; 69: 310–21PubMedCrossRef Nau H, Ralf-Siegbert H, Ehlers K. Valproic acid-induced neural tube defects in mouse and human: aspects of chirality, alternative drug development, pharmacokinetics and possible mechanisms. Pharmacol Toxicol 1991; 69: 310–21PubMedCrossRef
165.
go back to reference MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 1991; 20: 131–7 MRC Vitamin Study Research Group. Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 1991; 20: 131–7
166.
go back to reference Heaney DC, Shorvon SD, Sander JW, et al. Cost minimization analysis of antiepileptic drugs in newly diagnosed epilepsy in 12 European countries. Epilepsia 2000; 41Suppl. 5: S37–44PubMed Heaney DC, Shorvon SD, Sander JW, et al. Cost minimization analysis of antiepileptic drugs in newly diagnosed epilepsy in 12 European countries. Epilepsia 2000; 41Suppl. 5: S37–44PubMed
167.
go back to reference Heaney DC, Shorvon SD, Sander JW. An economic appraisal of carbamazepine, lamotrigine, phenytoin and valproate as initial treatment in adults with newly diagnosed epilepsy. Epilepsia 1998; 39Suppl. 3: S19–25PubMedCrossRef Heaney DC, Shorvon SD, Sander JW. An economic appraisal of carbamazepine, lamotrigine, phenytoin and valproate as initial treatment in adults with newly diagnosed epilepsy. Epilepsia 1998; 39Suppl. 3: S19–25PubMedCrossRef
Metadata
Title
Pharmacological and Therapeutic Properties of Valproate
A Summary After 35 Years of Clinical Experience
Author
Dr Emilio Perucca
Publication date
01-10-2002
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 10/2002
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200216100-00004

Other articles of this Issue 10/2002

CNS Drugs 10/2002 Go to the issue