Skip to main content
Top
Published in: CNS Drugs 5/2001

01-05-2001 | Leading Article

The New Generation of GABA Enhancers

Potential in the Treatment of Epilepsy

Authors: Stanislaw J. Czuczwar, Dr Philip N. Patsalos

Published in: CNS Drugs | Issue 5/2001

Login to get access

Abstract

γ-Aminobutyric acid (GABA) is considered to be the major inhibitory neurotransmitter in the brain and loss of GABA inhibition has been clearly implicated in epileptogenesis. GABA interacts with 3 types of receptor: GAB Aa, GAB Ab and GABAc. The GABAA receptor has provided an excellent target for the development of drugs with an anticonvulsant action. Some clinically useful anti-convulsants, such as the benzodiazepines and barbiturates and possibly valproic acid (sodium valproate), act at this receptor.
In recent years 4 new anticonvulsants, namely vigabatrin, tiagabine, gaba-pentin and topiramate, with a mechanism of action considered to be primarily via an effect on GABA, have been licensed. Vigabatrin elevates brain GABA levels by inhibiting the enzyme GABA transaminase which is responsible for intracellular GABA catabolism. In contrast, tiagabine elevates synaptic GABA levels by inhibiting the GABA uptake transporter, GAT1, and preventing the uptake of GABA into neurons and glia. Gabapentin, a cyclic analogue of GABA, acts by enhancing GABA synthesis and also by decreasing neuronal calcium influx via a specific subunit of voltage-dependent calcium channels. Topiramate acts, in part, via an action on a novel site of the GABAA receptor. Although these drugs are useful in some patients, overall, they have proven to be disappointing as they have had little impact on the prognosis of patients with intractable epilepsy.
Despite this, additional GABA enhancing anticonvulsants are presently under development. Ganaxolone, retigabine and pregabalin may prove to have a more advantageous therapeutic profile than the presently licensed GABA enhancing drugs. This anticipation is based on 2 characteristics. First, they act by hitherto unique mechanisms of action in enhancing GABA-induced neuronal inhibition. Secondly, they act on additional antiepileptogenic mechanisms. Finally, CGP 36742, a GABAb receptor antagonist, may prove to be particularly useful in the management of primary generalised absence seizures.
The exact impact of these new GABA-enhancing drugs in the treatment of epilepsy will have to await their licensing and a period of postmarketing surveillance. As to clarification of their role in the management of epilepsy, this will have to await further clinical trials, particularly direct comparative trials with other anticonvulsants.
Literature
1.
go back to reference Sander JW, Shorvon SD. Epidemiology of the epilepsies. J Neurol Neurosurg Psychiat 1996; 61: 433–43PubMedCrossRef Sander JW, Shorvon SD. Epidemiology of the epilepsies. J Neurol Neurosurg Psychiat 1996; 61: 433–43PubMedCrossRef
2.
go back to reference Meldrum BS. Gamma-aminobutyric acid and the search for new anticonvulsant drugs. Lancet 1978; ii: 304–6CrossRef Meldrum BS. Gamma-aminobutyric acid and the search for new anticonvulsant drugs. Lancet 1978; ii: 304–6CrossRef
3.
go back to reference Kuriyama K, Roberts E, Rubinstein MK. Elevation of γ-aminobutyric acid in the brain with aminooxyacetic acid and susceptibility to convulsive seizures in mice: a quantitative re-evaluation. Biochem Pharmacol 1966; 15: 221–36PubMedCrossRef Kuriyama K, Roberts E, Rubinstein MK. Elevation of γ-aminobutyric acid in the brain with aminooxyacetic acid and susceptibility to convulsive seizures in mice: a quantitative re-evaluation. Biochem Pharmacol 1966; 15: 221–36PubMedCrossRef
4.
go back to reference Schechter PJ, Tranier Y, Jung MJ, et al. Audiogenic seizure protection by elevated brain GABA concentration in mice: effects of γ-acetylenic-GABA and γ-vinyl-GABA, two irreversible GABA-T inhibitors. Eur J Pharmacol 1977; 45: 319–28PubMedCrossRef Schechter PJ, Tranier Y, Jung MJ, et al. Audiogenic seizure protection by elevated brain GABA concentration in mice: effects of γ-acetylenic-GABA and γ-vinyl-GABA, two irreversible GABA-T inhibitors. Eur J Pharmacol 1977; 45: 319–28PubMedCrossRef
5.
go back to reference Kleinrok Z, Czuczwar SJ, Kozicka M. Effect of dopaminergic and GABA-ergic drugs given alone or in combination on the anticonvulsant action of phenobarbital and diphenylhydantoin in the electroshock test in mice. Epilepsia 1980; 21: 519–29PubMedCrossRef Kleinrok Z, Czuczwar SJ, Kozicka M. Effect of dopaminergic and GABA-ergic drugs given alone or in combination on the anticonvulsant action of phenobarbital and diphenylhydantoin in the electroshock test in mice. Epilepsia 1980; 21: 519–29PubMedCrossRef
6.
go back to reference Czuczwar SJ. Effect of combined treatment with dopaminergic and GABA-ergic drugs on the threshold for maximal electroconvulsions in mice. Pol J Pharmacol 1981: 33: 25–35CrossRef Czuczwar SJ. Effect of combined treatment with dopaminergic and GABA-ergic drugs on the threshold for maximal electroconvulsions in mice. Pol J Pharmacol 1981: 33: 25–35CrossRef
7.
go back to reference Antkiewicz-Michaluk L. Receptor and voltage-operated ion channels in the central nervous system. Pol J Pharmacol 1995; 47: 253–64PubMedCrossRef Antkiewicz-Michaluk L. Receptor and voltage-operated ion channels in the central nervous system. Pol J Pharmacol 1995; 47: 253–64PubMedCrossRef
8.
go back to reference Kostowski W. Recent advances in the GABA-A-benzodiazepine receptor pharmacology. Pol J Pharmacol 1995; 47: 237–46PubMedCrossRef Kostowski W. Recent advances in the GABA-A-benzodiazepine receptor pharmacology. Pol J Pharmacol 1995; 47: 237–46PubMedCrossRef
9.
10.
go back to reference Chapman AG, Keane AP, Meldrum BS, et al. Mechanism of action of valproate. Prog Neurobiol 1982; 19: 315–59PubMedCrossRef Chapman AG, Keane AP, Meldrum BS, et al. Mechanism of action of valproate. Prog Neurobiol 1982; 19: 315–59PubMedCrossRef
11.
go back to reference Bernasconi R, Klein M, Martin P, et al. The specific protective effect of diazepam and valproate against isoniazid-induced seizures is not correlated with increased GABA levels. JNeural Transm 1985; 63: 169–89CrossRef Bernasconi R, Klein M, Martin P, et al. The specific protective effect of diazepam and valproate against isoniazid-induced seizures is not correlated with increased GABA levels. JNeural Transm 1985; 63: 169–89CrossRef
12.
go back to reference Patsalos PN, Duncan SD. The pharmacology and pharmacokinetics of vigabatrin. Rev Contemp Pharmacother 1995; 6: 447–56 Patsalos PN, Duncan SD. The pharmacology and pharmacokinetics of vigabatrin. Rev Contemp Pharmacother 1995; 6: 447–56
13.
go back to reference Löscher W. GABA and the epilepsies. Experimental and clinical considerations. In: Bowery NG, Nistico G, editors. GABA: basic research and clinical applications. Rome: Pythagora Press, 1989; 260–300 Löscher W. GABA and the epilepsies. Experimental and clinical considerations. In: Bowery NG, Nistico G, editors. GABA: basic research and clinical applications. Rome: Pythagora Press, 1989; 260–300
14.
go back to reference Kalviainen R, Keranen T, Riekkinen PJ. Place of newer anti-epileptic drugs in the treatment of epilepsy. Drugs 1993; 46: 1009–24PubMedCrossRef Kalviainen R, Keranen T, Riekkinen PJ. Place of newer anti-epileptic drugs in the treatment of epilepsy. Drugs 1993; 46: 1009–24PubMedCrossRef
15.
go back to reference Petroff OAC, Rothman DL, Behar KL, et al. Human brain GABA levels rise following initiation of vigabatrin therapy, but fail to rise further with increasing dose. Neurology 1996; 46: 1459–63PubMedCrossRef Petroff OAC, Rothman DL, Behar KL, et al. Human brain GABA levels rise following initiation of vigabatrin therapy, but fail to rise further with increasing dose. Neurology 1996; 46: 1459–63PubMedCrossRef
16.
go back to reference Suzdak PD, Jansen JA. A review of the preclinical pharmacology of tiagabine: apotent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 1995; 36: 612–26PubMedCrossRef Suzdak PD, Jansen JA. A review of the preclinical pharmacology of tiagabine: apotent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 1995; 36: 612–26PubMedCrossRef
17.
go back to reference Patsalos PN. New antiepileptic drugs. Ann Clin Biochem 1999; 36: 10–19PubMed Patsalos PN. New antiepileptic drugs. Ann Clin Biochem 1999; 36: 10–19PubMed
18.
go back to reference Meldrum BS, Croucher MJ, Krogsgaard-Larsen P. GABA-up-take inhibitors as anticonvulsant agents. In: Okada Y, Roberts E, editors. Problems in GABA research: Ffom brain to bacteria. Amsterdam-Oxford-Princeton: Excerpta Medica 1981: 182–91 Meldrum BS, Croucher MJ, Krogsgaard-Larsen P. GABA-up-take inhibitors as anticonvulsant agents. In: Okada Y, Roberts E, editors. Problems in GABA research: Ffom brain to bacteria. Amsterdam-Oxford-Princeton: Excerpta Medica 1981: 182–91
19.
go back to reference Gee NS, Brown JP, Dissanayake VUK, et al. The novel anticonvulsant drug, gabapentin (neurontin), binds to the α2δ sub-unit of a calcium channel. J Biol Chem 1996; 271: 5768–76PubMedCrossRef Gee NS, Brown JP, Dissanayake VUK, et al. The novel anticonvulsant drug, gabapentin (neurontin), binds to the α2δ sub-unit of a calcium channel. J Biol Chem 1996; 271: 5768–76PubMedCrossRef
20.
go back to reference Löscher W, Hönack D, Taylor CP. Gabapentin increases aminooxyacetic acid-induced GABA accumulation in several regions of rat brain. Neurosci Lett 1991; 120: 150–4CrossRef Löscher W, Hönack D, Taylor CP. Gabapentin increases aminooxyacetic acid-induced GABA accumulation in several regions of rat brain. Neurosci Lett 1991; 120: 150–4CrossRef
21.
go back to reference Meldrum BS. Update on the mechanism of action of antiepileptic drugs. Epilepsia 1996; 37Suppl. 6: 4S–11SCrossRef Meldrum BS. Update on the mechanism of action of antiepileptic drugs. Epilepsia 1996; 37Suppl. 6: 4S–11SCrossRef
22.
go back to reference Petroff OAC, Rothman DL, Behar KL, et al. The effect of gabapentin on brain gamma-butyric acid in patients with epilepsy. Ann Neurol 1996; 39: 95–9PubMedCrossRef Petroff OAC, Rothman DL, Behar KL, et al. The effect of gabapentin on brain gamma-butyric acid in patients with epilepsy. Ann Neurol 1996; 39: 95–9PubMedCrossRef
23.
go back to reference Shank RP, Gardocki JF, Vaught JL, et al. Topiramate: preclinical evaluation of a structurally novel anticonvulsant. Epilepsia 1994; 35: 450–60PubMedCrossRef Shank RP, Gardocki JF, Vaught JL, et al. Topiramate: preclinical evaluation of a structurally novel anticonvulsant. Epilepsia 1994; 35: 450–60PubMedCrossRef
24.
go back to reference Swinyard EA, Sofia RD, Kupferberg HJ. Comparative anticonvulsant activity and neurotoxicity of felbamate and four prototype antiepileptic drugs in mice and rats. Epilepsia 1986; 27: 27–34PubMedCrossRef Swinyard EA, Sofia RD, Kupferberg HJ. Comparative anticonvulsant activity and neurotoxicity of felbamate and four prototype antiepileptic drugs in mice and rats. Epilepsia 1986; 27: 27–34PubMedCrossRef
25.
go back to reference Ticku MK, Kamatchi GL, Sofia RD. Effect of anticonvulsant felbamate on GABAa receptor system. Epilepsia 1991; 32: 389–91PubMedCrossRef Ticku MK, Kamatchi GL, Sofia RD. Effect of anticonvulsant felbamate on GABAa receptor system. Epilepsia 1991; 32: 389–91PubMedCrossRef
26.
go back to reference Kuzniecky R, Hetherington H, Ho S, et al. Topiramate increases GABA in healthy humans. Neurology 1998; 51: 627–9PubMedCrossRef Kuzniecky R, Hetherington H, Ho S, et al. Topiramate increases GABA in healthy humans. Neurology 1998; 51: 627–9PubMedCrossRef
27.
go back to reference Petroff OAC, Hyder F, Mattson RH, et al. Topiramate increases brain GABA, homocarnosine, and pyrrolidinone in patients with epilepsy. Neurology 1999; 52: 473–8PubMedCrossRef Petroff OAC, Hyder F, Mattson RH, et al. Topiramate increases brain GABA, homocarnosine, and pyrrolidinone in patients with epilepsy. Neurology 1999; 52: 473–8PubMedCrossRef
28.
29.
go back to reference Marescaux C, Vergnes M, Depaulis A. Genetic absence epilepsy in rats from Strasbourg: a review. J Neural Transm 1992; 35: 37–69 Marescaux C, Vergnes M, Depaulis A. Genetic absence epilepsy in rats from Strasbourg: a review. J Neural Transm 1992; 35: 37–69
30.
go back to reference Parker AP, Agathonikou A, Robinson RO, et al. Inappropriate use of carbamazepine and vigabatrin in typical absence seizures. Dev Med Child Neurol 1998; 40: 517–9PubMedCrossRef Parker AP, Agathonikou A, Robinson RO, et al. Inappropriate use of carbamazepine and vigabatrin in typical absence seizures. Dev Med Child Neurol 1998; 40: 517–9PubMedCrossRef
31.
go back to reference Puigcerver A, van Luijtelaar ELJM, Drinkenburg WHIM, et al. Effects of the GAB A-B antagonist CGP 35348 on sleep-wake states, behaviour, and spike-wave discharges in old rats. Brain Res Bull 1996; 40: 157–62PubMedCrossRef Puigcerver A, van Luijtelaar ELJM, Drinkenburg WHIM, et al. Effects of the GAB A-B antagonist CGP 35348 on sleep-wake states, behaviour, and spike-wave discharges in old rats. Brain Res Bull 1996; 40: 157–62PubMedCrossRef
32.
go back to reference Peeters BWMM, van Rijn CM, Vossen JMH, et al. Effects of GABA-ergic agents on spontaneous non-convulsive epilepsy, EEG and behaviour, in the WAG/Rij inbread strain of rats. Life Sci 1989; 45: 1171–6PubMedCrossRef Peeters BWMM, van Rijn CM, Vossen JMH, et al. Effects of GABA-ergic agents on spontaneous non-convulsive epilepsy, EEG and behaviour, in the WAG/Rij inbread strain of rats. Life Sci 1989; 45: 1171–6PubMedCrossRef
33.
go back to reference Sheth RD, Buckley D, Penney S, et al. Vigabatrin in childhood epilepsy: comparable efficacy for generalized and partial seizures. Clin Neuropharmacol 1996; 19: 287–304 Sheth RD, Buckley D, Penney S, et al. Vigabatrin in childhood epilepsy: comparable efficacy for generalized and partial seizures. Clin Neuropharmacol 1996; 19: 287–304
34.
go back to reference Wohlrab G, Boltshauser E, Schmitt B. Vigabatrin as a first-line drug in West syndrome: clinical and electroencephalographic outcome. Neuropediatrics 1998; 29: 133–6PubMedCrossRef Wohlrab G, Boltshauser E, Schmitt B. Vigabatrin as a first-line drug in West syndrome: clinical and electroencephalographic outcome. Neuropediatrics 1998; 29: 133–6PubMedCrossRef
35.
go back to reference Siemes H, Brandi U, Spohr HL, et al. Long-term follow-up study of vigabatrin in pretreated children with West syndrome. Seizure 1998; 7: 293–7PubMedCrossRef Siemes H, Brandi U, Spohr HL, et al. Long-term follow-up study of vigabatrin in pretreated children with West syndrome. Seizure 1998; 7: 293–7PubMedCrossRef
36.
go back to reference Engelborghs S, Pickut B A, D’Hooge R, et al. Behavioral effects of vigabatrin correlated with whole brain gamma-aminobutyric acid metabolism in audiogenic sensitive rats. Arzneimittelforschung 1998; 48: 713–6PubMed Engelborghs S, Pickut B A, D’Hooge R, et al. Behavioral effects of vigabatrin correlated with whole brain gamma-aminobutyric acid metabolism in audiogenic sensitive rats. Arzneimittelforschung 1998; 48: 713–6PubMed
37.
go back to reference Michelucci R, Tassinari CA. Response to vigabatrin in relation to seizure type. Br J Clin Pharmacol 1989; 27: 119–25CrossRef Michelucci R, Tassinari CA. Response to vigabatrin in relation to seizure type. Br J Clin Pharmacol 1989; 27: 119–25CrossRef
38.
go back to reference Kalviainen R, Nousiainen I, Mantyjarvi M, et al. Vigabatrin, a gabaergic antiepileptic drug, causes concentric visual field defects. Neurology 1999; 22: 922–6CrossRef Kalviainen R, Nousiainen I, Mantyjarvi M, et al. Vigabatrin, a gabaergic antiepileptic drug, causes concentric visual field defects. Neurology 1999; 22: 922–6CrossRef
39.
go back to reference Lawden MC, Eke T, Degg C, Harding GF, Wild JM. Visual field defects associated with vigabatrin therapy. J Neurol Neurosurg Psychiatry 1999; 67: 716–22PubMedCrossRef Lawden MC, Eke T, Degg C, Harding GF, Wild JM. Visual field defects associated with vigabatrin therapy. J Neurol Neurosurg Psychiatry 1999; 67: 716–22PubMedCrossRef
40.
go back to reference Wild JM, Martinez C, Reinshagen G, et al. Characteristics of a unique visual field defect attributed to vigabatrin. Epilepsia 1999; 40: 1784–94PubMedCrossRef Wild JM, Martinez C, Reinshagen G, et al. Characteristics of a unique visual field defect attributed to vigabatrin. Epilepsia 1999; 40: 1784–94PubMedCrossRef
41.
go back to reference Harding GFA. Severe persistent visual field constriction associated with vigabatrin — four posible explanations exist. Br MedJ 1997; 314: 694CrossRef Harding GFA. Severe persistent visual field constriction associated with vigabatrin — four posible explanations exist. Br MedJ 1997; 314: 694CrossRef
42.
go back to reference Sills GJ, Patsalos PN, Butler E, et al. Visual field constrictions: accumulation of vigabatrin but not tiagabine in the retina. Neurology, In Press Sills GJ, Patsalos PN, Butler E, et al. Visual field constrictions: accumulation of vigabatrin but not tiagabine in the retina. Neurology, In Press
43.
go back to reference Adkins JC, Noble S. Tiagabine: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the management of epilepsy. Drugs 1998; 55: 437–60PubMedCrossRef Adkins JC, Noble S. Tiagabine: a review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in the management of epilepsy. Drugs 1998; 55: 437–60PubMedCrossRef
44.
45.
go back to reference Bialer M, Johanessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the fourth Eilat conference (EILAT IV). Epilepsy Res 1999; 34: 1–41PubMedCrossRef Bialer M, Johanessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the fourth Eilat conference (EILAT IV). Epilepsy Res 1999; 34: 1–41PubMedCrossRef
46.
go back to reference Sachdeo RC, Reife RA, Lim P, Pledger G. Topiramate monotherapy for partial onset seizures. Epilepsia 1997; 38: 294–300PubMedCrossRef Sachdeo RC, Reife RA, Lim P, Pledger G. Topiramate monotherapy for partial onset seizures. Epilepsia 1997; 38: 294–300PubMedCrossRef
47.
go back to reference Patsalos PN. The pharmacokinetic profile of topiramate. Rev Contemp Pharmacother 1999; 10: 155–62 Patsalos PN. The pharmacokinetic profile of topiramate. Rev Contemp Pharmacother 1999; 10: 155–62
48.
go back to reference Patsalos PN. The mechanism of action of topiramate. Rev Contemp Pharmacother 1999; 10: 147–53 Patsalos PN. The mechanism of action of topiramate. Rev Contemp Pharmacother 1999; 10: 147–53
49.
go back to reference Lhatoo SD, Walker MC. The safety and adverse event profile of topiramate. Rev Contemp Pharmacother 1999; 10: 185–91 Lhatoo SD, Walker MC. The safety and adverse event profile of topiramate. Rev Contemp Pharmacother 1999; 10: 185–91
50.
go back to reference Ben-Menachem E. The clinical efficacy of topiramate in the treatment of epilepsy. Rev Contemp Pharmacother 1999; 10: 163–84 Ben-Menachem E. The clinical efficacy of topiramate in the treatment of epilepsy. Rev Contemp Pharmacother 1999; 10: 163–84
51.
go back to reference Carter RB, Wood PL, Wieland S, et al. Characterisation of the anticonvulsant properties of ganaxolone (CCD 1042; 3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20one), a selective, high affinity, steroid modulator of the gamma-aminobutyric acis(A) receptor. J Pharmacol Exp Ther 1997; 280: 1284–95PubMed Carter RB, Wood PL, Wieland S, et al. Characterisation of the anticonvulsant properties of ganaxolone (CCD 1042; 3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20one), a selective, high affinity, steroid modulator of the gamma-aminobutyric acis(A) receptor. J Pharmacol Exp Ther 1997; 280: 1284–95PubMed
52.
go back to reference Gasior M, Carter RB, Witkin JM. Neuroactive steroids: potential therapeutic use in neurological and psychiatric disorders. Trends Pharmacol Sci 1999; 20: 107–12PubMedCrossRef Gasior M, Carter RB, Witkin JM. Neuroactive steroids: potential therapeutic use in neurological and psychiatric disorders. Trends Pharmacol Sci 1999; 20: 107–12PubMedCrossRef
53.
go back to reference Gasior M, Beekman M, Carter RB, et al. Antiepileptogenic effects of the novel synthetic neuroactive steroid, ganaxolone, against pentylenetetrazol-induced kindled seizures: comparison with diazepam and valproate. Drug Dev Res 1998; 44: 21–33CrossRef Gasior M, Beekman M, Carter RB, et al. Antiepileptogenic effects of the novel synthetic neuroactive steroid, ganaxolone, against pentylenetetrazol-induced kindled seizures: comparison with diazepam and valproate. Drug Dev Res 1998; 44: 21–33CrossRef
54.
go back to reference Snead OC. Ganaxolone, a selective, high-affinity steroid modulator of the gamma-aminobutyric acid-A receptor, exacerbates seizures in animal models of absence. Ann Neurol 1998; 44: 688–91PubMedCrossRef Snead OC. Ganaxolone, a selective, high-affinity steroid modulator of the gamma-aminobutyric acid-A receptor, exacerbates seizures in animal models of absence. Ann Neurol 1998; 44: 688–91PubMedCrossRef
55.
go back to reference Lechtenberg R, Villeneuve N, Monaghan EP, et al. An open-label dose-escalation study to evaluate the safety and tolerability of ganaxolone in the treatment of refractory epilepsy in pediatric patients. Epilepsia 1996; 37(5 Suppl.): 204 Lechtenberg R, Villeneuve N, Monaghan EP, et al. An open-label dose-escalation study to evaluate the safety and tolerability of ganaxolone in the treatment of refractory epilepsy in pediatric patients. Epilepsia 1996; 37(5 Suppl.): 204
56.
go back to reference Laxer K, Blum D, Abou-Khalil BW, et al. Assessment of ganaxolone’s anticonvulsant activity using a randomized, double-blind, presurgical trial design. Ganaxolone Presurgical Study Group. Epilepsia 2000; 41: 1187–94PubMedCrossRef Laxer K, Blum D, Abou-Khalil BW, et al. Assessment of ganaxolone’s anticonvulsant activity using a randomized, double-blind, presurgical trial design. Ganaxolone Presurgical Study Group. Epilepsia 2000; 41: 1187–94PubMedCrossRef
57.
go back to reference Monaghan EP, Navalta LA, Shum L, et al. Initial human experience with ganaxolone, a neuroactive steroid with antiepileptic activity. Epilepsia 1997; 38: 1026–31PubMedCrossRef Monaghan EP, Navalta LA, Shum L, et al. Initial human experience with ganaxolone, a neuroactive steroid with antiepileptic activity. Epilepsia 1997; 38: 1026–31PubMedCrossRef
58.
go back to reference Kapetanovic IM, Yonekawa WDS, Kupferberg HJ. The effects of D-23129, a new experimental anticonvulsant drug, on neurotransmitter amino acids in the rat hippocampus in vitro. Epilepsy Res 1995; 22: 167–73PubMedCrossRef Kapetanovic IM, Yonekawa WDS, Kupferberg HJ. The effects of D-23129, a new experimental anticonvulsant drug, on neurotransmitter amino acids in the rat hippocampus in vitro. Epilepsy Res 1995; 22: 167–73PubMedCrossRef
59.
go back to reference Rundfeldt C. The new anticonvulsant retigabine (D-23129) acts as an opener of K+ channels in neuronal cells. Eur J Pharmacol 1997; 336: 243–9PubMedCrossRef Rundfeldt C. The new anticonvulsant retigabine (D-23129) acts as an opener of K+ channels in neuronal cells. Eur J Pharmacol 1997; 336: 243–9PubMedCrossRef
60.
go back to reference Dost R, Rundfeldt C. The anticonvulsant retigabine potently suppresses epileptiform discharges in the low Ca++ and low Mg++ model in the hippocampal slice preparation. Epilepsy Res 2000; 38: 53–66PubMedCrossRef Dost R, Rundfeldt C. The anticonvulsant retigabine potently suppresses epileptiform discharges in the low Ca++ and low Mg++ model in the hippocampal slice preparation. Epilepsy Res 2000; 38: 53–66PubMedCrossRef
61.
go back to reference SchroederBC, Kubisch C, Stein V, et al. Moderate loss of function of cyclic-AMP modulated KCNQ2/KCNQ3 K channels causes epilepsy. Nature 1998; 396: 687–90CrossRef SchroederBC, Kubisch C, Stein V, et al. Moderate loss of function of cyclic-AMP modulated KCNQ2/KCNQ3 K channels causes epilepsy. Nature 1998; 396: 687–90CrossRef
62.
go back to reference Wang HS, Pan X, Shi W, et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 1998; 282: 1890–3PubMedCrossRef Wang HS, Pan X, Shi W, et al. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 1998; 282: 1890–3PubMedCrossRef
63.
go back to reference Rundfeldt C, Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells transfected with human KCNQ2/3 subunits. Neurosci Lett 2000; 282: 73–6PubMedCrossRef Rundfeldt C, Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells transfected with human KCNQ2/3 subunits. Neurosci Lett 2000; 282: 73–6PubMedCrossRef
64.
go back to reference Dailey JW, Cheong JH, Ko KH, et al. Anticonvulsant properties of D-20443 in genetically-prone rats: prediction of clinical response. Neurosci Lett 1995; 195: 77–80PubMedCrossRef Dailey JW, Cheong JH, Ko KH, et al. Anticonvulsant properties of D-20443 in genetically-prone rats: prediction of clinical response. Neurosci Lett 1995; 195: 77–80PubMedCrossRef
65.
go back to reference Rostock A, Tober C, Rundfeldt C, et al. D-23129: a new anticonvulsant with broad spectrum activity in animal models of epileptic seizures. Epilepsy Res 2000; 23: 211–23CrossRef Rostock A, Tober C, Rundfeldt C, et al. D-23129: a new anticonvulsant with broad spectrum activity in animal models of epileptic seizures. Epilepsy Res 2000; 23: 211–23CrossRef
66.
go back to reference Tober C, Rostock A, Rundfeldt C, et al. D-33129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur J Pharmacol 1996; 303: 163–9PubMedCrossRef Tober C, Rostock A, Rundfeldt C, et al. D-33129: a potent anticonvulsant in the amygdala kindling model of complex partial seizures. Eur J Pharmacol 1996; 303: 163–9PubMedCrossRef
67.
go back to reference Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Fifth Eilat conference (EILAT V). Epilepsy Res 2001; 43: 11–58PubMedCrossRef Bialer M, Johannessen SI, Kupferberg HJ, et al. Progress report on new antiepileptic drugs: a summary of the Fifth Eilat conference (EILAT V). Epilepsy Res 2001; 43: 11–58PubMedCrossRef
68.
go back to reference Taylor CP, Vartanian MG, Yuen PW, et al. Potent stereospecific anticonvulsant activity of 3-isobutyl GABA relates to in vitro binding at the novel site labelled by tritiated gabapentin. Epilepsy Res 1993; 14: 11–5PubMedCrossRef Taylor CP, Vartanian MG, Yuen PW, et al. Potent stereospecific anticonvulsant activity of 3-isobutyl GABA relates to in vitro binding at the novel site labelled by tritiated gabapentin. Epilepsy Res 1993; 14: 11–5PubMedCrossRef
69.
go back to reference Taylor CP, Vartanian MG. Profile of the anticonvulsant activity of CI-1008 (pregabalin) in animal models. Epilepsia 1997; 38(8 Suppl.): 35 Taylor CP, Vartanian MG. Profile of the anticonvulsant activity of CI-1008 (pregabalin) in animal models. Epilepsia 1997; 38(8 Suppl.): 35
70.
go back to reference Beydoun A, Uthman B, Ramsey RE, et al. Pregabalin add-on trial: multi-center study in patients with partial epilepsy. Epilepsia 1999; 40(7 Suppl.): 108 Beydoun A, Uthman B, Ramsey RE, et al. Pregabalin add-on trial: multi-center study in patients with partial epilepsy. Epilepsia 1999; 40(7 Suppl.): 108
71.
go back to reference French JA, Malicsi MJR, Kugler AR, et al. Pregabalin adjunctive therapy in patients with partial seizures. Epilepsia 1999; 40(7 Suppl.): 106 French JA, Malicsi MJR, Kugler AR, et al. Pregabalin adjunctive therapy in patients with partial seizures. Epilepsia 1999; 40(7 Suppl.): 106
72.
go back to reference Vergnes M, Boehrer A, Simler S, et al. Opposite effects of GABAb receptor antagonists on absences and convulsive seizures. Eur J Pharmacol 1997; 332: 245–55PubMedCrossRef Vergnes M, Boehrer A, Simler S, et al. Opposite effects of GABAb receptor antagonists on absences and convulsive seizures. Eur J Pharmacol 1997; 332: 245–55PubMedCrossRef
73.
go back to reference Getova D, Froestl W, Bowery NG. Effects of GABAB receptor antagonism on the development of pentylenetetrazol-induced kindling in mice. Brain Res 1998; 809: 182–8PubMedCrossRef Getova D, Froestl W, Bowery NG. Effects of GABAB receptor antagonism on the development of pentylenetetrazol-induced kindling in mice. Brain Res 1998; 809: 182–8PubMedCrossRef
74.
go back to reference Getova D, Bowery NG, Spassov V. Effects of GABAb receptor antagonists on learning and memory retention in a rat model of absence epilepsy. Eur J Pharmacol 1997; 320: 9–13PubMedCrossRef Getova D, Bowery NG, Spassov V. Effects of GABAb receptor antagonists on learning and memory retention in a rat model of absence epilepsy. Eur J Pharmacol 1997; 320: 9–13PubMedCrossRef
75.
go back to reference Walker MC, Sander JWAS. The impact of new antiepileptic drugs on the prognoosis of epilepsy: seizure freedom should be the ultimate goal. Neurology 1996; 46: 912–4PubMedCrossRef Walker MC, Sander JWAS. The impact of new antiepileptic drugs on the prognoosis of epilepsy: seizure freedom should be the ultimate goal. Neurology 1996; 46: 912–4PubMedCrossRef
76.
go back to reference Marson AG, Kadir ZA, Hutton JL, et al. The new anti-epileptic drugs: a systematic review of their efficacy and tolerability. Epilepsia 1997; 38: 859–80PubMedCrossRef Marson AG, Kadir ZA, Hutton JL, et al. The new anti-epileptic drugs: a systematic review of their efficacy and tolerability. Epilepsia 1997; 38: 859–80PubMedCrossRef
Metadata
Title
The New Generation of GABA Enhancers
Potential in the Treatment of Epilepsy
Authors
Stanislaw J. Czuczwar
Dr Philip N. Patsalos
Publication date
01-05-2001
Publisher
Springer International Publishing
Published in
CNS Drugs / Issue 5/2001
Print ISSN: 1172-7047
Electronic ISSN: 1179-1934
DOI
https://doi.org/10.2165/00023210-200115050-00001

Other articles of this Issue 5/2001

CNS Drugs 5/2001 Go to the issue

Therapy in Practice

Psychogenic Excoriation