Skip to main content
Top
Published in: Drugs 10/2007

01-07-2007 | Current Opinion

Bile Acid Sequestrants and the Treatment of Type 2 Diabetes Mellitus

Authors: Dr Bart Staels, Folkert Kuipers

Published in: Drugs | Issue 10/2007

Login to get access

Abstract

Bile acids promote bile formation and facilitate dietary lipid absorption. Animal and human studies showing disturbed bile acid metabolism in diabetes mellitus suggest a link between bile acids and glucose control. Bile acids are activating ligands of the farnesoid X receptor (FXR), a nuclear receptor with an established role in bile acid and lipid metabolism. Evidence suggests a role for FXR also in maintenance of glucose homeostasis. Animal and human studies employing bile acid sequestrants (bile acid binding agents), which interrupt the enterohepatic circulation of bile acids and effectively reduce plasma cholesterol, support a link between bile acid and glucose metabolism. In lipid-lowering trials, bile acid sequestrants, such as colesevelam hydrochloride, colestyramine (cholestyramine) and colestilan (colestimide), have also been shown to lower plasma glucose and glycosylated haemoglobin levels, suggesting the utility of these agents as a potential therapy for type 2 diabetes. In this article, we review the relationship between bile acid metabolism and glucose homeostasis, and present data demonstrating the utility of bile acid sequestrants in the management of diabetes.
Literature
2.
go back to reference DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care 1992 Mar; 15(3): 318–68PubMedCrossRef DeFronzo RA, Bonadonna RC, Ferrannini E. Pathogenesis of NIDDM: a balanced overview. Diabetes Care 1992 Mar; 15(3): 318–68PubMedCrossRef
3.
go back to reference Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005; 65(3): 385–411PubMedCrossRef Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005; 65(3): 385–411PubMedCrossRef
4.
go back to reference Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. Embo J 2006 Apr 5; 25(7): 1419–25PubMedCrossRef Houten SM, Watanabe M, Auwerx J. Endocrine functions of bile acids. Embo J 2006 Apr 5; 25(7): 1419–25PubMedCrossRef
5.
go back to reference Modica S, Moschetta A. Nuclear bile acid receptor FXR as pharmacological target: are we there yet? FEBS Lett 2006 Oct 9; 580(23): 5492–9PubMedCrossRef Modica S, Moschetta A. Nuclear bile acid receptor FXR as pharmacological target: are we there yet? FEBS Lett 2006 Oct 9; 580(23): 5492–9PubMedCrossRef
6.
go back to reference Claudel T, Staels B, Kuipers F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 2005 Oct; 25(10): 2020–30PubMedCrossRef Claudel T, Staels B, Kuipers F. The Farnesoid X receptor: a molecular link between bile acid and lipid and glucose metabolism. Arterioscler Thromb Vasc Biol 2005 Oct; 25(10): 2020–30PubMedCrossRef
7.
go back to reference Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006 Jan 26; 439(7075): 484–9PubMedCrossRef Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006 Jan 26; 439(7075): 484–9PubMedCrossRef
8.
go back to reference Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus: a short-term, double-blind, crossover trial. Ann Intern Med 1994 Sep 15; 121(6): 416–22PubMed Garg A, Grundy SM. Cholestyramine therapy for dyslipidemia in non-insulin-dependent diabetes mellitus: a short-term, double-blind, crossover trial. Ann Intern Med 1994 Sep 15; 121(6): 416–22PubMed
9.
go back to reference Zieve FJ, Kalin MF, Schwartz SL, et al. Results of the Glucose-Lowering effect of WelChol Study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther 2007; 29(1): 74–83PubMedCrossRef Zieve FJ, Kalin MF, Schwartz SL, et al. Results of the Glucose-Lowering effect of WelChol Study (GLOWS): a randomized, double-blind, placebo-controlled pilot study evaluating the effect of colesevelam hydrochloride on glycemic control in subjects with type 2 diabetes. Clin Ther 2007; 29(1): 74–83PubMedCrossRef
10.
go back to reference Weinman SA, Kemmer N. Bile secretion and cholestasis. In: Yamada T, editor. Textbook of gastroenterology. 4th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2003: 366–88 Weinman SA, Kemmer N. Bile secretion and cholestasis. In: Yamada T, editor. Textbook of gastroenterology. 4th ed. Philadelphia (PA): Lippincott Williams and Wilkins, 2003: 366–88
11.
go back to reference Insull Jr W. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J 2006 Mar; 99(3): 257–73PubMedCrossRef Insull Jr W. Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South Med J 2006 Mar; 99(3): 257–73PubMedCrossRef
12.
go back to reference Hassan AS, Ravi Subbiah MT, Thiebert P. Specific changes of bile acid metabolism in spontaneously diabetic Wistar rats. Proc Soc Exp Biol Med 1980 Sep; 164(4): 449–52PubMed Hassan AS, Ravi Subbiah MT, Thiebert P. Specific changes of bile acid metabolism in spontaneously diabetic Wistar rats. Proc Soc Exp Biol Med 1980 Sep; 164(4): 449–52PubMed
13.
go back to reference Hassan AS, Hedeen K, Ravi Subbiah MT. Effect of maternal diabetes on fetal bile acid metabolism in the rat. Biochem Med 1981 Apr; 25(2): 168–73PubMedCrossRef Hassan AS, Hedeen K, Ravi Subbiah MT. Effect of maternal diabetes on fetal bile acid metabolism in the rat. Biochem Med 1981 Apr; 25(2): 168–73PubMedCrossRef
14.
go back to reference Nervi FO, Gonzalez A, Valdivieso VD. Studies on cholesterol metabolism in the diabetic rat. Metabolism 1974 Jun; 23(6): 495–503PubMedCrossRef Nervi FO, Gonzalez A, Valdivieso VD. Studies on cholesterol metabolism in the diabetic rat. Metabolism 1974 Jun; 23(6): 495–503PubMedCrossRef
15.
go back to reference Wey HE, Yunker RL, Harris P, et al. Effect of streptozotocin-induced diabetes in neonatal rat on bile acid pool changes in adult life: selective sensitivity in females. Biochem Med 1984 Apr; 31(2): 167–73PubMedCrossRef Wey HE, Yunker RL, Harris P, et al. Effect of streptozotocin-induced diabetes in neonatal rat on bile acid pool changes in adult life: selective sensitivity in females. Biochem Med 1984 Apr; 31(2): 167–73PubMedCrossRef
16.
go back to reference Nervi FO, Severin CH, Valdivieso VD. Bile acid pool changes and regulation of cholate synthesis in experimental diabetes. Biochim Biophys Acta 1978 May 25; 529(2): 212–23PubMedCrossRef Nervi FO, Severin CH, Valdivieso VD. Bile acid pool changes and regulation of cholate synthesis in experimental diabetes. Biochim Biophys Acta 1978 May 25; 529(2): 212–23PubMedCrossRef
17.
go back to reference van Waarde WM, Verkade HJ, Wolters H, et al. Differential effects of streptozotocin-induced diabetes on expression of hepatic ABC-transporters in rats. Gastroenterology 2002 Jun; 122(7): 1842–52PubMedCrossRef van Waarde WM, Verkade HJ, Wolters H, et al. Differential effects of streptozotocin-induced diabetes on expression of hepatic ABC-transporters in rats. Gastroenterology 2002 Jun; 122(7): 1842–52PubMedCrossRef
18.
go back to reference Uchida K, Makino S, Akiyoshi T. Altered bile acid metabolism in nonobese, spontaneously diabetic (NOD) mice. Diabetes 1985 Jan; 34(1): 79–83PubMedCrossRef Uchida K, Makino S, Akiyoshi T. Altered bile acid metabolism in nonobese, spontaneously diabetic (NOD) mice. Diabetes 1985 Jan; 34(1): 79–83PubMedCrossRef
19.
go back to reference Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000 Jul; 6(1): 87–97PubMed Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell 2000 Jul; 6(1): 87–97PubMed
20.
go back to reference Villanueva GR, Herreros M, Perez-Barriocanal F, et al. Enhancement of bile acid-induced biliary lipid secretion by streptozotocin in rats: role of insulin deficiency. J Lab Clin Med 1990 Apr; 115(4): 441–8PubMed Villanueva GR, Herreros M, Perez-Barriocanal F, et al. Enhancement of bile acid-induced biliary lipid secretion by streptozotocin in rats: role of insulin deficiency. J Lab Clin Med 1990 Apr; 115(4): 441–8PubMed
21.
go back to reference Twisk J, Hoekman MF, Lehmann EM, et al. Insulin suppresses bile acid synthesis in cultured rat hepatocytes by down-regulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase gene transcription. Hepatology 1995 Feb; 21(2): 501–10PubMed Twisk J, Hoekman MF, Lehmann EM, et al. Insulin suppresses bile acid synthesis in cultured rat hepatocytes by down-regulation of cholesterol 7 alpha-hydroxylase and sterol 27-hydroxylase gene transcription. Hepatology 1995 Feb; 21(2): 501–10PubMed
22.
go back to reference Hyogo H, Roy S, Paigen B, et al. Leptin promotes biliary cholesterol elimination during weight loss in ob/ob mice by regulating the enterohepatic circulation of bile salts. J Biol Chem 2002 Sep 13; 277(37): 34117–24PubMedCrossRef Hyogo H, Roy S, Paigen B, et al. Leptin promotes biliary cholesterol elimination during weight loss in ob/ob mice by regulating the enterohepatic circulation of bile salts. J Biol Chem 2002 Sep 13; 277(37): 34117–24PubMedCrossRef
23.
go back to reference Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 1977 Jun 16; 296(24): 1365–71PubMedCrossRef Bennion LJ, Grundy SM. Effects of diabetes mellitus on cholesterol metabolism in man. N Engl J Med 1977 Jun 16; 296(24): 1365–71PubMedCrossRef
24.
go back to reference Abrams JJ, Ginsberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes 1982 Oct; 31(10): 903–10PubMedCrossRef Abrams JJ, Ginsberg H, Grundy SM. Metabolism of cholesterol and plasma triglycerides in nonketotic diabetes mellitus. Diabetes 1982 Oct; 31(10): 903–10PubMedCrossRef
25.
go back to reference Andersen E, Hellstrom P, Hellstrom K. Cholesterol biosynthesis in nonketotic diabetics before and during insulin therapy. Diabetes Res Clin Pract 1987 Jul–Aug; 3(4): 207–14PubMedCrossRef Andersen E, Hellstrom P, Hellstrom K. Cholesterol biosynthesis in nonketotic diabetics before and during insulin therapy. Diabetes Res Clin Pract 1987 Jul–Aug; 3(4): 207–14PubMedCrossRef
26.
go back to reference Andersen E, Karlaganis G, Sjovall J. Altered bile acid profiles in duodenal bile and urine in diabetic subjects. Eur J Clin Invest 1988 Apr; 18(2): 166–72PubMedCrossRef Andersen E, Karlaganis G, Sjovall J. Altered bile acid profiles in duodenal bile and urine in diabetic subjects. Eur J Clin Invest 1988 Apr; 18(2): 166–72PubMedCrossRef
27.
go back to reference Farmer JA, Gotto AM Jr. Choosing the right lipid-regulating agent. A guide to selection. Drugs 1996 Nov; 52(5): 649–61 Farmer JA, Gotto AM Jr. Choosing the right lipid-regulating agent. A guide to selection. Drugs 1996 Nov; 52(5): 649–61
28.
go back to reference The Lipid Research Clinics Coronary Primary Prevention Trial results: I. Reduction in incidence of coronary heart disease. JAMA 1984 Jan 20; 251(3): 351–64CrossRef The Lipid Research Clinics Coronary Primary Prevention Trial results: I. Reduction in incidence of coronary heart disease. JAMA 1984 Jan 20; 251(3): 351–64CrossRef
29.
go back to reference Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990 Nov 8; 323(19): 1289–98PubMedCrossRef Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990 Nov 8; 323(19): 1289–98PubMedCrossRef
30.
go back to reference Eckel RH. Treating dyslipidemia of the metabolic syndrome: where’s the evidence? Nat Clin Pract Endocrinol Metab 2007 Jun; 3(6): 437PubMedCrossRef Eckel RH. Treating dyslipidemia of the metabolic syndrome: where’s the evidence? Nat Clin Pract Endocrinol Metab 2007 Jun; 3(6): 437PubMedCrossRef
31.
go back to reference Koike K, Murakami K, Nozaki N, et al. Colestilan, a new bile acid-sequestering resin, reduces bodyweight in postmenopausal women who have dieted unsuccessfully. Drugs R D 2005; 6(5): 273–9PubMedCrossRef Koike K, Murakami K, Nozaki N, et al. Colestilan, a new bile acid-sequestering resin, reduces bodyweight in postmenopausal women who have dieted unsuccessfully. Drugs R D 2005; 6(5): 273–9PubMedCrossRef
32.
go back to reference Brand SJ, Morgan RG. Stimulation of pancreatic secretion and growth in the rat after feeding cholestyramine. Gastroenterology 1982 Oct; 83(4): 851–9PubMed Brand SJ, Morgan RG. Stimulation of pancreatic secretion and growth in the rat after feeding cholestyramine. Gastroenterology 1982 Oct; 83(4): 851–9PubMed
33.
go back to reference Koop I, Lindenthal M, Schade M, et al. Role of cholecystokinin in cholestyramine-induced changes of the exocrine pancreas. Pancreas 1991 Sep; 6(5): 564–70PubMedCrossRef Koop I, Lindenthal M, Schade M, et al. Role of cholecystokinin in cholestyramine-induced changes of the exocrine pancreas. Pancreas 1991 Sep; 6(5): 564–70PubMedCrossRef
34.
go back to reference Kogire M, Gomez G, Uchida T, et al. Chronic effect of oral cholestyramine, a bile salt sequestrant, and exogenous cholecystokinin on insulin release in rats. Pancreas 1992; 7(1): 15–20PubMedCrossRef Kogire M, Gomez G, Uchida T, et al. Chronic effect of oral cholestyramine, a bile salt sequestrant, and exogenous cholecystokinin on insulin release in rats. Pancreas 1992; 7(1): 15–20PubMedCrossRef
35.
go back to reference Kobayashi M, Ikegami H, Fujisawa T, et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 2007 Jan; 56(1): 239–47PubMedCrossRef Kobayashi M, Ikegami H, Fujisawa T, et al. Prevention and treatment of obesity, insulin resistance, and diabetes by bile acid-binding resin. Diabetes 2007 Jan; 56(1): 239–47PubMedCrossRef
36.
go back to reference Bays H, Goldberg R, Truitt K, et al. Addition of colesevelam HCl to patients with type 2 diabetes mellitus inadequately controlled on a metformin-based therapy improves glycemic control [abstract no. 204]. 16th Annual American Association of Clinical Endocrinologists Meeting and Clinical Congress; 2007 Apr 11–15; Seattle (WA), 18 Bays H, Goldberg R, Truitt K, et al. Addition of colesevelam HCl to patients with type 2 diabetes mellitus inadequately controlled on a metformin-based therapy improves glycemic control [abstract no. 204]. 16th Annual American Association of Clinical Endocrinologists Meeting and Clinical Congress; 2007 Apr 11–15; Seattle (WA), 18
37.
go back to reference Fonseca V, Rosenstock J, Truitt K, et al. Colesevelam HCl added to sulfonylurea-based therapy in patients with inadequately controlled type 2 diabetes mellitus improves glycemic control [abstract no. 409]. 16th Annual American Association of Clinical Endocrinologists Meeting and Clinical Congress; 2007 Apr 11–15 Seattle (WA), 10 Fonseca V, Rosenstock J, Truitt K, et al. Colesevelam HCl added to sulfonylurea-based therapy in patients with inadequately controlled type 2 diabetes mellitus improves glycemic control [abstract no. 409]. 16th Annual American Association of Clinical Endocrinologists Meeting and Clinical Congress; 2007 Apr 11–15 Seattle (WA), 10
38.
go back to reference Goldberg R, Truitt K. Colesevelam HCl improves glycemic control in type 2 diabetes mellitus subjects managed with insulin therapy [abstract no. 1581]. American Heart Association Scientific Sessions; 2006 Nov 12–15; Chicago (IL) Goldberg R, Truitt K. Colesevelam HCl improves glycemic control in type 2 diabetes mellitus subjects managed with insulin therapy [abstract no. 1581]. American Heart Association Scientific Sessions; 2006 Nov 12–15; Chicago (IL)
39.
go back to reference Kawabata Y, Ikegami H, Fujisawa T, et al. Bile-acid binding resin ameliorates glycemic control in patients with type 2 diabetes [abstract]. Diabetes 2006; 55 Suppl. 1: A120CrossRef Kawabata Y, Ikegami H, Fujisawa T, et al. Bile-acid binding resin ameliorates glycemic control in patients with type 2 diabetes [abstract]. Diabetes 2006; 55 Suppl. 1: A120CrossRef
40.
go back to reference Hashim SA, Bergen SS Jr, Van Itallie TB. Experimental steatorrhea induced in man by bile acid sequestrant. Proc Soc Exp Biol Med 1961 Jan; 106: 173–5PubMed Hashim SA, Bergen SS Jr, Van Itallie TB. Experimental steatorrhea induced in man by bile acid sequestrant. Proc Soc Exp Biol Med 1961 Jan; 106: 173–5PubMed
41.
go back to reference Thomson AB, Keelan M. Feeding rats diets containing chenoor ursodeoxycholic acid or cholestyramine modifies intestinal uptake of glucose and lipids. Digestion 1987; 38(3): 160–70PubMedCrossRef Thomson AB, Keelan M. Feeding rats diets containing chenoor ursodeoxycholic acid or cholestyramine modifies intestinal uptake of glucose and lipids. Digestion 1987; 38(3): 160–70PubMedCrossRef
42.
go back to reference Cariou B, Duran-Sandoval D, Kuipers F, et al. Farnesoid X receptor: a new player in glucose metabolism? Endocrinology 2005 Mar; 146(3): 981–3PubMedCrossRef Cariou B, Duran-Sandoval D, Kuipers F, et al. Farnesoid X receptor: a new player in glucose metabolism? Endocrinology 2005 Mar; 146(3): 981–3PubMedCrossRef
43.
go back to reference De Fabiani E, Mitro N, Gilardi F, et al. Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem 2003 Oct 3; 278(40): 39124–32PubMedCrossRef De Fabiani E, Mitro N, Gilardi F, et al. Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted-to-fed cycle. J Biol Chem 2003 Oct 3; 278(40): 39124–32PubMedCrossRef
44.
go back to reference Duran-Sandoval D, Cariou B, Fruchart JC, et al. Potential regulatory role of the farnesoid X receptor in the metabolic syndrome. Biochimie 2005 Jan; 87(1): 93–8PubMedCrossRef Duran-Sandoval D, Cariou B, Fruchart JC, et al. Potential regulatory role of the farnesoid X receptor in the metabolic syndrome. Biochimie 2005 Jan; 87(1): 93–8PubMedCrossRef
45.
go back to reference Duran-Sandoval D, Mautino G, Martin G, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 2004 Apr; 53(4): 890–8PubMedCrossRef Duran-Sandoval D, Mautino G, Martin G, et al. Glucose regulates the expression of the farnesoid X receptor in liver. Diabetes 2004 Apr; 53(4): 890–8PubMedCrossRef
46.
go back to reference Stayrook KR, Bramlett KS, Savkur RS, et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 2005 Mar; 146(3): 984–91PubMedCrossRef Stayrook KR, Bramlett KS, Savkur RS, et al. Regulation of carbohydrate metabolism by the farnesoid X receptor. Endocrinology 2005 Mar; 146(3): 984–91PubMedCrossRef
47.
go back to reference Yamagata K, Daitoku H, Shimamoto Y, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxol. J Biol Chem 2004 May 28; 279(22): 23158–65PubMedCrossRef Yamagata K, Daitoku H, Shimamoto Y, et al. Bile acids regulate gluconeogenic gene expression via small heterodimer partner-mediated repression of hepatocyte nuclear factor 4 and Foxol. J Biol Chem 2004 May 28; 279(22): 23158–65PubMedCrossRef
48.
go back to reference Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 2006 Jan 24; 103(4): 1006–11PubMedCrossRef Zhang Y, Lee FY, Barrera G, et al. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc Natl Acad Sci U S A 2006 Jan 24; 103(4): 1006–11PubMedCrossRef
49.
go back to reference Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science 1999 May 21; 284(5418): 1362–5PubMedCrossRef Makishima M, Okamoto AY, Repa JJ, et al. Identification of a nuclear receptor for bile acids. Science 1999 May 21; 284(5418): 1362–5PubMedCrossRef
50.
go back to reference Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999 May 21; 284(5418): 1365–8PubMedCrossRef Parks DJ, Blanchard SG, Bledsoe RK, et al. Bile acids: natural ligands for an orphan nuclear receptor. Science 1999 May 21; 284(5418): 1365–8PubMedCrossRef
51.
go back to reference Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999 May; 3(5): 543–53PubMedCrossRef Wang H, Chen J, Hollister K, et al. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 1999 May; 3(5): 543–53PubMedCrossRef
52.
go back to reference Forman BM, Goode E, Chen J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995 Jun 2; 81(5): 687–93PubMedCrossRef Forman BM, Goode E, Chen J, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995 Jun 2; 81(5): 687–93PubMedCrossRef
53.
go back to reference Kok T, Hulzebos CV, Wolters H, et al. Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem 2003 Oct 24; 278(43): 41930–7PubMedCrossRef Kok T, Hulzebos CV, Wolters H, et al. Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem 2003 Oct 24; 278(43): 41930–7PubMedCrossRef
54.
go back to reference Cariou B, van Harmelen K, Duran-Sandoval D, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 2006 Apr 21; 281(16): 11039–49PubMedCrossRef Cariou B, van Harmelen K, Duran-Sandoval D, et al. The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice. J Biol Chem 2006 Apr 21; 281(16): 11039–49PubMedCrossRef
55.
go back to reference Zhang M, Chiang JY. Transcriptional regulation of the human sterol 12alpha-hydroxylase gene (CYP8B1): roles of hepatocyte nuclear factor 4alpha in mediating bile acid repression. J Biol Chem 2001 Nov 9; 276(45): 41690–9PubMedCrossRef Zhang M, Chiang JY. Transcriptional regulation of the human sterol 12alpha-hydroxylase gene (CYP8B1): roles of hepatocyte nuclear factor 4alpha in mediating bile acid repression. J Biol Chem 2001 Nov 9; 276(45): 41690–9PubMedCrossRef
56.
go back to reference Inoue Y, Yu AM, Yim SH, et al. Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4alpha. J Lipid Res 2006 Jan; 47(1): 215–27PubMedCrossRef Inoue Y, Yu AM, Yim SH, et al. Regulation of bile acid biosynthesis by hepatocyte nuclear factor 4alpha. J Lipid Res 2006 Jan; 47(1): 215–27PubMedCrossRef
57.
go back to reference Cariou B, van Harmelen K, Duran-Sandoval D, et al. Transient impairment of the adaptive response to fasting in FXR-deficient mice. FEBS Lett 2005 Aug 1; 579(19): 4076–80PubMedCrossRef Cariou B, van Harmelen K, Duran-Sandoval D, et al. Transient impairment of the adaptive response to fasting in FXR-deficient mice. FEBS Lett 2005 Aug 1; 579(19): 4076–80PubMedCrossRef
58.
go back to reference Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 2006 Apr; 116(4): 1102–9PubMedCrossRef Ma K, Saha PK, Chan L, et al. Farnesoid X receptor is essential for normal glucose homeostasis. J Clin Invest 2006 Apr; 116(4): 1102–9PubMedCrossRef
59.
go back to reference Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000 Aug 12; 321(7258): 405–12PubMedCrossRef Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000 Aug 12; 321(7258): 405–12PubMedCrossRef
60.
go back to reference Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003 Jan 30; 348(5): 383–93PubMedCrossRef Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003 Jan 30; 348(5): 383–93PubMedCrossRef
61.
go back to reference Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA 2004 Jan 21; 291(3): 335–42PubMedCrossRef Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA 2004 Jan 21; 291(3): 335–42PubMedCrossRef
Metadata
Title
Bile Acid Sequestrants and the Treatment of Type 2 Diabetes Mellitus
Authors
Dr Bart Staels
Folkert Kuipers
Publication date
01-07-2007
Publisher
Springer International Publishing
Published in
Drugs / Issue 10/2007
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.2165/00003495-200767100-00001

Other articles of this Issue 10/2007

Drugs 10/2007 Go to the issue