Skip to main content
Top
Published in: Sports Medicine 11/2006

01-11-2006 | Leading Article

Perceived Exertion

Influence of Age and Cognitive Development

Authors: Dr Alain Groslambert, Anthony D. Mahon

Published in: Sports Medicine | Issue 11/2006

Login to get access

Abstract

Because little is known about the effects of aging on perceived exertion, the aim of this article is to review the key findings from the published literature concerning rating of perceived exertion (RPE) in relation to the developmental level of a subject. The use of RPE in the exercise setting has included both an estimation paradigm, which is the quantification of the effort sense at a given level of exercise, and a production paradigm, which involves producing a given physiological effort based on an RPE value.
The results of the review show that the cognitive developmental level of children aged 0–3 years does not allow them to rate their perceived exertion during a handgrip task. From 4 to 7 years of age, there is a critical period where children are able to progressively rate at first their peripheral sensory cues during handgrip tests, and then their cardiorespiratory cues during outdoor running in an accurate manner. Between 8 and 12 years of age, children are able to estimate and produce 2–4 cycling intensities guided by their effort sense and distinguish sensory cues from different parts of their body. However, most of the studies report that the exercise mode and the rating scale used could influence their perceptual responsiveness.
During adolescence, it seems that the RPE-heart rate (HR) relationship is less pronounced than in adults. Similar to observations made in younger children, RPE values are influenced by the exercise mode, test protocol and rating scale. Limited research has examined the ability of adolescents to produce a given exercise intensity based on perceived exertion. Little else is known about RPE in this age group.
In healthy middle-aged and elderly individuals, age-related differences in perceptual responsiveness may not be present as long as variations in cardiorespiratory fitness are taken into account. For this reason, RPE could be associated with HR as a useful tool for monitoring and prescribing exercise. In physically deconditioned elderly persons, a rehabilitation training programme may increase the subject’s ability to detect muscular sensations and the ability to utilise these sensory cues in the perception of effort.
RPE appears to be a cognitive function that involves a long and progressive developmental process from 4 years of age to adulthood. In healthy middle-aged and elderly individuals, RPE is not impaired by aging and can be associated with HR as a useful tool to control exercise intensity. While much is known about RPE responses in 8- to 12-year-old children, more research is needed to fully understand the influence of cognitive development on perceived exertion in children, adolescents and elderly individuals.
Literature
1.
go back to reference Noble BJ, Robertson RJ. Perceived exertion. Champaign (IL): Human Kinetics, 1996 Noble BJ, Robertson RJ. Perceived exertion. Champaign (IL): Human Kinetics, 1996
2.
go back to reference Borg GV. Perceived exertion and pain scales. Champaign (IL): Human Kinetics, 1998 Borg GV. Perceived exertion and pain scales. Champaign (IL): Human Kinetics, 1998
3.
go back to reference Borg GV. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 1970; 2: 92–8PubMed Borg GV. Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 1970; 2: 92–8PubMed
4.
go back to reference Williams JG, Eston RG, Furlong B. CERT: a perceived exertion scale for young children. Percept Mot Skills 1994; 79: 1451–8PubMedCrossRef Williams JG, Eston RG, Furlong B. CERT: a perceived exertion scale for young children. Percept Mot Skills 1994; 79: 1451–8PubMedCrossRef
5.
go back to reference Robertson RJ, Goss FL, Boer NF, et al. Children’s OMNI scale of perceived exertion: mixed gender and race validation. Med Sci Sports Exerc 2000; 32: 452–8PubMedCrossRef Robertson RJ, Goss FL, Boer NF, et al. Children’s OMNI scale of perceived exertion: mixed gender and race validation. Med Sci Sports Exerc 2000; 32: 452–8PubMedCrossRef
6.
go back to reference Utter AC, Robertson RJ, Nieman DC, et al. Children’s OMNI scale of perceived exertion: walking/running evaluation. Med Sci Sports Exerc 2002; 34: 139–44PubMedCrossRef Utter AC, Robertson RJ, Nieman DC, et al. Children’s OMNI scale of perceived exertion: walking/running evaluation. Med Sci Sports Exerc 2002; 34: 139–44PubMedCrossRef
7.
go back to reference Robertson RJ, Goss FL, Andreaci JL, et al. Validation of children’s OMNI RPE scale for stepping exercise. Med Sci Sports Exerc 2005, 298 Robertson RJ, Goss FL, Andreaci JL, et al. Validation of children’s OMNI RPE scale for stepping exercise. Med Sci Sports Exerc 2005, 298
8.
go back to reference Eston RG, Parfitt G, Campbell L, et al. Reliability of effort perception for regulating exercise intensity in children using a Cart and Load Effort Rating (CALER) scale. Pediatr Exerc Sci 2000; 12: 338–97 Eston RG, Parfitt G, Campbell L, et al. Reliability of effort perception for regulating exercise intensity in children using a Cart and Load Effort Rating (CALER) scale. Pediatr Exerc Sci 2000; 12: 338–97
9.
go back to reference Yelling M, Lamb KL, Swaine IL. Validity of a pictorial perceived exertion scale for effort estimation and effort production during stepping exercise in adolescent children. Euro Phys Educ Rev 2002; 8: 157–75CrossRef Yelling M, Lamb KL, Swaine IL. Validity of a pictorial perceived exertion scale for effort estimation and effort production during stepping exercise in adolescent children. Euro Phys Educ Rev 2002; 8: 157–75CrossRef
10.
go back to reference Eston RG, Parfitt G, Shepherd P. Effort perception in children: implications for validity and reliability. In: Papaionnou A, Goudas M, Theodorakis Y, editors. Proceedings of 10th World Congress of Sport Psychology. Vol. 5. 2001 May 28-Jun 2; Skiathos, Greece, 104–6 Eston RG, Parfitt G, Shepherd P. Effort perception in children: implications for validity and reliability. In: Papaionnou A, Goudas M, Theodorakis Y, editors. Proceedings of 10th World Congress of Sport Psychology. Vol. 5. 2001 May 28-Jun 2; Skiathos, Greece, 104–6
11.
go back to reference Groslambert A, Hintzy F, Hoffman MD, et al. Validation of a rating scale of perceived exertion in young children. Int J Sports Med 2001; 22: 116–9PubMedCrossRef Groslambert A, Hintzy F, Hoffman MD, et al. Validation of a rating scale of perceived exertion in young children. Int J Sports Med 2001; 22: 116–9PubMedCrossRef
12.
go back to reference Eston RG, Parfitt CG. Perceived exertion. In: Armstrong N, editor. Paediatric Exercise Physiology. London: Elsevier, 2006 Eston RG, Parfitt CG. Perceived exertion. In: Armstrong N, editor. Paediatric Exercise Physiology. London: Elsevier, 2006
13.
go back to reference Mihevic PM. Sensory cues for perceived exertion: a review. Med Sci Sports Exerc 1981; 13: 150–63PubMed Mihevic PM. Sensory cues for perceived exertion: a review. Med Sci Sports Exerc 1981; 13: 150–63PubMed
14.
go back to reference Ulmer HV. Concept of extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychological feedback. Experientia 1996; 52: 416–20PubMedCrossRef Ulmer HV. Concept of extracellular regulation of muscular metabolic rate during heavy exercise in humans by psychological feedback. Experientia 1996; 52: 416–20PubMedCrossRef
15.
go back to reference Hampson D, Saint Clair Gibson A, Lambert MI, et al. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med 2001; 31: 935–52PubMedCrossRef Hampson D, Saint Clair Gibson A, Lambert MI, et al. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med 2001; 31: 935–52PubMedCrossRef
16.
go back to reference Robertson RJ, Goss FL, Bell JA, et al. Self-regulated cycling using the children’s OMNI Scale of Perceived Exertion. Med Sci Sports Exerc 2002; 34: 1168–75PubMedCrossRef Robertson RJ, Goss FL, Bell JA, et al. Self-regulated cycling using the children’s OMNI Scale of Perceived Exertion. Med Sci Sports Exerc 2002; 34: 1168–75PubMedCrossRef
17.
go back to reference Van Den Burg M, Ceci R. A comparison of a psychophysical estimation and a production method in a laboratory and in a field condition. In: Borg G, Ottoson D, editors. The perception of effort in physical work. London: Macmillon Publisher Inc., 1986: 35–46 Van Den Burg M, Ceci R. A comparison of a psychophysical estimation and a production method in a laboratory and in a field condition. In: Borg G, Ottoson D, editors. The perception of effort in physical work. London: Macmillon Publisher Inc., 1986: 35–46
18.
go back to reference Robertson R, Goss R, Auble T, et al. Cross-modal exercise prescription at absolute and relative oxygen uptake using perceived exertion. Med Sci Sports Exerc 1990; 22: 653–9PubMedCrossRef Robertson R, Goss R, Auble T, et al. Cross-modal exercise prescription at absolute and relative oxygen uptake using perceived exertion. Med Sci Sports Exerc 1990; 22: 653–9PubMedCrossRef
19.
go back to reference Dunbar C, Robertson R, Baun R, et al. The validity of regulating exercise intensity by ratings of perceived exertion. Med Sci Sports Exerc 1992; 24: 94–9PubMed Dunbar C, Robertson R, Baun R, et al. The validity of regulating exercise intensity by ratings of perceived exertion. Med Sci Sports Exerc 1992; 24: 94–9PubMed
20.
go back to reference Piaget J. La Psychologie de l’Intelligence. Paris: Armand Colin, 1966 Piaget J. La Psychologie de l’Intelligence. Paris: Armand Colin, 1966
21.
go back to reference Poortmans J. Recovery in elderly persons. In: Rieu M, Bailliere JB, editors. Recovery and physical aptitudes. Paris: MD Communication, 2001: 77–9 Poortmans J. Recovery in elderly persons. In: Rieu M, Bailliere JB, editors. Recovery and physical aptitudes. Paris: MD Communication, 2001: 77–9
22.
go back to reference Borg GV, Linderholm H. Perceived exertion and pulse rate during graded exercise in various age group. Acta Med Scand 1967; 472: 194–204 Borg GV, Linderholm H. Perceived exertion and pulse rate during graded exercise in various age group. Acta Med Scand 1967; 472: 194–204
23.
go back to reference Miller GD, Bell RD, Collis ML, et al. The relationship between perceived exertion and heart rate of post 50 year-old volunteers in two different walking activities. J Hum Mov Stud 1985; 11: 187–95 Miller GD, Bell RD, Collis ML, et al. The relationship between perceived exertion and heart rate of post 50 year-old volunteers in two different walking activities. J Hum Mov Stud 1985; 11: 187–95
24.
go back to reference Boutcher SH. Cognitive performance, fitness, and aging. In: Biddle SJH, Fox KR, Boutcher SH, editors. Physical activity and psychological well-being. London: Routledge, 2000: 118–30 Boutcher SH. Cognitive performance, fitness, and aging. In: Biddle SJH, Fox KR, Boutcher SH, editors. Physical activity and psychological well-being. London: Routledge, 2000: 118–30
25.
go back to reference Chodzko-Zazko WJ, Moore KA. Physical fitness and cognitive functioning in aging. Exerc Sports Sci Rev 1994; 22: 195–222 Chodzko-Zazko WJ, Moore KA. Physical fitness and cognitive functioning in aging. Exerc Sports Sci Rev 1994; 22: 195–222
26.
go back to reference Defrasne E. Developmental study of hand grip and perceived exertion in children [dissertation in French]. Besançon: DEA Psychology, University of Franche-Comté, 2003 Defrasne E. Developmental study of hand grip and perceived exertion in children [dissertation in French]. Besançon: DEA Psychology, University of Franche-Comté, 2003
27.
go back to reference Groslambert A, Nachon M, Rouillon JD. Influence of the age on self-regulation of static grip forces from perceived exertion values. Neurosci Lett 2002; 325: 52–6PubMedCrossRef Groslambert A, Nachon M, Rouillon JD. Influence of the age on self-regulation of static grip forces from perceived exertion values. Neurosci Lett 2002; 325: 52–6PubMedCrossRef
28.
go back to reference Groslambert A, Monnier-Benoit P, Grange CC, et al. Self-regulation running by using perceived exertion in 5–7 year old children. J Sports Med Phys Fitness 2005; 45: 20–5PubMed Groslambert A, Monnier-Benoit P, Grange CC, et al. Self-regulation running by using perceived exertion in 5–7 year old children. J Sports Med Phys Fitness 2005; 45: 20–5PubMed
29.
go back to reference Eston RG, Lamb KL. Effort perception. In: Armstrong N, van Mechelen W, editors. Paediatric exercise science and medicine. Oxford: Oxford University Press, 2000: 85–91 Eston RG, Lamb KL. Effort perception. In: Armstrong N, van Mechelen W, editors. Paediatric exercise science and medicine. Oxford: Oxford University Press, 2000: 85–91
30.
go back to reference Bar Or O. Age related changes in exercise perception. In: Borg GV, editor. Physical work and effort. New York: Pergamon Press, 1977: 33–49 Bar Or O. Age related changes in exercise perception. In: Borg GV, editor. Physical work and effort. New York: Pergamon Press, 1977: 33–49
31.
go back to reference Duncan GE, Mahon AD, Gay JA, et al. Physiological and perceptual responses to graded treadmill and cycle exercise in male-children. Pediatr Exerc Sci 1996; 8: 251–8 Duncan GE, Mahon AD, Gay JA, et al. Physiological and perceptual responses to graded treadmill and cycle exercise in male-children. Pediatr Exerc Sci 1996; 8: 251–8
32.
go back to reference Mahon AD, Marsh ML. Reliability of rating of perceived exertion relative to ventilatory threshold in children. Int J Sports Med 1992; 13: 567–71PubMedCrossRef Mahon AD, Marsh ML. Reliability of rating of perceived exertion relative to ventilatory threshold in children. Int J Sports Med 1992; 13: 567–71PubMedCrossRef
33.
go back to reference Mahon AD, Duncan GE, Howe CA, et al. Blood lactate and perceived exertion relative to ventilatory threshold: boys versus men. Med Sci Sports Exerc 1997; 29: 1332–7PubMedCrossRef Mahon AD, Duncan GE, Howe CA, et al. Blood lactate and perceived exertion relative to ventilatory threshold: boys versus men. Med Sci Sports Exerc 1997; 29: 1332–7PubMedCrossRef
34.
go back to reference Mahon AD, Gay JA, Stolen KQ. Differentiated ratings of perceived exertion at ventilatory threshold in children and adults. Eur J Appl Physiol Occup Physiol 1998; 78: 115–20PubMedCrossRef Mahon AD, Gay JA, Stolen KQ. Differentiated ratings of perceived exertion at ventilatory threshold in children and adults. Eur J Appl Physiol Occup Physiol 1998; 78: 115–20PubMedCrossRef
35.
go back to reference Lamb KL. Children’s ratings of effort during cycle ergometry and examination of the validity of two effort rating scales. Pediatr Exerc Sci 1995; 7: 107–21 Lamb KL. Children’s ratings of effort during cycle ergometry and examination of the validity of two effort rating scales. Pediatr Exerc Sci 1995; 7: 107–21
36.
go back to reference Eston RG, Williams JG. Exercise intensity and perceived exertion in adolescent boys. Br J Sports Med 1986; 20: 27–30PubMedCrossRef Eston RG, Williams JG. Exercise intensity and perceived exertion in adolescent boys. Br J Sports Med 1986; 20: 27–30PubMedCrossRef
37.
go back to reference Alekseev VM. Correlation between heart rate and subjectively perceived exertion during muscular work. Hum Physiol 1989; 15: 39–44 Alekseev VM. Correlation between heart rate and subjectively perceived exertion during muscular work. Hum Physiol 1989; 15: 39–44
38.
go back to reference Eakin BL, Finta KM, Serwer GA, et al. Perceived exertion and exercise intensity in children with and without structural heart defects. J Pediatr 1992; 120: 90–3PubMedCrossRef Eakin BL, Finta KM, Serwer GA, et al. Perceived exertion and exercise intensity in children with and without structural heart defects. J Pediatr 1992; 120: 90–3PubMedCrossRef
39.
go back to reference Skinner JS, Hustler R, Bergsteinova V, et al. The validity and reliability of a rating scale of perceived exertion. Med Sci Sports Exerc 1973; 5: 97–103 Skinner JS, Hustler R, Bergsteinova V, et al. The validity and reliability of a rating scale of perceived exertion. Med Sci Sports Exerc 1973; 5: 97–103
40.
go back to reference Gamberale F. Perceived exertion, heart rate, oxygen uptake and blood lactate in different work operations. Ergonomics 1972; 15: 545–54PubMedCrossRef Gamberale F. Perceived exertion, heart rate, oxygen uptake and blood lactate in different work operations. Ergonomics 1972; 15: 545–54PubMedCrossRef
41.
go back to reference Robertson RJ, Goss FL, Dubé J, et al. Validation of the adult OMNI scale of perceived exertion for cycle ergometer exercise. Med Sci Sports Exerc 2004; 36: 102–8PubMedCrossRef Robertson RJ, Goss FL, Dubé J, et al. Validation of the adult OMNI scale of perceived exertion for cycle ergometer exercise. Med Sci Sports Exerc 2004; 36: 102–8PubMedCrossRef
42.
go back to reference Lamb KL. Exercise regulation during cycle ergometry using the children’s effort rating table (CERT) and rating of perceived exertion (RPE) scales. Pediatr Exerc Sci 1996; 8: 337–50 Lamb KL. Exercise regulation during cycle ergometry using the children’s effort rating table (CERT) and rating of perceived exertion (RPE) scales. Pediatr Exerc Sci 1996; 8: 337–50
44.
go back to reference Eston RG, Lamb KL, Williams AM, et al. Validity of a perceived exertion scale for children: a pilot study. Percept Mot Skills 1994; 78: 691–7PubMedCrossRef Eston RG, Lamb KL, Williams AM, et al. Validity of a perceived exertion scale for children: a pilot study. Percept Mot Skills 1994; 78: 691–7PubMedCrossRef
45.
go back to reference Robertson RJ, Goss FL, Boer N, et al. OMNI scale perceived exertion at ventilatory breakpoint in children: response nor-malized. Med Sci Sports Exerc 2001; 33: 1946–52PubMedCrossRef Robertson RJ, Goss FL, Boer N, et al. OMNI scale perceived exertion at ventilatory breakpoint in children: response nor-malized. Med Sci Sports Exerc 2001; 33: 1946–52PubMedCrossRef
46.
go back to reference Mahon AD, Plank DM, Hipp MJ. The influence of exercise test protocol on perceived exertion at submaximal exercise intensi-ties in children. Can J Appl Physiol 2003; 28: 53–63PubMedCrossRef Mahon AD, Plank DM, Hipp MJ. The influence of exercise test protocol on perceived exertion at submaximal exercise intensi-ties in children. Can J Appl Physiol 2003; 28: 53–63PubMedCrossRef
47.
go back to reference Mahon AD, Ray ML. Ratings of perceived exertion at maximal exercise in children performing different graded exercise test. J Sports Med Phys Fitness 1995; 35: 38–42PubMed Mahon AD, Ray ML. Ratings of perceived exertion at maximal exercise in children performing different graded exercise test. J Sports Med Phys Fitness 1995; 35: 38–42PubMed
48.
go back to reference Mahon AD, Stolen KQ, Gay JA. Differentiated perceived exer-tion during submaximal exercise in children and adults. Pediatr Exerc Sci 2001; 13: 145–53 Mahon AD, Stolen KQ, Gay JA. Differentiated perceived exer-tion during submaximal exercise in children and adults. Pediatr Exerc Sci 2001; 13: 145–53
49.
go back to reference Williams JG, Eston RG, Strech C. Use of perceived exertion to control exercise intensity in children. Pediatr Exerc Sci 1991; 3: 21–7 Williams JG, Eston RG, Strech C. Use of perceived exertion to control exercise intensity in children. Pediatr Exerc Sci 1991; 3: 21–7
50.
go back to reference Ward DS, Jackman JD, Galiano FJ. Exercise intensity reproduction: children versus adults. Pediatr Exerc Sci 1991; 3: 209–18 Ward DS, Jackman JD, Galiano FJ. Exercise intensity reproduction: children versus adults. Pediatr Exerc Sci 1991; 3: 209–18
51.
go back to reference Ueda T, Kurokawa T. Validity of heart rate and ratings of perceived exertion as indices of exercise intensity in a group of children while swimming. Eur J Appl Physiol 1991; 63: 200–4CrossRef Ueda T, Kurokawa T. Validity of heart rate and ratings of perceived exertion as indices of exercise intensity in a group of children while swimming. Eur J Appl Physiol 1991; 63: 200–4CrossRef
52.
go back to reference Ueda T, Choi TH, Kurokawa T. Ratings of perceived exertion in a group of children while swimming at different temperatures. Ann Physiol Anthropol 1994; 13: 23–31PubMedCrossRef Ueda T, Choi TH, Kurokawa T. Ratings of perceived exertion in a group of children while swimming at different temperatures. Ann Physiol Anthropol 1994; 13: 23–31PubMedCrossRef
53.
go back to reference Gillach MC, Sallis JF, Buono ML. The relationship between perceived exertion and heart rate in children and adults. Pediatr Exerc Sci 1989; 1: 360–8 Gillach MC, Sallis JF, Buono ML. The relationship between perceived exertion and heart rate in children and adults. Pediatr Exerc Sci 1989; 1: 360–8
54.
go back to reference Rutkowski J, Robertson RJ, Tseh W, et al. Assessment of RPE signal dominance at slow-to-moderate walking speeds in children using the OMNI perceived exertion scale. Pediatr Exerc Sci 2004; 16: 334–42 Rutkowski J, Robertson RJ, Tseh W, et al. Assessment of RPE signal dominance at slow-to-moderate walking speeds in children using the OMNI perceived exertion scale. Pediatr Exerc Sci 2004; 16: 334–42
55.
go back to reference Pfeiffer KA, Pivarnik JM, Womack CJ, et al. Reliability and validity of the Borg and OMNI rating of perceived exertion scales in adolescent girls. Med Sci Sports Exerc 2002; 34: 2057–61PubMedCrossRef Pfeiffer KA, Pivarnik JM, Womack CJ, et al. Reliability and validity of the Borg and OMNI rating of perceived exertion scales in adolescent girls. Med Sci Sports Exerc 2002; 34: 2057–61PubMedCrossRef
56.
go back to reference Marinov B, Kostianev S, Turnovska T. Ventilatory response to exercise and rating of perceived exertion in two pediatric age groups. Acta Physiol Pharmacol Bulg 2000; 25: 93–8PubMed Marinov B, Kostianev S, Turnovska T. Ventilatory response to exercise and rating of perceived exertion in two pediatric age groups. Acta Physiol Pharmacol Bulg 2000; 25: 93–8PubMed
57.
go back to reference Marinov B, Kostianev S, Turnovska T. Modified treadmill protocol for evaluation of physical fitness in pediatric age group-comparison with Bruce and Balke protocols. Acta Physiol Pharmacol Bulg 2003; 27: 47–51PubMed Marinov B, Kostianev S, Turnovska T. Modified treadmill protocol for evaluation of physical fitness in pediatric age group-comparison with Bruce and Balke protocols. Acta Physiol Pharmacol Bulg 2003; 27: 47–51PubMed
58.
go back to reference Sallis JF. A North American perspective on physical activity research in children and adolescents. In: Blimkie CJR, Bar-Or O, editors. New horizons in pediatric exercise science. Champaign (IL): Human Kinetics Publishers Inc., 1995: 221–34 Sallis JF. A North American perspective on physical activity research in children and adolescents. In: Blimkie CJR, Bar-Or O, editors. New horizons in pediatric exercise science. Champaign (IL): Human Kinetics Publishers Inc., 1995: 221–34
59.
go back to reference Eston RG. A discussion of the concepts: exercise intensity and perceived exertion with reference to the secondary school. Phys Educ Rev 1984; 7: 19–25 Eston RG. A discussion of the concepts: exercise intensity and perceived exertion with reference to the secondary school. Phys Educ Rev 1984; 7: 19–25
60.
go back to reference Bar-Or O, Skinner JS, Buskirk ER, et al. Physiological and perceptual indicators of physical stress in 41–60 year-old-men who vary in conditioning level and body fatness. Med Sci Sports 1972; 2: 96–100 Bar-Or O, Skinner JS, Buskirk ER, et al. Physiological and perceptual indicators of physical stress in 41–60 year-old-men who vary in conditioning level and body fatness. Med Sci Sports 1972; 2: 96–100
61.
go back to reference Aminoff T, Smolander J, Korhonen O, et al. Physical work capacity in dynamic exercise with differing muscle masses in healthy young and older men. Eur J Appl Physiol 1996; 73: 180–5CrossRef Aminoff T, Smolander J, Korhonen O, et al. Physical work capacity in dynamic exercise with differing muscle masses in healthy young and older men. Eur J Appl Physiol 1996; 73: 180–5CrossRef
62.
go back to reference Sidney SH, Shephard RJ. Perception of exertion in the elderly, effects of aging, mode of exercise and physical training. Percept Mot Skills 1977; 44: 999–1010PubMedCrossRef Sidney SH, Shephard RJ. Perception of exertion in the elderly, effects of aging, mode of exercise and physical training. Percept Mot Skills 1977; 44: 999–1010PubMedCrossRef
63.
go back to reference Ceci R, Hassmen P. Self-monitored exercise at three different intensities in treadmill vs field running. Med Sci Sports Exerc 1991; 23: 732–8PubMed Ceci R, Hassmen P. Self-monitored exercise at three different intensities in treadmill vs field running. Med Sci Sports Exerc 1991; 23: 732–8PubMed
64.
go back to reference Aminoff T, Smolander J, Korhonen O, et al. Cardiorespiratory and subjective responses to prolonged arm and leg exercise in healthy young and older men. Eur J Appl Physiol 1997; 75: 363–8CrossRef Aminoff T, Smolander J, Korhonen O, et al. Cardiorespiratory and subjective responses to prolonged arm and leg exercise in healthy young and older men. Eur J Appl Physiol 1997; 75: 363–8CrossRef
65.
go back to reference Grant S, Corbett K, Davies C, et al. Comparison of physiological responses and rating of perceived exertion in two modes of aerobic exercise in men and women over 50 years of age. Br J Sports Med 2002; 36: 276–80PubMedCrossRef Grant S, Corbett K, Davies C, et al. Comparison of physiological responses and rating of perceived exertion in two modes of aerobic exercise in men and women over 50 years of age. Br J Sports Med 2002; 36: 276–80PubMedCrossRef
66.
go back to reference Dunbar CC, Kalinski MI. Using RPE to regulate exercise intensity during a 20-week training program for postmenopausal women: a pilot study. Percept Mot Skills 2004; 99: 688–90PubMed Dunbar CC, Kalinski MI. Using RPE to regulate exercise intensity during a 20-week training program for postmenopausal women: a pilot study. Percept Mot Skills 2004; 99: 688–90PubMed
67.
go back to reference Shigematsu R, Ueno LM, Nakagaichi M, et al. Rate of perceived exertion as a tool to monitor cycling exercise intensity in older adults. J Aging Phys Act 2004; 12: 3–9PubMed Shigematsu R, Ueno LM, Nakagaichi M, et al. Rate of perceived exertion as a tool to monitor cycling exercise intensity in older adults. J Aging Phys Act 2004; 12: 3–9PubMed
68.
go back to reference Grange CC, Maire J, Groslambert A, et al. Perceived exertion and rehabilitation with arm crank in elderly patients after total hip arthroplasty: a preliminary study. J Rehabil Res Dev 2004; 41: 611–20PubMedCrossRef Grange CC, Maire J, Groslambert A, et al. Perceived exertion and rehabilitation with arm crank in elderly patients after total hip arthroplasty: a preliminary study. J Rehabil Res Dev 2004; 41: 611–20PubMedCrossRef
69.
go back to reference Fabre C, Chamari K, Mucci P, et al. Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int J Sports Med 2002; 23: 415–21PubMedCrossRef Fabre C, Chamari K, Mucci P, et al. Improvement of cognitive function by mental and/or individualized aerobic training in healthy elderly subjects. Int J Sports Med 2002; 23: 415–21PubMedCrossRef
70.
go back to reference Hughes JR, Crow RS, Jacobs DR, et al. Physical activity, smoking, and exercise induced fatigue. J Behav Med 1984; 7: 217–30PubMedCrossRef Hughes JR, Crow RS, Jacobs DR, et al. Physical activity, smoking, and exercise induced fatigue. J Behav Med 1984; 7: 217–30PubMedCrossRef
Metadata
Title
Perceived Exertion
Influence of Age and Cognitive Development
Authors
Dr Alain Groslambert
Anthony D. Mahon
Publication date
01-11-2006
Publisher
Springer International Publishing
Published in
Sports Medicine / Issue 11/2006
Print ISSN: 0112-1642
Electronic ISSN: 1179-2035
DOI
https://doi.org/10.2165/00007256-200636110-00001