Skip to main content
Top
Published in: Drugs 19/2004

01-10-2004 | Review Article

Role of Fibric Acid Derivatives in the Management of Risk Factors for Coronary Heart Disease

Authors: Dr Jean-Pierre Després, Isabelle Lemieux, Sander J. Robins

Published in: Drugs | Issue 19/2004

Login to get access

Abstract

Although elevated low-density lipoprotein (LDL)-cholesterol is a well established coronary heart disease (CHD) risk factor, the ability to adequately discriminate high-risk individuals by this risk factor alone is limited and other metabolic risk variables are known to modulate CHD risk. For instance, it has been reported that the cluster of metabolic disturbances observed among individuals with abdominal obesity, the so-called metabolic syndrome, is associated with a substantially increased risk of CHD. Among the features of the dyslipidaemic profile observed in these individuals, the high triglyceride-low high-density lipoprotein (HDL)-cholesterol dyslipidaemia is predictive of an elevated risk of CHD. Fibric acid derivatives (fibrates) have been used in clinical practice for more than 2 decades as a class of agents known to decrease triglyceride levels while substantially increasing HDL-cholesterol levels, with a limited but significant additional lowering effect on LDL-cholesterol levels. Although the clinical benefits of HMG-CoA reductase inhibitors (statins) have been well documented by primary and secondary prevention trials that justify their widespread use, it was not until the publication of the VA-HIT (Veterans Affairs High-Density Lipoprotein Intervention Trial) that the relevance of identifying HDL-cholesterol as a therapeutic target to reduce the risk of recurrent CHD events was finally confirmed.
The clinical benefits of fibrate therapy are especially important in the subpopulation of patients with low HDL-cholesterol levels with the metabolic syndrome, particularly in patients with type 2 diabetes mellitus or in abdominally obese, hyperinsulinaemic patients. Evidence also suggests that there is a ‘fibrate effect’ that mediates the reduction in CHD risk beyond the favourable impact of these agents on HDL-cholesterol levels. This last notion is consistent with the pleiotropic effects of fibrates which are known to be related to their mechanisms of action.
Through peroxisome proliferator-activated α-receptors, fibrates have a significant impact on the synthesis of several apolipoproteins (apo) and enzymes of lipoprotein metabolism as well as on the expression of several genes involved in fibrinolysis and inflammation. Fibrate therapy has been reported to decrease apo CIII levels (a powerful inhibitor of lipoprotein lipase) and increase apo AI levels, as well as to increase lipoprotein lipase activity. Such changes contribute to improve the catabolism of triglyceride-rich lipoproteins, leading to a substantial increase in HDL-cholesterol levels accompanied by a shift in the size and density of LDL particles (from small, dense LDL particles to larger, more buoyant cholesteryl ester-rich LDL).
It is proposed that some of these pleiotropic effects could explain some of the clinical benefits of fibrate therapy beyond its HDL-raising properties, particularly among patients with abdominal obesity, hyperinsulinaemia or type 2 diabetes with both low HDL- and low/normal LDL-cholesterol levels.
Literature
1.
go back to reference Castelli WP. Epidemiology of coronary heart disease: the Framingham Study. Am J Med 1984; 76: 4–12PubMedCrossRef Castelli WP. Epidemiology of coronary heart disease: the Framingham Study. Am J Med 1984; 76: 4–12PubMedCrossRef
2.
go back to reference Stamler J, Wentworth D, Neaton JD. Is the relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 1986; 256: 2823–8PubMedCrossRef Stamler J, Wentworth D, Neaton JD. Is the relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 1986; 256: 2823–8PubMedCrossRef
3.
go back to reference Sharrett AR, Ballantyne CM, Coady SA, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 2001; 104(10): 1108–13PubMedCrossRef Sharrett AR, Ballantyne CM, Coady SA, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 2001; 104(10): 1108–13PubMedCrossRef
4.
go back to reference Lamarche B, Després JP, Moorjani M, et al. Prevalence of dyslipidemic phenotypes in ischemic heart disease (prospective results from the Quebéc Cardiovascular Study). Am J Cardiol 1995; 75: 1189–95PubMedCrossRef Lamarche B, Després JP, Moorjani M, et al. Prevalence of dyslipidemic phenotypes in ischemic heart disease (prospective results from the Quebéc Cardiovascular Study). Am J Cardiol 1995; 75: 1189–95PubMedCrossRef
5.
go back to reference LaRosa JC, He J, Vupputuri S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 1999; 282(24): 2340–6PubMedCrossRef LaRosa JC, He J, Vupputuri S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 1999; 282(24): 2340–6PubMedCrossRef
6.
go back to reference Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia: West of Scotland Coronary Prevention Study Group. N Engl J Med 1995; 333(20): 1301–7PubMedCrossRef Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia: West of Scotland Coronary Prevention Study Group. N Engl J Med 1995; 333(20): 1301–7PubMedCrossRef
7.
go back to reference Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998; 279(20): 1615–22 Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998; 279(20): 1615–22
8.
go back to reference Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9 Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9
9.
go back to reference Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001–9PubMedCrossRef Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001–9PubMedCrossRef
10.
go back to reference Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360(9326): 7–22CrossRef Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360(9326): 7–22CrossRef
11.
go back to reference Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels: the Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med 1998; 339(19): 1349–57CrossRef Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels: the Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med 1998; 339(19): 1349–57CrossRef
12.
go back to reference Genest JJ, McNamara JR, Ordovas JM, et al. Lipoprotein cholesterol, apolipoprotein A-I and B and lipoprotein (a) abnormality in men with premature coronary heart disease. J Am Coll Cardiol 1992; 19: 792–802PubMedCrossRef Genest JJ, McNamara JR, Ordovas JM, et al. Lipoprotein cholesterol, apolipoprotein A-I and B and lipoprotein (a) abnormality in men with premature coronary heart disease. J Am Coll Cardiol 1992; 19: 792–802PubMedCrossRef
13.
go back to reference Lee WL, Cheung AM, Cape D, et al. Impact of diabetes on coronary artery disease in women and men. Diabetes Care 2000; 23(7): 962–8PubMedCrossRef Lee WL, Cheung AM, Cape D, et al. Impact of diabetes on coronary artery disease in women and men. Diabetes Care 2000; 23(7): 962–8PubMedCrossRef
14.
go back to reference Kaukua J, Turpeinen A, Uusitupa M, et al. Clustering of cardiovascular risk factors in type 2 diabetes mellitus: prognostic significance and tracking. Diabetes Obes Metab 2001; 3(1): 17–23PubMedCrossRef Kaukua J, Turpeinen A, Uusitupa M, et al. Clustering of cardiovascular risk factors in type 2 diabetes mellitus: prognostic significance and tracking. Diabetes Obes Metab 2001; 3(1): 17–23PubMedCrossRef
15.
go back to reference Friesinger GC, Gavin JA. Diabetes and the cardiologists: a call to action. J Am Coll Cardiol 2000; 35(5): 1130–3PubMedCrossRef Friesinger GC, Gavin JA. Diabetes and the cardiologists: a call to action. J Am Coll Cardiol 2000; 35(5): 1130–3PubMedCrossRef
16.
go back to reference Expert Panel on Detection, Evaluation And Treatment of High Blood Cholesterol In Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001; 285(19): 2486–97CrossRef Expert Panel on Detection, Evaluation And Treatment of High Blood Cholesterol In Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001; 285(19): 2486–97CrossRef
17.
go back to reference Stamler J. Blood pressure and high blood pressure: aspects of risk. Hypertension 1991; 18 (3 Suppl.): I95–107PubMedCrossRef Stamler J. Blood pressure and high blood pressure: aspects of risk. Hypertension 1991; 18 (3 Suppl.): I95–107PubMedCrossRef
18.
go back to reference Shaten BJ, Kuller LH, Neaton JD. Association between baseline risk factors, cigarette smoking, and CHD mortality after 10.5 years: MRFIT Research Group. Prev Med 1991; 20(5): 655–9PubMedCrossRef Shaten BJ, Kuller LH, Neaton JD. Association between baseline risk factors, cigarette smoking, and CHD mortality after 10.5 years: MRFIT Research Group. Prev Med 1991; 20(5): 655–9PubMedCrossRef
19.
go back to reference Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18): 1837–47PubMedCrossRef Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18): 1837–47PubMedCrossRef
20.
go back to reference Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 2002; 105(3): 310–5PubMedCrossRef Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 2002; 105(3): 310–5PubMedCrossRef
21.
go back to reference Gordon T, Castelli WP, Hjortland MC, et al. High density lipoprotein as a protective factor against coronary heart disease: the Framingham Study. Am J Med 1977; 62: 707–14PubMedCrossRef Gordon T, Castelli WP, Hjortland MC, et al. High density lipoprotein as a protective factor against coronary heart disease: the Framingham Study. Am J Med 1977; 62: 707–14PubMedCrossRef
22.
go back to reference Després JP, Lemieux I, Dagenais GR, et al. HDL-cholesterol as a marker of coronary heart disease risk: the Quebec cardiovascular study. Atherosclerosis 2000; 153(2): 263–72PubMedCrossRef Després JP, Lemieux I, Dagenais GR, et al. HDL-cholesterol as a marker of coronary heart disease risk: the Quebec cardiovascular study. Atherosclerosis 2000; 153(2): 263–72PubMedCrossRef
23.
go back to reference Miller NE, Forde OH, Thelle DS, et al. The Tromso Heart Study: high-density lipoprotein as a protective factor against coronary heart disease: a prospective case-control study. Lancet 1977; I: 965–7CrossRef Miller NE, Forde OH, Thelle DS, et al. The Tromso Heart Study: high-density lipoprotein as a protective factor against coronary heart disease: a prospective case-control study. Lancet 1977; I: 965–7CrossRef
24.
go back to reference Castelli WP, Doyles JT, Gordon T. HDL-cholesterol and other lipids in coronary heart disease: the Cooperative Lipoprotein Phenotyping Study. Circulation 1977; 55: 767–72PubMedCrossRef Castelli WP, Doyles JT, Gordon T. HDL-cholesterol and other lipids in coronary heart disease: the Cooperative Lipoprotein Phenotyping Study. Circulation 1977; 55: 767–72PubMedCrossRef
25.
go back to reference Castelli WP. Cholesterol and lipids in the risk of coronary artery disease: the Framingham Heart Study. Can J Cardiol 1988; 4 Suppl. A: 5A–10APubMed Castelli WP. Cholesterol and lipids in the risk of coronary artery disease: the Framingham Heart Study. Can J Cardiol 1988; 4 Suppl. A: 5A–10APubMed
26.
go back to reference Assmann G, Schulte H. Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Am J Cardiol 1992; 70: 733–7PubMedCrossRef Assmann G, Schulte H. Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Am J Cardiol 1992; 70: 733–7PubMedCrossRef
27.
go back to reference Robins SJ, Collins D, Wittes JT, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events. VA-HIT: a randomized controlled trial. JAMA 2001; 285(12): 1585–91PubMedCrossRef Robins SJ, Collins D, Wittes JT, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events. VA-HIT: a randomized controlled trial. JAMA 2001; 285(12): 1585–91PubMedCrossRef
28.
go back to reference Brunner D, Altman S, Loebl K, et al. Serum cholesterol and triglyceride in patients suffering from ischemic heart disease and in healthy subjects. Atherosclerosis 1977; 28: 197–204PubMedCrossRef Brunner D, Altman S, Loebl K, et al. Serum cholesterol and triglyceride in patients suffering from ischemic heart disease and in healthy subjects. Atherosclerosis 1977; 28: 197–204PubMedCrossRef
29.
go back to reference Lamarche B, Després JP, Moorjani S, et al. Triglycerides and HDL-cholesterol as risk factors for ischemic heart disease: results from the Quebéc cardiovascular study. Atherosclerosis 1996; 119: 235–45PubMedCrossRef Lamarche B, Després JP, Moorjani S, et al. Triglycerides and HDL-cholesterol as risk factors for ischemic heart disease: results from the Quebéc cardiovascular study. Atherosclerosis 1996; 119: 235–45PubMedCrossRef
30.
go back to reference Tverdal A, Foss OP, Leren P, et al. Serum triglycerides as an independent risk factor for death from coronary heart disease in middle-aged Norwegian men. Am J Epidemiol 1989; 129: 458–65PubMed Tverdal A, Foss OP, Leren P, et al. Serum triglycerides as an independent risk factor for death from coronary heart disease in middle-aged Norwegian men. Am J Epidemiol 1989; 129: 458–65PubMed
31.
go back to reference Austin MA. Plasma triglyceride and coronary heart disease. Arterioscler Thromb Vasc Biol 1991; 11: 2–14CrossRef Austin MA. Plasma triglyceride and coronary heart disease. Arterioscler Thromb Vasc Biol 1991; 11: 2–14CrossRef
32.
go back to reference Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996; 3(2): 213–9PubMedCrossRef Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996; 3(2): 213–9PubMedCrossRef
33.
go back to reference Gotto Jr AM. Triglyceride as a risk factor for coronary artery disease. Am J Cardiol 1998; 82(9A): 22Q–5QPubMedCrossRef Gotto Jr AM. Triglyceride as a risk factor for coronary artery disease. Am J Cardiol 1998; 82(9A): 22Q–5QPubMedCrossRef
34.
go back to reference Manninen V, Tenkanen L, Koshinen P, et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study: implications for treatment. Circulation 1992; 85: 37–45PubMedCrossRef Manninen V, Tenkanen L, Koshinen P, et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study: implications for treatment. Circulation 1992; 85: 37–45PubMedCrossRef
35.
go back to reference Austin MA. Plasma triglyceride as risk factor for coronary heart disease: the epidemiologic evidence and beyond. Am J Epidemiol 1989; 129: 249–59PubMed Austin MA. Plasma triglyceride as risk factor for coronary heart disease: the epidemiologic evidence and beyond. Am J Epidemiol 1989; 129: 249–59PubMed
36.
go back to reference Lemieux I, Lamarche B, Couillard C, et al. Total cholesterol/ HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: the Quebec Cardiovascular Study. Arch Intern Med 2001; 161: 2685–92PubMedCrossRef Lemieux I, Lamarche B, Couillard C, et al. Total cholesterol/ HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: the Quebec Cardiovascular Study. Arch Intern Med 2001; 161: 2685–92PubMedCrossRef
37.
go back to reference Kinosian B, Glick H, Garland G. Cholesterol and coronary heart disease: predicting risks by levels and ratios. Ann Intern Med 1994; 121(9): 641–7PubMed Kinosian B, Glick H, Garland G. Cholesterol and coronary heart disease: predicting risks by levels and ratios. Ann Intern Med 1994; 121(9): 641–7PubMed
38.
go back to reference Lamarche B, Moorjani S, Lupien PJ, et al. Apolipoprotein A-I and B levels and the risk of ischemic heart disease during a five-year follow-up of men in the Quebéc cardiovascular study. Circulation 1996; 94: 273–8PubMedCrossRef Lamarche B, Moorjani S, Lupien PJ, et al. Apolipoprotein A-I and B levels and the risk of ischemic heart disease during a five-year follow-up of men in the Quebéc cardiovascular study. Circulation 1996; 94: 273–8PubMedCrossRef
39.
go back to reference Jeppesen J, Hein HO, Suadicani P, et al. Relation of high TG-low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease: an 8-year follow-up in the Copenhagen Male Study. Arterioscler Thromb Vasc Biol 1997; 17(6): 1114–20PubMedCrossRef Jeppesen J, Hein HO, Suadicani P, et al. Relation of high TG-low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease: an 8-year follow-up in the Copenhagen Male Study. Arterioscler Thromb Vasc Biol 1997; 17(6): 1114–20PubMedCrossRef
40.
go back to reference Kinosian B, Glick H, Preiss L, et al. Cholesterol and coronary heart disease: predicting risks in men by changes in levels and ratios. J Investig Med 1995; 43(5): 443–50PubMed Kinosian B, Glick H, Preiss L, et al. Cholesterol and coronary heart disease: predicting risks in men by changes in levels and ratios. J Investig Med 1995; 43(5): 443–50PubMed
41.
go back to reference Rubins HB, Robins SJ, Collins D, et al. Distribution of lipids in 8,500 men with coronary artery disease: Department of Veterans Affairs HDL Intervention Trial Study Group. Am J Cardiol 1995; 75(17): 1196–201PubMedCrossRef Rubins HB, Robins SJ, Collins D, et al. Distribution of lipids in 8,500 men with coronary artery disease: Department of Veterans Affairs HDL Intervention Trial Study Group. Am J Cardiol 1995; 75(17): 1196–201PubMedCrossRef
42.
go back to reference Bierman EL. Atherogenesis in diabetes. Arterioscler Thromb Vasc Biol 1992; 12: 647–56CrossRef Bierman EL. Atherogenesis in diabetes. Arterioscler Thromb Vasc Biol 1992; 12: 647–56CrossRef
43.
go back to reference Howard BV. Lipoprotein metabolism in diabetes mellitus. J Lipid Res 1987; 28(6): 613–28PubMed Howard BV. Lipoprotein metabolism in diabetes mellitus. J Lipid Res 1987; 28(6): 613–28PubMed
44.
go back to reference Laakso M, Sarlund H, Mykkanen L. Insulin resistance is associated with lipid and lipoprotein abnormalities in subjects with varying degrees of glucose tolerance. Arteriosclerosis 1990; 10(2): 223–31PubMedCrossRef Laakso M, Sarlund H, Mykkanen L. Insulin resistance is associated with lipid and lipoprotein abnormalities in subjects with varying degrees of glucose tolerance. Arteriosclerosis 1990; 10(2): 223–31PubMedCrossRef
45.
go back to reference Pouliot MC, Després JP, Nadeau A, et al. Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes 1992; 41(7): 826–34 Pouliot MC, Després JP, Nadeau A, et al. Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes 1992; 41(7): 826–34
46.
go back to reference Després JP, Moorjani S, Ferland M, et al. Adipose tissue distribution and plasma lipoprotein levels in obese women: importance of intra-abdominal fat. Arteriosclerosis 1989; 9(2): 203–10PubMedCrossRef Després JP, Moorjani S, Ferland M, et al. Adipose tissue distribution and plasma lipoprotein levels in obese women: importance of intra-abdominal fat. Arteriosclerosis 1989; 9(2): 203–10PubMedCrossRef
47.
go back to reference Després JP, Lemieux I, Prud’homme D. Treatment of obesity: need to focus on high risk abdominally obese patients. BMJ 2001; 322(7288): 716–20PubMedCrossRef Després JP, Lemieux I, Prud’homme D. Treatment of obesity: need to focus on high risk abdominally obese patients. BMJ 2001; 322(7288): 716–20PubMedCrossRef
48.
go back to reference Després JP, Moorjani S, Lupien PJ, et al. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990; 10(4): 497–511PubMedCrossRef Després JP, Moorjani S, Lupien PJ, et al. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990; 10(4): 497–511PubMedCrossRef
49.
go back to reference Grundy SM. Hypertriglyceridemia, insulin resistance, and the metabolic syndrome. Am J Cardiol 1999; 83(9B): 25F–9FPubMedCrossRef Grundy SM. Hypertriglyceridemia, insulin resistance, and the metabolic syndrome. Am J Cardiol 1999; 83(9B): 25F–9FPubMedCrossRef
50.
go back to reference Després JP. Abdominal obesity as important component of insulin-resistance syndrome. Nutrition 1993; 9(5): 452–9PubMed Després JP. Abdominal obesity as important component of insulin-resistance syndrome. Nutrition 1993; 9(5): 452–9PubMed
52.
go back to reference Lamarche B, Tchernof A, Mauriège P, et al. Fasting insulin and apolipoprotein B levels and low-density lipoprotein particle size as risk factors for ischemic heart disease. JAMA 1998; 279(24): 1955–61PubMedCrossRef Lamarche B, Tchernof A, Mauriège P, et al. Fasting insulin and apolipoprotein B levels and low-density lipoprotein particle size as risk factors for ischemic heart disease. JAMA 1998; 279(24): 1955–61PubMedCrossRef
53.
go back to reference Lemieux I, Pascot A, Couillard C, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia, hyperapolipoprotein B, small, dense LDL) in men? Circulation 2000; 102: 179–84PubMedCrossRef Lemieux I, Pascot A, Couillard C, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia, hyperapolipoprotein B, small, dense LDL) in men? Circulation 2000; 102: 179–84PubMedCrossRef
54.
go back to reference Gotto Jr AM, Whitney E, Stein EA, et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation 2000; 101(5): 477–84PubMedCrossRef Gotto Jr AM, Whitney E, Stein EA, et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation 2000; 101(5): 477–84PubMedCrossRef
55.
go back to reference Walldius G, Jungner I, Holme I, et al. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 2001; 358(9298): 2026–33PubMedCrossRef Walldius G, Jungner I, Holme I, et al. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 2001; 358(9298): 2026–33PubMedCrossRef
56.
go back to reference Campos H, Genest JJ, Blijlevens E, et al. Low density lipoprotein particle size and coronary artery disease. Arterioscler Thromb Vasc Biol 1992; 12: 187–95CrossRef Campos H, Genest JJ, Blijlevens E, et al. Low density lipoprotein particle size and coronary artery disease. Arterioscler Thromb Vasc Biol 1992; 12: 187–95CrossRef
57.
go back to reference Austin MA, Breslow JL, Hennekens CH, et al. Low density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988; 260: 1917–21PubMedCrossRef Austin MA, Breslow JL, Hennekens CH, et al. Low density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988; 260: 1917–21PubMedCrossRef
58.
go back to reference Coresh J, Kwiterovich Jr PO, Smith HH, et al. Association of plasma triglyceride concentration and LDL particle diameter, density, and chemical composition with premature coronary artery disease in men and women. J Lipid Res 1993; 34(10): 1687–97PubMed Coresh J, Kwiterovich Jr PO, Smith HH, et al. Association of plasma triglyceride concentration and LDL particle diameter, density, and chemical composition with premature coronary artery disease in men and women. J Lipid Res 1993; 34(10): 1687–97PubMed
59.
go back to reference Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 1996; 276: 875–81PubMedCrossRef Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 1996; 276: 875–81PubMedCrossRef
60.
go back to reference Stampfer MJ, Krauss RM, Ma J, et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA 1996; 276: 882–8PubMedCrossRef Stampfer MJ, Krauss RM, Ma J, et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA 1996; 276: 882–8PubMedCrossRef
61.
go back to reference Lamarche B, Tchernof A, Moorjani S, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men: prospective results from the Quebéc Cardiovascular Study. Circulation 1997; 95: 69–75PubMedCrossRef Lamarche B, Tchernof A, Moorjani S, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men: prospective results from the Quebéc Cardiovascular Study. Circulation 1997; 95: 69–75PubMedCrossRef
62.
go back to reference Tchernof A, Lamarche B, Prud’homme D, et al. The dense LDL phenotype: association with plasma lipoprotein levels, visceral obesity, and hyperinsulinemia in men. Diabetes Care 1996; 19(6): 629–37PubMedCrossRef Tchernof A, Lamarche B, Prud’homme D, et al. The dense LDL phenotype: association with plasma lipoprotein levels, visceral obesity, and hyperinsulinemia in men. Diabetes Care 1996; 19(6): 629–37PubMedCrossRef
63.
go back to reference Williams PT, Haskell WL, Vranizan KM, et al. The associations of high-density lipoprotein subclasses with insulin and glucose levels, physical activity, resting heart rate, and regional adiposity in men with coronary artery disease: the Stanford Coronary Risk Intervention Project baseline survey. Metabolism 1995; 44(1): 106–14PubMedCrossRef Williams PT, Haskell WL, Vranizan KM, et al. The associations of high-density lipoprotein subclasses with insulin and glucose levels, physical activity, resting heart rate, and regional adiposity in men with coronary artery disease: the Stanford Coronary Risk Intervention Project baseline survey. Metabolism 1995; 44(1): 106–14PubMedCrossRef
64.
go back to reference Syvanne M, Ahola M, Lahdenpera S, et al. High density lipoprotein subfractions in non-insulin-dependent diabetes mellitus and coronary artery disease. J Lipid Res 1995; 36(3): 573–82PubMed Syvanne M, Ahola M, Lahdenpera S, et al. High density lipoprotein subfractions in non-insulin-dependent diabetes mellitus and coronary artery disease. J Lipid Res 1995; 36(3): 573–82PubMed
65.
go back to reference Lamarche B, Moorjani S, Cantin B, et al. Associations of HDL2 and HDL3 subfractions with ischemic heart disease in men: prospective results from the Quebec Cardiovascular Study. Arterioscler Thromb Vasc Biol 1997; 17(6): 1098–105PubMedCrossRef Lamarche B, Moorjani S, Cantin B, et al. Associations of HDL2 and HDL3 subfractions with ischemic heart disease in men: prospective results from the Quebec Cardiovascular Study. Arterioscler Thromb Vasc Biol 1997; 17(6): 1098–105PubMedCrossRef
66.
go back to reference Pascot A, Lemieux I, Prud’homme D, et al. Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity. J Lipid Res 2001; 42(12): 2007–14PubMed Pascot A, Lemieux I, Prud’homme D, et al. Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity. J Lipid Res 2001; 42(12): 2007–14PubMed
67.
go back to reference Lamarche B, Uffelman KD, Carpentier A, et al. Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men. J Clin Invest 1999; 103(8): 1191–9PubMedCrossRef Lamarche B, Uffelman KD, Carpentier A, et al. Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men. J Clin Invest 1999; 103(8): 1191–9PubMedCrossRef
68.
go back to reference Yudkin JS, Stehouwer CD, Emeis JJ, et al. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999; 19(4): 972–8PubMedCrossRef Yudkin JS, Stehouwer CD, Emeis JJ, et al. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999; 19(4): 972–8PubMedCrossRef
69.
go back to reference Juhan-Vague I, Alessi MC. PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb Haemost 1997; 78(1): 656–60PubMed Juhan-Vague I, Alessi MC. PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb Haemost 1997; 78(1): 656–60PubMed
70.
go back to reference Juhan-Vague I, Morange P, Renucci JF, et al. Fibrinogen, obesity and insulin resistance. Blood Coagul Fibrinolysis 1999; 10 Suppl. 1: S25–8PubMedCrossRef Juhan-Vague I, Morange P, Renucci JF, et al. Fibrinogen, obesity and insulin resistance. Blood Coagul Fibrinolysis 1999; 10 Suppl. 1: S25–8PubMedCrossRef
71.
go back to reference Garaulet M, Perex-Llamas F, Fuente T, et al. Anthropometric, computed tomography and fat cell data in an obese population: relationship with insulin, leptin, tumor necrosis factor-alpha, sex hormone-binding globulin and sex hormones. Eur J Endocrinol 2000; 143(5): 657–66PubMedCrossRef Garaulet M, Perex-Llamas F, Fuente T, et al. Anthropometric, computed tomography and fat cell data in an obese population: relationship with insulin, leptin, tumor necrosis factor-alpha, sex hormone-binding globulin and sex hormones. Eur J Endocrinol 2000; 143(5): 657–66PubMedCrossRef
72.
go back to reference Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105(9): 1135–43PubMedCrossRef Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105(9): 1135–43PubMedCrossRef
73.
go back to reference Lemieux I, Pascot A, Prud’homme D, et al. Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol 2001; 21(6): 961–7PubMedCrossRef Lemieux I, Pascot A, Prud’homme D, et al. Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol 2001; 21(6): 961–7PubMedCrossRef
74.
go back to reference Brook RD, Bard RL, Rubenfire M, et al. Usefulness of visceral obesity (waist/hip ratio) in predicting vascular endothelial function in healthy overweight adults. Am J Cardiol 2001; 88: 1264–9PubMedCrossRef Brook RD, Bard RL, Rubenfire M, et al. Usefulness of visceral obesity (waist/hip ratio) in predicting vascular endothelial function in healthy overweight adults. Am J Cardiol 2001; 88: 1264–9PubMedCrossRef
75.
go back to reference Fruchart JC, Brewer Jr HB, Leitersdorf E. Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease: Fibrate Consensus Group. Am J Cardiol 1998; 81(7): 912–7PubMedCrossRef Fruchart JC, Brewer Jr HB, Leitersdorf E. Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease: Fibrate Consensus Group. Am J Cardiol 1998; 81(7): 912–7PubMedCrossRef
76.
go back to reference Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998; 98: 2088–93PubMedCrossRef Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998; 98: 2088–93PubMedCrossRef
77.
go back to reference Staels B, Vu-Dac N, Kosykh VA, et al. Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase: a potential mechanism for the hypolipidemic action of fibrates. J Clin Invest 1995; 95(2): 705–12PubMedCrossRef Staels B, Vu-Dac N, Kosykh VA, et al. Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase: a potential mechanism for the hypolipidemic action of fibrates. J Clin Invest 1995; 95(2): 705–12PubMedCrossRef
78.
go back to reference Saku K, Gartside PS, Hynd BH, et al. Mechanisms of action of gemfibrozil on lipoprotein metabolism. J Clin Invest 1985; 75: 1702–12PubMedCrossRef Saku K, Gartside PS, Hynd BH, et al. Mechanisms of action of gemfibrozil on lipoprotein metabolism. J Clin Invest 1985; 75: 1702–12PubMedCrossRef
79.
go back to reference Capell WH, De Souza CA, Weil KM, et al. Triglyceride lowering with fenofibrate improves endothelial vasodilator function in patient with hypertriglyceridemia. Circulation 2001; 102 Suppl. II: 240 Capell WH, De Souza CA, Weil KM, et al. Triglyceride lowering with fenofibrate improves endothelial vasodilator function in patient with hypertriglyceridemia. Circulation 2001; 102 Suppl. II: 240
80.
go back to reference Gnasso A, LehnerB, Haberbosch W, et al. Effect of gemfibrozil on lipids, apoproteins, and postheparin lipolytic activities in normolipidemic subjects. Metabolism 1986; 35(5): 387–93PubMedCrossRef Gnasso A, LehnerB, Haberbosch W, et al. Effect of gemfibrozil on lipids, apoproteins, and postheparin lipolytic activities in normolipidemic subjects. Metabolism 1986; 35(5): 387–93PubMedCrossRef
81.
go back to reference Zhu D, Ganji SH, Kamanna VS, et al. Effect of gemfibrozil on apolipoprotein B secretion and diacylglycerol acyltransferase activity in human hepatoblastoma (HepG2) cells. Atherosclerosis 2002; 164(2): 221–8PubMedCrossRef Zhu D, Ganji SH, Kamanna VS, et al. Effect of gemfibrozil on apolipoprotein B secretion and diacylglycerol acyltransferase activity in human hepatoblastoma (HepG2) cells. Atherosclerosis 2002; 164(2): 221–8PubMedCrossRef
82.
go back to reference Roglans N, Peris C, Verd JC, et al. Increase in hepatic expression of SREBP-2 by gemfibrozil administration to rats. Biochem Pharmacol 2001; 62(6): 803–9PubMedCrossRef Roglans N, Peris C, Verd JC, et al. Increase in hepatic expression of SREBP-2 by gemfibrozil administration to rats. Biochem Pharmacol 2001; 62(6): 803–9PubMedCrossRef
83.
go back to reference Berthou L, Staels B, Saldicco I, et al. Opposite in vitro and in vivo regulation of hepatic apolipoprotein A-I gene expression by retinoic acid: absence of effects on apolipoprotein A-II gene expression. Arterioscler Thromb 1994; 14(10): 1657–64PubMedCrossRef Berthou L, Staels B, Saldicco I, et al. Opposite in vitro and in vivo regulation of hepatic apolipoprotein A-I gene expression by retinoic acid: absence of effects on apolipoprotein A-II gene expression. Arterioscler Thromb 1994; 14(10): 1657–64PubMedCrossRef
84.
go back to reference Vu-Dac N, Schoonjans K, Kosykh V, et al. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest 1995; 96(2): 741–50PubMedCrossRef Vu-Dac N, Schoonjans K, Kosykh V, et al. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest 1995; 96(2): 741–50PubMedCrossRef
85.
go back to reference Nigon F, Lesnik P, Rouis M, et al. Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor. J Lipid Res 1991; 32(11): 1741–53PubMed Nigon F, Lesnik P, Rouis M, et al. Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor. J Lipid Res 1991; 32(11): 1741–53PubMed
86.
go back to reference Caslake MJ, Packard CJ, Gaw A, et al. Fenofibrate and LDL metabolic heterogeneity in hypercholesterolemia. Arterioscler Thromb 1993; 13(5): 702–11PubMedCrossRef Caslake MJ, Packard CJ, Gaw A, et al. Fenofibrate and LDL metabolic heterogeneity in hypercholesterolemia. Arterioscler Thromb 1993; 13(5): 702–11PubMedCrossRef
87.
go back to reference Lemieux I, Salomon H, Després JP. Contribution of apo CIII reduction to the greater effect of 12-week micronized fenofibrate than atorvastatin therapy on triglyceride levels and LDL size in dyslipidemic patients. Ann Med 2003; 35(6): 442–8PubMedCrossRef Lemieux I, Salomon H, Després JP. Contribution of apo CIII reduction to the greater effect of 12-week micronized fenofibrate than atorvastatin therapy on triglyceride levels and LDL size in dyslipidemic patients. Ann Med 2003; 35(6): 442–8PubMedCrossRef
88.
go back to reference Fruchart JC, Duriez P, Staels B. Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 1999; 10(3): 245–57PubMedCrossRef Fruchart JC, Duriez P, Staels B. Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 1999; 10(3): 245–57PubMedCrossRef
89.
go back to reference Fruchart JC, Staels B, Duriez P. The role of fibric acids in atherosclerosis. Curr Atheroscler Rep 2001; 3(1): 83–92PubMedCrossRef Fruchart JC, Staels B, Duriez P. The role of fibric acids in atherosclerosis. Curr Atheroscler Rep 2001; 3(1): 83–92PubMedCrossRef
90.
go back to reference Sueyoshi S, Yamada T, Niihasi M, et al. Expression of peroxisome proliferator-activated receptor subtypes in human atherosclerosis. Ann N Y Acad Sci 2001; 947: 429–32PubMedCrossRef Sueyoshi S, Yamada T, Niihasi M, et al. Expression of peroxisome proliferator-activated receptor subtypes in human atherosclerosis. Ann N Y Acad Sci 2001; 947: 429–32PubMedCrossRef
91.
go back to reference Frick MH, Syvanne M, Nieminen MS, et al. Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol: Lopid Coronary Angiography Trial (LOCAT) Study Group. Circulation 1997; 96(7): 2137–43PubMedCrossRef Frick MH, Syvanne M, Nieminen MS, et al. Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol: Lopid Coronary Angiography Trial (LOCAT) Study Group. Circulation 1997; 96(7): 2137–43PubMedCrossRef
92.
go back to reference Ericsson CG, Hamsten A, Nilsson J, et al. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996; 347(9005): 849–53PubMedCrossRef Ericsson CG, Hamsten A, Nilsson J, et al. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996; 347(9005): 849–53PubMedCrossRef
93.
go back to reference Bunte T, Hahmann HW, Hellwig N, et al. Effects of fenofibrate on angiographically examined coronary atherosclerosis and left ventricular function in hypercholesterolemic patients. Atherosclerosis 1993; 98(2): 127–38PubMedCrossRef Bunte T, Hahmann HW, Hellwig N, et al. Effects of fenofibrate on angiographically examined coronary atherosclerosis and left ventricular function in hypercholesterolemic patients. Atherosclerosis 1993; 98(2): 127–38PubMedCrossRef
94.
go back to reference Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 2001; 357 (9260): 905–10 Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 2001; 357 (9260): 905–10
95.
go back to reference Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999; 85(5): 394–402PubMedCrossRef Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999; 85(5): 394–402PubMedCrossRef
96.
go back to reference Inoue I, Shino K, Noji S, et al. Expression of peroxisome proliferator-activated receptor alpha (PPAR alpha) in primary cultures of human vascular endothelial cells. Biochem Biophys Res Commun 1998; 246(2): 370–4PubMedCrossRef Inoue I, Shino K, Noji S, et al. Expression of peroxisome proliferator-activated receptor alpha (PPAR alpha) in primary cultures of human vascular endothelial cells. Biochem Biophys Res Commun 1998; 246(2): 370–4PubMedCrossRef
97.
go back to reference Staels B, Koenig W, Habib A, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 1998; 393: 790–3PubMedCrossRef Staels B, Koenig W, Habib A, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 1998; 393: 790–3PubMedCrossRef
98.
go back to reference Iijima K, Yoshizumi M, Ako J, et al. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in rat aortic smooth muscle cells. Biochem Biophys Res Commun 1998; 247(2): 353–6PubMedCrossRef Iijima K, Yoshizumi M, Ako J, et al. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in rat aortic smooth muscle cells. Biochem Biophys Res Commun 1998; 247(2): 353–6PubMedCrossRef
99.
go back to reference Chinetti G, Griglio S, Antonucci M, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998; 273(40): 25573–80PubMedCrossRef Chinetti G, Griglio S, Antonucci M, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998; 273(40): 25573–80PubMedCrossRef
100.
go back to reference Ricote M, Huang J, Fajas L, et al. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998; 95(13): 7614–9PubMedCrossRef Ricote M, Huang J, Fajas L, et al. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998; 95(13): 7614–9PubMedCrossRef
101.
go back to reference Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391(6662): 79–82PubMedCrossRef Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391(6662): 79–82PubMedCrossRef
102.
go back to reference Calabresi L, Gomaraschi M, Villa B, et al. Elevated soluble cellular adhesion molecules in subjects with low HDL-cholesterol. Arterioscler Thromb Vasc Biol 2002; 22(4): 656–61PubMedCrossRef Calabresi L, Gomaraschi M, Villa B, et al. Elevated soluble cellular adhesion molecules in subjects with low HDL-cholesterol. Arterioscler Thromb Vasc Biol 2002; 22(4): 656–61PubMedCrossRef
103.
go back to reference Marx N, Sukhova GK, Collins T, et al. PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 1999; 99(24): 3125–31PubMedCrossRef Marx N, Sukhova GK, Collins T, et al. PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 1999; 99(24): 3125–31PubMedCrossRef
104.
go back to reference Després JP, Lemieux I, Pascot A, et al. Gemfibrozil reduces plasma C-reactive protein levels in abdominally obese men with the atherogenic dyslipidemia of the metabolic syndrome. Arterioscler Thromb Vasc Biol 2003; 23: 702–3PubMedCrossRef Després JP, Lemieux I, Pascot A, et al. Gemfibrozil reduces plasma C-reactive protein levels in abdominally obese men with the atherogenic dyslipidemia of the metabolic syndrome. Arterioscler Thromb Vasc Biol 2003; 23: 702–3PubMedCrossRef
105.
go back to reference Ridker PM, Rifai N, Rose L, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347(20): 1557–65PubMedCrossRef Ridker PM, Rifai N, Rose L, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347(20): 1557–65PubMedCrossRef
106.
go back to reference Branchi A, Rovellini A, Sommariva D, et al. Effect of three fibrate derivatives and of two HMG-CoA reductase inhibitors on plasma fibrinogen level in patients with primary hypercholesterolemia. Thromb Haemost 1993; 70(2): 241–3PubMed Branchi A, Rovellini A, Sommariva D, et al. Effect of three fibrate derivatives and of two HMG-CoA reductase inhibitors on plasma fibrinogen level in patients with primary hypercholesterolemia. Thromb Haemost 1993; 70(2): 241–3PubMed
107.
go back to reference de la Serna G, Cadarso C. Fenofibrate decreases plasma fibrinogen, improves lipid profile, and reduces uricemia. Clin Pharmacol Ther 1999; 66(2): 166–72PubMed de la Serna G, Cadarso C. Fenofibrate decreases plasma fibrinogen, improves lipid profile, and reduces uricemia. Clin Pharmacol Ther 1999; 66(2): 166–72PubMed
108.
go back to reference Maison P, Mennen L, Sapinho D, et al. A pharmacoepidemiological assessment of the effect of statins and fibrates on fibrinogen concentration. Atherosclerosis 2002; 160(1): 155–60PubMedCrossRef Maison P, Mennen L, Sapinho D, et al. A pharmacoepidemiological assessment of the effect of statins and fibrates on fibrinogen concentration. Atherosclerosis 2002; 160(1): 155–60PubMedCrossRef
109.
go back to reference Nilsson L, Takemura T, Eriksson P, et al. Effects of fibrate compounds on expression of plasminogen activator inhibitor-1 by cultured endothelial cells. Arterioscler Thromb Vasc Biol 1999; 19(6): 1577–81PubMedCrossRef Nilsson L, Takemura T, Eriksson P, et al. Effects of fibrate compounds on expression of plasminogen activator inhibitor-1 by cultured endothelial cells. Arterioscler Thromb Vasc Biol 1999; 19(6): 1577–81PubMedCrossRef
110.
go back to reference Kaneko T, Fujii S, Matsumoto A, et al. Induction of plasminogen activator inhibitor-1 in endothelial cells by basic fibroblast growth factor and its modulation by fibric acid. Arterioscler Thromb Vasc Biol 2002; 22(5): 855–60PubMedCrossRef Kaneko T, Fujii S, Matsumoto A, et al. Induction of plasminogen activator inhibitor-1 in endothelial cells by basic fibroblast growth factor and its modulation by fibric acid. Arterioscler Thromb Vasc Biol 2002; 22(5): 855–60PubMedCrossRef
111.
go back to reference Iglarz M, Touyz RM, Amiri F, et al. Effect of peroxisome proliferator-activated receptor-alpha and -gamma activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler Thromb Vasc Biol 2003; 23(1): 45–51PubMedCrossRef Iglarz M, Touyz RM, Amiri F, et al. Effect of peroxisome proliferator-activated receptor-alpha and -gamma activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler Thromb Vasc Biol 2003; 23(1): 45–51PubMedCrossRef
112.
go back to reference Malik J, Melenovsky V, Wichterle D, et al. Both fenofibrate and atorvastatin improve vascular reactivity in combined hyper-lipidaemia (fenofibrate versus atorvastatin trial: FAT). Cardiovasc Res 2001; 52(2): 290–8PubMedCrossRef Malik J, Melenovsky V, Wichterle D, et al. Both fenofibrate and atorvastatin improve vascular reactivity in combined hyper-lipidaemia (fenofibrate versus atorvastatin trial: FAT). Cardiovasc Res 2001; 52(2): 290–8PubMedCrossRef
113.
go back to reference Playford DA, Watts GF, Best JD, et al. Effect of fenofibrate on brachial artery flow-mediated dilatation in type 2 diabetes mellitus. Am J Cardiol 2002; 90(11): 1254–7PubMedCrossRef Playford DA, Watts GF, Best JD, et al. Effect of fenofibrate on brachial artery flow-mediated dilatation in type 2 diabetes mellitus. Am J Cardiol 2002; 90(11): 1254–7PubMedCrossRef
114.
go back to reference Trial of clofibrate in the treatment of ischaemic heart disease. Five-year study by a group of physicians of the Newcastle upon Tyne region. BMJ 1971; 4(5790): 767–75CrossRef Trial of clofibrate in the treatment of ischaemic heart disease. Five-year study by a group of physicians of the Newcastle upon Tyne region. BMJ 1971; 4(5790): 767–75CrossRef
115.
go back to reference Ischaemic heart disease: a secondary prevention trial using clofibrate. Report by a research committee of the Scottish Society of Physicians. BMJ 1971; 4(5790): 775–84CrossRef Ischaemic heart disease: a secondary prevention trial using clofibrate. Report by a research committee of the Scottish Society of Physicians. BMJ 1971; 4(5790): 775–84CrossRef
116.
go back to reference A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate. Report from the Committee of Principal Investigators. Br Heart J 1978; 40(10): 1069–118CrossRef A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate. Report from the Committee of Principal Investigators. Br Heart J 1978; 40(10): 1069–118CrossRef
117.
go back to reference Clofibrate and niacin in coronary heart disease. JAMA 1975; 231(4): 360–81CrossRef Clofibrate and niacin in coronary heart disease. JAMA 1975; 231(4): 360–81CrossRef
118.
go back to reference Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia: safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237–45PubMedCrossRef Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia: safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237–45PubMedCrossRef
119.
go back to reference Carlson LA, Rosenhamer G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med Scand 1988; 223(5): 405–18PubMedCrossRef Carlson LA, Rosenhamer G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med Scand 1988; 223(5): 405–18PubMedCrossRef
120.
go back to reference Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol: Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999; 341(6): 410–8PubMedCrossRef Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol: Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999; 341(6): 410–8PubMedCrossRef
121.
go back to reference Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation 2000; 102 (1): 21–27 Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation 2000; 102 (1): 21–27
122.
go back to reference Meade T, Zuhrie R, Cook C, et al. Bezafibrate in men with lower extremity arterial disease: randomised controlled trial. BMJ 2002; 325(7373): 1139PubMedCrossRef Meade T, Zuhrie R, Cook C, et al. Bezafibrate in men with lower extremity arterial disease: randomised controlled trial. BMJ 2002; 325(7373): 1139PubMedCrossRef
123.
go back to reference Heady JA, Morris JN, Oliver MF. WHO clofibrate/cholesterol trial: clarifications. Lancet 1992; 340(8832): 1405–6PubMedCrossRef Heady JA, Morris JN, Oliver MF. WHO clofibrate/cholesterol trial: clarifications. Lancet 1992; 340(8832): 1405–6PubMedCrossRef
124.
go back to reference Manninen V, Elo MO, Frick MH, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988; 260(5): 641–51PubMedCrossRef Manninen V, Elo MO, Frick MH, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988; 260(5): 641–51PubMedCrossRef
125.
go back to reference Tenkanen L, Manttari M, Manninen V. Some coronary risk factors related to the insulin resistance syndrome and treatment with gemfibrozil: experience from the Helsinki Heart Study. Circulation 1995; 92(7): 1779–85PubMedCrossRef Tenkanen L, Manttari M, Manninen V. Some coronary risk factors related to the insulin resistance syndrome and treatment with gemfibrozil: experience from the Helsinki Heart Study. Circulation 1995; 92(7): 1779–85PubMedCrossRef
126.
go back to reference Syvanne M, Nieminen MS, Frick MH, et al. Associations between lipoproteins and the progression of coronary and vein-graft atherosclerosis in a controlled trial with gemfibrozil in men with low baseline levels of HDL cholesterol. Circulation 1998; 98(19): 1993–9PubMedCrossRef Syvanne M, Nieminen MS, Frick MH, et al. Associations between lipoproteins and the progression of coronary and vein-graft atherosclerosis in a controlled trial with gemfibrozil in men with low baseline levels of HDL cholesterol. Circulation 1998; 98(19): 1993–9PubMedCrossRef
127.
go back to reference Robins SJ, Collins D, Rubins HB. Diabetes, hyperinsulinemia and recurrent coronary events in the VA-High Density Lipoprotein Intervention Trial (VA-HIT) [abstract no. 4069]. Circulation 2000; 102 Suppl. II: II–847 Robins SJ, Collins D, Rubins HB. Diabetes, hyperinsulinemia and recurrent coronary events in the VA-High Density Lipoprotein Intervention Trial (VA-HIT) [abstract no. 4069]. Circulation 2000; 102 Suppl. II: II–847
128.
go back to reference Rubins HB, Robins SJ, Collins D, et al. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT). Arch Intern Med 2002; 162: 2597–604PubMedCrossRef Rubins HB, Robins SJ, Collins D, et al. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT). Arch Intern Med 2002; 162: 2597–604PubMedCrossRef
129.
go back to reference Robins SJ, Rubins HB, Faas FH, et al. Insulin resistance and cardiovascular events with low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Diabetes Care 2003; 26: 1513–7PubMedCrossRef Robins SJ, Rubins HB, Faas FH, et al. Insulin resistance and cardiovascular events with low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Diabetes Care 2003; 26: 1513–7PubMedCrossRef
130.
go back to reference Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002; 360(9346): 1623–30PubMedCrossRef Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002; 360(9346): 1623–30PubMedCrossRef
131.
go back to reference Elkeles RS, Diamond JR, Poulter C, et al. Cardiovascular outcomes in type 2 diabetes: a double-blind placebo-controlled study of bezafibrate: the St. Mary’s, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes Care 1998; 21(4): 641–8 Elkeles RS, Diamond JR, Poulter C, et al. Cardiovascular outcomes in type 2 diabetes: a double-blind placebo-controlled study of bezafibrate: the St. Mary’s, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes Care 1998; 21(4): 641–8
132.
go back to reference Ruotolo G, Ericsson CG, Tettamanti C, et al. Treatment effects on serum lipoprotein lipids, apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial (BE-CAIT). J Am Coll Cardiol 1998; 32(6): 1648–56PubMedCrossRef Ruotolo G, Ericsson CG, Tettamanti C, et al. Treatment effects on serum lipoprotein lipids, apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial (BE-CAIT). J Am Coll Cardiol 1998; 32(6): 1648–56PubMedCrossRef
133.
go back to reference Vakkilainen J, Steiner G, Ansquer JC, et al. Relationships between low-density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: the Diabetes Atherosclerosis Intervention Study (DAIS). Circulation 2003; 107(13): 1733–7PubMedCrossRef Vakkilainen J, Steiner G, Ansquer JC, et al. Relationships between low-density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: the Diabetes Atherosclerosis Intervention Study (DAIS). Circulation 2003; 107(13): 1733–7PubMedCrossRef
134.
go back to reference Collins R, Armitage J, Parish S, et al. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomized placebo-controlled trial. Lancet 2003; 361: 2005–16PubMedCrossRef Collins R, Armitage J, Parish S, et al. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomized placebo-controlled trial. Lancet 2003; 361: 2005–16PubMedCrossRef
135.
136.
go back to reference Prueksaritanont T, Zhao JJ, Ma B, et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther 2002; 301(3): 1042–51PubMedCrossRef Prueksaritanont T, Zhao JJ, Ma B, et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther 2002; 301(3): 1042–51PubMedCrossRef
137.
go back to reference Spencer GA, Wirebaugh S, Whitney EJ. Effect of a combination of gemfibrozil and niacin on lipid levels. J Clin Pharmacol 1996; 36(8): 696–700PubMed Spencer GA, Wirebaugh S, Whitney EJ. Effect of a combination of gemfibrozil and niacin on lipid levels. J Clin Pharmacol 1996; 36(8): 696–700PubMed
138.
go back to reference Garg A, Grundy SM. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA 1990; 264(6): 723–6PubMedCrossRef Garg A, Grundy SM. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA 1990; 264(6): 723–6PubMedCrossRef
139.
go back to reference Kahn SE, Beard JC, Schwartz MW, et al. Increased beta-cell secretory capacity as mechanism for islet adaptation to nicotinic acid-induced insulin resistance. Diabetes 1989; 38(5): 562–8PubMedCrossRef Kahn SE, Beard JC, Schwartz MW, et al. Increased beta-cell secretory capacity as mechanism for islet adaptation to nicotinic acid-induced insulin resistance. Diabetes 1989; 38(5): 562–8PubMedCrossRef
140.
go back to reference East C, Bilheimer DW, Grundy SM. Combination drug therapy for familial combined hyperlipidemia. Ann Intern Med 1988; 109(1): 25–32PubMed East C, Bilheimer DW, Grundy SM. Combination drug therapy for familial combined hyperlipidemia. Ann Intern Med 1988; 109(1): 25–32PubMed
141.
go back to reference Kosoglou T, Guillaume M, Sun S, et al. Pharmacodynamic interaction between fenofibrate and the cholesterol absorption inhibitor ezetimibe [abstract]. Atherosclerosis 2001; 2 Suppl. 2: 38 Kosoglou T, Guillaume M, Sun S, et al. Pharmacodynamic interaction between fenofibrate and the cholesterol absorption inhibitor ezetimibe [abstract]. Atherosclerosis 2001; 2 Suppl. 2: 38
Metadata
Title
Role of Fibric Acid Derivatives in the Management of Risk Factors for Coronary Heart Disease
Authors
Dr Jean-Pierre Després
Isabelle Lemieux
Sander J. Robins
Publication date
01-10-2004
Publisher
Springer International Publishing
Published in
Drugs / Issue 19/2004
Print ISSN: 0012-6667
Electronic ISSN: 1179-1950
DOI
https://doi.org/10.2165/00003495-200464190-00003

Other articles of this Issue 19/2004

Drugs 19/2004 Go to the issue

Adis Drug Profile

Anidulafungin

Adis Drug Profile

Anidulafungin

Adis Drug Profile

Lumiracoxib

Adis Drug Profile

Lumiracoxib