Skip to main content
Top
Published in: Clinical Pharmacokinetics 9/2008

01-09-2008 | Review Article

Pharmacogenetics of Oral Anticoagulants

A Basis for Dose Individualization

Authors: Simone Stehle, Julia Kirchheiner, Andreas Lazar, Prof. Dr med. Uwe Fuhr

Published in: Clinical Pharmacokinetics | Issue 9/2008

Login to get access

Abstract

Coumarin derivatives, including warfarin, acenocoumarol and phenprocoumon, are the drugs of choice for long-term treatment and prevention of thromboembolic events. The management of oral anticoagulation is challenging because of a large variability in the dose-response relationship, which is in part caused by genetic polymorphisms. The narrow therapeutic range may result in bleeding complications or recurrent thrombosis, especially during the initial phase of treatment. The aim of this review is to systematically extract the published data reporting pharmacogenetic influences on oral anticoagulant therapy and to provide empirical doses for individual genotype combinations. To this end, we extracted all data from clinical studies of warfarin, phenprocoumon and acenocoumarol that reported genetic influences on either the dose demand or adverse drug effects, such as bleeding complications. Data were summarized for each substance, and the relative effect of each relevant gene was calculated across studies, assuming a linear gene-dose effect in Caucasians. Cytochrome P450 (CYP) 2C9, which is the main enzyme for rate-limiting metabolism of oral anticoagulants, had the largest impact on the dose demand. Compared with homozygous carriers of CYP2C9*1, patients homozygous for CYP2C9*3 were estimated to need 3.3-fold lower mean doses of warfarin to achieve the same international normalized ratio, with *2 carriers and heterozygous patients in between. Differences for acenocoumarol and phenprocoumon were 2.5-fold and 1.5-fold, respectively. Homozygosity of the vitamin K epoxide reductase complex subunit 1 (VK0RC1) variant C1173T (*2) allele (VKORC1 is the molecular target of anticoagulant action) was related to 2.4-fold, 1.6-fold and 1.9-fold lower dose requirements compared with the wild-type for warfarin, acenocoumarol and phenprocoumon, respectively. Compared with CYP2C9 and VKORC1 homozygous wild-type individuals, patients with polymorphisms in these genes also more often experience severe overanticoagulation. An empirical dose table, which may be useful as a basis for dose individualization, is presented for the combined CYP2C9/VKORC1 genotypes. Genetic polymorphism in further enzymes and structures involved in the effect of anticoagulants such as γ-glutamylcarboxylase, glutathione S-transferase A1, microsomal epoxide hydrolase and apolipoprotein E appear to be of negligible importance.
Despite the clear effects of CYP2C9 and VKORC1 variants, these polymorphisms explain less than half of the interindividual variability in the dose response to oral anticoagulants. Thus, while individuals at the extremes of the dose requirements are likely to benefit, the overall clinical merits of a genotype-adapted anticoagulant treatment regimen in the entire patient populations remain to be determined in further prospective clinical studies.
Footnotes
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literature
1.
go back to reference Hirsh J. Antithrombotic therapy in deep vein thrombosis and pulmonary embolism. Am Heart J 1992 Apr; 123 (4 Pt 2): 1115–22PubMedCrossRef Hirsh J. Antithrombotic therapy in deep vein thrombosis and pulmonary embolism. Am Heart J 1992 Apr; 123 (4 Pt 2): 1115–22PubMedCrossRef
2.
go back to reference Hirsh J, Dalen J, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 2001 Jan; 119 (1 Suppl.): 8S–21SPubMedCrossRef Hirsh J, Dalen J, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 2001 Jan; 119 (1 Suppl.): 8S–21SPubMedCrossRef
3.
go back to reference Hirsh J, Dalen JE, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 1998 Nov; 114 (5 Suppl.): 445S–69SPubMedCrossRef Hirsh J, Dalen JE, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 1998 Nov; 114 (5 Suppl.): 445S–69SPubMedCrossRef
4.
go back to reference Laupacis A, Albers G, Dalen J, et al. Antithrombotic therapy in atrial fibrillation. Chest 1995 Oct; 108 (4 Suppl.): 352S–9SPubMedCrossRef Laupacis A, Albers G, Dalen J, et al. Antithrombotic therapy in atrial fibrillation. Chest 1995 Oct; 108 (4 Suppl.): 352S–9SPubMedCrossRef
5.
go back to reference Stein PD, Alpert JS, Copeland J, et al. Antithrombotic therapy in patients with mechanical and biological prosthetic heart valves. Chest 1995 Oct; 108 (4 Suppl.): 371S–9SPubMedCrossRef Stein PD, Alpert JS, Copeland J, et al. Antithrombotic therapy in patients with mechanical and biological prosthetic heart valves. Chest 1995 Oct; 108 (4 Suppl.): 371S–9SPubMedCrossRef
6.
go back to reference Latner AW. The top 200 drugs of 1999. Pharm Times 2000; 66(4): 16–32 Latner AW. The top 200 drugs of 1999. Pharm Times 2000; 66(4): 16–32
7.
go back to reference Thijssen HH, Flinois JP, Beaune PH. Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab Dispos 2000 Nov; 28(11): 1284–90PubMed Thijssen HH, Flinois JP, Beaune PH. Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab Dispos 2000 Nov; 28(11): 1284–90PubMed
8.
go back to reference Landefeld CS, Beyth RJ. Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention. Am J Med 1993 Sep; 95(3): 315–28PubMedCrossRef Landefeld CS, Beyth RJ. Anticoagulant-related bleeding: clinical epidemiology, prediction, and prevention. Am J Med 1993 Sep; 95(3): 315–28PubMedCrossRef
9.
go back to reference Palareti G, Leali N, Coccheri S, et al. Bleeding complications of oral anticoagulant treatment: an inception-cohort, prospective collaborative study (ISCOAT). Italian Study on Complications of Oral Anticoagulant Therapy. Lancet 1996 Aug 17; 348(9025): 423–8PubMedCrossRef Palareti G, Leali N, Coccheri S, et al. Bleeding complications of oral anticoagulant treatment: an inception-cohort, prospective collaborative study (ISCOAT). Italian Study on Complications of Oral Anticoagulant Therapy. Lancet 1996 Aug 17; 348(9025): 423–8PubMedCrossRef
10.
go back to reference Hummers-Pradier E, Hess S, Adham IM, et al. Determination of bleeding risk using genetic markers in patients taking phenprocoumon. Eur J Clin Pharmacol 2003 Jul; 59(3): 213–9PubMedCrossRef Hummers-Pradier E, Hess S, Adham IM, et al. Determination of bleeding risk using genetic markers in patients taking phenprocoumon. Eur J Clin Pharmacol 2003 Jul; 59(3): 213–9PubMedCrossRef
11.
go back to reference Tiaden JD, Wenzel E, Berthold HK, et al. Adverse reactions to anticoagulants and to antiplatelet drugs recorded by the German spontaneous reporting system. Semin Thromb Hemost 2005; 31(4): 371–80PubMedCrossRef Tiaden JD, Wenzel E, Berthold HK, et al. Adverse reactions to anticoagulants and to antiplatelet drugs recorded by the German spontaneous reporting system. Semin Thromb Hemost 2005; 31(4): 371–80PubMedCrossRef
12.
go back to reference Aithal GP, Day CP, Kesteven PJ, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999 Feb 27; 353(9154): 717–9PubMedCrossRef Aithal GP, Day CP, Kesteven PJ, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999 Feb 27; 353(9154): 717–9PubMedCrossRef
13.
go back to reference Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002 Apr 3; 287(13): 1690–8PubMedCrossRef Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002 Apr 3; 287(13): 1690–8PubMedCrossRef
14.
go back to reference Margaglione M, Colaizzo D, D’Andrea G, et al. Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost 2000 Nov; 84(5): 775–8PubMed Margaglione M, Colaizzo D, D’Andrea G, et al. Genetic modulation of oral anticoagulation with warfarin. Thromb Haemost 2000 Nov; 84(5): 775–8PubMed
15.
go back to reference Ogg MS, Brennan P, Meade T, et al. CYP2C9*3 allelic variant and bleeding complications. Lancet 1999 Sep 25; 354(9184): 1124PubMedCrossRef Ogg MS, Brennan P, Meade T, et al. CYP2C9*3 allelic variant and bleeding complications. Lancet 1999 Sep 25; 354(9184): 1124PubMedCrossRef
16.
go back to reference James AH, Britt RP, Raskino CL, et al. Factors affecting the maintenance dose of warfarin. J Clin Pathol 1992 Aug; 45(8): 704–6PubMedCrossRef James AH, Britt RP, Raskino CL, et al. Factors affecting the maintenance dose of warfarin. J Clin Pathol 1992 Aug; 45(8): 704–6PubMedCrossRef
17.
go back to reference Visser LE, Trienekens PH, De Smet PA, et al. Patients with an ApoE epsilon4 allele require lower doses of coumarin anticoagulants. Pharmacogenet Genomics 2005 Feb; 15(2): 69–74PubMedCrossRef Visser LE, Trienekens PH, De Smet PA, et al. Patients with an ApoE epsilon4 allele require lower doses of coumarin anticoagulants. Pharmacogenet Genomics 2005 Feb; 15(2): 69–74PubMedCrossRef
18.
go back to reference Hirsh J, Dalen JE, Deykin D, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 1995 Oct; 108 (4 Suppl.): 231S–46SPubMedCrossRef Hirsh J, Dalen JE, Deykin D, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 1995 Oct; 108 (4 Suppl.): 231S–46SPubMedCrossRef
19.
go back to reference Linder MW. Genetic mechanisms for hypersensitivity and resistance to the anticoagulant warfarin. Clin Chim Acta 2001 Jun; 308(1–2): 9–15PubMedCrossRef Linder MW. Genetic mechanisms for hypersensitivity and resistance to the anticoagulant warfarin. Clin Chim Acta 2001 Jun; 308(1–2): 9–15PubMedCrossRef
20.
go back to reference Rost S, Fregin A, Koch D, et al. Compound heterozygous mutations in the gammaglutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol 2004 Aug; 126(4): 546–9PubMedCrossRef Rost S, Fregin A, Koch D, et al. Compound heterozygous mutations in the gammaglutamyl carboxylase gene cause combined deficiency of all vitamin K-dependent blood coagulation factors. Br J Haematol 2004 Aug; 126(4): 546–9PubMedCrossRef
22.
go back to reference Fasco MJ, Principe LM. R- and S-warfarin inhibition of vitamin K and vitamin K 2,3-epoxide reductase activities in the rat. J Biol Chem 1982 May 10; 257(9): 4894–901PubMed Fasco MJ, Principe LM. R- and S-warfarin inhibition of vitamin K and vitamin K 2,3-epoxide reductase activities in the rat. J Biol Chem 1982 May 10; 257(9): 4894–901PubMed
23.
go back to reference de Vries JX, Simon M, Volker U, et al. Comparative plasma disposition and anticoagulant activities of racemic phenprocoumon and its metabolites in rats. Haemostasis 1993; 23(1): 13–8PubMed de Vries JX, Simon M, Volker U, et al. Comparative plasma disposition and anticoagulant activities of racemic phenprocoumon and its metabolites in rats. Haemostasis 1993; 23(1): 13–8PubMed
24.
go back to reference He M, Korzekwa KR, Jones JP, et al. Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch Biochem Biophys 1999 Dec 1; 372(1): 16–28PubMedCrossRef He M, Korzekwa KR, Jones JP, et al. Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch Biochem Biophys 1999 Dec 1; 372(1): 16–28PubMedCrossRef
25.
26.
go back to reference Alberio L. Oral anticoagulation with vitamin K antagonists [in German]. Ther Umsch 2003 Jan; 60(1): 5–9PubMedCrossRef Alberio L. Oral anticoagulation with vitamin K antagonists [in German]. Ther Umsch 2003 Jan; 60(1): 5–9PubMedCrossRef
27.
go back to reference Pyorala K, Jussila J, Mustala O, et al. Absorption of warfarin from the stomach and small intestine. Scand J Gastroenterol 1971; 9 Suppl.: 95–103 Pyorala K, Jussila J, Mustala O, et al. Absorption of warfarin from the stomach and small intestine. Scand J Gastroenterol 1971; 9 Suppl.: 95–103
28.
go back to reference de Vries JX, Volker U. Determination of the plasma protein binding of the coumarin anticoagulants phenprocoumon and its metabolites, warfarin and acenocoumarol, by ultrafiltration and high-performance liquid chromatography. J Chromatogr 1990 Aug 3; 529(2): 479–85PubMed de Vries JX, Volker U. Determination of the plasma protein binding of the coumarin anticoagulants phenprocoumon and its metabolites, warfarin and acenocoumarol, by ultrafiltration and high-performance liquid chromatography. J Chromatogr 1990 Aug 3; 529(2): 479–85PubMed
29.
go back to reference Jahnchen E, Meinertz T, Gilfrich HJ, et al. The enantiomers of phenprocoumon: pharmacodynamic and pharmacokinetic studies. Clin Pharmacol Ther 1976 Sep; 20(3): 342–9PubMed Jahnchen E, Meinertz T, Gilfrich HJ, et al. The enantiomers of phenprocoumon: pharmacodynamic and pharmacokinetic studies. Clin Pharmacol Ther 1976 Sep; 20(3): 342–9PubMed
30.
go back to reference Hemker HC, Frank HL. The mechanism of action of oral anticoagulants and its consequences for the practice of oral anticoagulation. Haemostasis 1985; 15(4): 263–70PubMed Hemker HC, Frank HL. The mechanism of action of oral anticoagulants and its consequences for the practice of oral anticoagulation. Haemostasis 1985; 15(4): 263–70PubMed
31.
go back to reference Thijssen HH, Hamulyak K, Willigers H. 4-Hydroxycoumarin oral anticoagulants: pharmacokinetics-response relationship. Thromb Haemost 1988 Aug 30; 60(1): 35–8PubMed Thijssen HH, Hamulyak K, Willigers H. 4-Hydroxycoumarin oral anticoagulants: pharmacokinetics-response relationship. Thromb Haemost 1988 Aug 30; 60(1): 35–8PubMed
32.
go back to reference Ufer M, Svensson JO, Krausz KW, et al. Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol 2004 May; 60(3): 173–82PubMedCrossRef Ufer M, Svensson JO, Krausz KW, et al. Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol 2004 May; 60(3): 173–82PubMedCrossRef
33.
go back to reference Pohl LR, Haddock RE, Trager WF. Biotransformation of phenprocoumon in the rat. J Med Chem 1975 May; 18(5): 519–23PubMedCrossRef Pohl LR, Haddock RE, Trager WF. Biotransformation of phenprocoumon in the rat. J Med Chem 1975 May; 18(5): 519–23PubMedCrossRef
34.
go back to reference Stirling Y, Howarth DJ, Stockley R, et al. Comparison of the bioavailabilities and anticoagulant activities of two warfarin formulations. Br J Haematol 1982 May; 51(1): 37–46PubMedCrossRef Stirling Y, Howarth DJ, Stockley R, et al. Comparison of the bioavailabilities and anticoagulant activities of two warfarin formulations. Br J Haematol 1982 May; 51(1): 37–46PubMedCrossRef
35.
go back to reference Yacobi A, Udall JA, Levy G. Intrasubject variation of warfarin binding to protein in serum of patients with cardiovascular disease. Clin Pharmacol Ther 1976 Sep; 20(3): 300–3PubMed Yacobi A, Udall JA, Levy G. Intrasubject variation of warfarin binding to protein in serum of patients with cardiovascular disease. Clin Pharmacol Ther 1976 Sep; 20(3): 300–3PubMed
36.
go back to reference Yacobi A, Udall JA, Levy G. Serum protein binding as a determinant of warfarin body clearance and anticoagulant effect. Clin Pharmacol Ther 1976 May; 19 (5 Pt 1): 552–8PubMed Yacobi A, Udall JA, Levy G. Serum protein binding as a determinant of warfarin body clearance and anticoagulant effect. Clin Pharmacol Ther 1976 May; 19 (5 Pt 1): 552–8PubMed
37.
go back to reference Chan E, McLachlan AJ, Pegg M, et al. Disposition of warfarin enantiomers and metabolites in patients during multiple dosing with rac-warfarin. Br J Clin Pharmacol 1994 Jun; 37(6): 563–9PubMedCrossRef Chan E, McLachlan AJ, Pegg M, et al. Disposition of warfarin enantiomers and metabolites in patients during multiple dosing with rac-warfarin. Br J Clin Pharmacol 1994 Jun; 37(6): 563–9PubMedCrossRef
38.
go back to reference Hewick DS, McEwen J. Plasma half-lives, plasma metabolites and anticoagulant efficacies of the enantiomers of warfarin in man. J Pharm Pharmacol 1973 Jun; 25(6): 458–65PubMedCrossRef Hewick DS, McEwen J. Plasma half-lives, plasma metabolites and anticoagulant efficacies of the enantiomers of warfarin in man. J Pharm Pharmacol 1973 Jun; 25(6): 458–65PubMedCrossRef
39.
go back to reference Lewis RJ, Trager WF. Warfarin metabolism in man: identification of metabolites in urine. J Clin Invest 1970 May; 49(5): 907–13PubMedCrossRef Lewis RJ, Trager WF. Warfarin metabolism in man: identification of metabolites in urine. J Clin Invest 1970 May; 49(5): 907–13PubMedCrossRef
40.
go back to reference Lewis RJ, Trager WF, Chan KK, et al. Warfarin: stereochemical aspects of its metabolism and the interaction with Phenylbutazone. J Clin Invest 1974 Jun; 53(6): 1607–17PubMedCrossRef Lewis RJ, Trager WF, Chan KK, et al. Warfarin: stereochemical aspects of its metabolism and the interaction with Phenylbutazone. J Clin Invest 1974 Jun; 53(6): 1607–17PubMedCrossRef
41.
go back to reference Rettie AE, Korzekwa KR, Kunze KL, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 1992 Jan–Feb; 5(1): 54–9PubMedCrossRef Rettie AE, Korzekwa KR, Kunze KL, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 1992 Jan–Feb; 5(1): 54–9PubMedCrossRef
42.
go back to reference Toon S, Low LK, Gibaldi M, et al. The warfarin-sulfinpyrazone interaction: stereochemical considerations. Clin Pharmacol Ther 1986 Jan; 39(1): 15–24PubMedCrossRef Toon S, Low LK, Gibaldi M, et al. The warfarin-sulfinpyrazone interaction: stereochemical considerations. Clin Pharmacol Ther 1986 Jan; 39(1): 15–24PubMedCrossRef
43.
go back to reference Kelly JG, O’Malley K. Clinical pharmacokinetics of oral anticoagulants. Clin Pharmacokinet 1979 Jan–Feb; 4(1): 1–15PubMedCrossRef Kelly JG, O’Malley K. Clinical pharmacokinetics of oral anticoagulants. Clin Pharmacokinet 1979 Jan–Feb; 4(1): 1–15PubMedCrossRef
44.
go back to reference Ufer M. Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet 2005; 44(12): 1227–46PubMedCrossRef Ufer M. Comparative pharmacokinetics of vitamin K antagonists: warfarin, phenprocoumon and acenocoumarol. Clin Pharmacokinet 2005; 44(12): 1227–46PubMedCrossRef
45.
go back to reference Trager WF, Lewis RJ, Garland WA. Mass spectral analysis in the identification of human metabolites of warfarin. J Med Chem 1970 Nov; 13(6): 1196–204PubMedCrossRef Trager WF, Lewis RJ, Garland WA. Mass spectral analysis in the identification of human metabolites of warfarin. J Med Chem 1970 Nov; 13(6): 1196–204PubMedCrossRef
46.
go back to reference Kaminsky LS, de Morais SM, Faletto MB, et al. Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe. Mol Pharmacol 1993 Feb; 43(2): 234–9PubMed Kaminsky LS, de Morais SM, Faletto MB, et al. Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe. Mol Pharmacol 1993 Feb; 43(2): 234–9PubMed
47.
go back to reference Wienkers LC, Steenwyk RC, Sanders PE, et al. Biotransformation of tirilazad in human: 1. Cytochrome P450 3A-mediated hydroxylation of tirilazad mesylate in human liver microsomes. J Pharmacol Exp Ther 1996 May; 277(2): 982–90PubMed Wienkers LC, Steenwyk RC, Sanders PE, et al. Biotransformation of tirilazad in human: 1. Cytochrome P450 3A-mediated hydroxylation of tirilazad mesylate in human liver microsomes. J Pharmacol Exp Ther 1996 May; 277(2): 982–90PubMed
48.
go back to reference Zhang ZY, Kerr J, Wexler RS, et al. Warfarin analog inhibition of human CYP2C9-catalyzed S-warfarin 7-hydroxylation. Thromb Res 1997 Nov 15; 88(4): 389–98PubMedCrossRef Zhang ZY, Kerr J, Wexler RS, et al. Warfarin analog inhibition of human CYP2C9-catalyzed S-warfarin 7-hydroxylation. Thromb Res 1997 Nov 15; 88(4): 389–98PubMedCrossRef
49.
go back to reference Hermans JJ, Thijssen HH. The in vitro ketone reduction of warfarin and analogues: substrate stereoselectivity, product stereoselectivity and species differences. Biochem Pharmacol 1989 Oct 1; 38(19): 3365–70PubMedCrossRef Hermans JJ, Thijssen HH. The in vitro ketone reduction of warfarin and analogues: substrate stereoselectivity, product stereoselectivity and species differences. Biochem Pharmacol 1989 Oct 1; 38(19): 3365–70PubMedCrossRef
50.
go back to reference Kaminsky LS. Warfarin as a probe of cytochromes P-450 function. Drug Metab Rev 1989; 20(2–4): 479–87PubMedCrossRef Kaminsky LS. Warfarin as a probe of cytochromes P-450 function. Drug Metab Rev 1989; 20(2–4): 479–87PubMedCrossRef
51.
go back to reference Dieterle W, Faigle JW, Montigel C, et al. Biotransformation and pharmacokinetics of acenocoumarol (Sintrom) in man. Eur J Clin Pharmacol 1977; 11(5): 367–75PubMedCrossRef Dieterle W, Faigle JW, Montigel C, et al. Biotransformation and pharmacokinetics of acenocoumarol (Sintrom) in man. Eur J Clin Pharmacol 1977; 11(5): 367–75PubMedCrossRef
52.
go back to reference Thijssen HH, Drittij MJ, Vervoort LM, et al. Altered pharmacokinetics of R- and S-acenocoumarol in a subject heterozygous for CYP2C9*3. Clin Pharmacol Ther 2001 Sep; 70(3): 292–8PubMedCrossRef Thijssen HH, Drittij MJ, Vervoort LM, et al. Altered pharmacokinetics of R- and S-acenocoumarol in a subject heterozygous for CYP2C9*3. Clin Pharmacol Ther 2001 Sep; 70(3): 292–8PubMedCrossRef
53.
go back to reference Hermans JJ, Thijssen HH. Comparison of the rat liver microsomal metabolism of the enantiomers of warfarin and 4′-nitrowarfarin (acenocoumarol). Xenobiotica 1991 Mar; 21(3): 295–307PubMedCrossRef Hermans JJ, Thijssen HH. Comparison of the rat liver microsomal metabolism of the enantiomers of warfarin and 4′-nitrowarfarin (acenocoumarol). Xenobiotica 1991 Mar; 21(3): 295–307PubMedCrossRef
54.
go back to reference Hermans JJ, Thijssen HH. Human liver microsomal metabolism of the enantiomers of warfarin and acenocoumarol: P450 isozyme diversity determines the differences in their pharmacokinetics. Br J Pharmacol 1993 Sep; 110(1): 482–90PubMedCrossRef Hermans JJ, Thijssen HH. Human liver microsomal metabolism of the enantiomers of warfarin and acenocoumarol: P450 isozyme diversity determines the differences in their pharmacokinetics. Br J Pharmacol 1993 Sep; 110(1): 482–90PubMedCrossRef
55.
go back to reference Thijssen HH, Janssen GM, Baars LG. Lack of effect of Cimetidine on pharmacodynamics and kinetics of single oral doses of R- and S-acenocoumarol. Eur J Clin Pharmacol 1986; 30(5): 619–23PubMedCrossRef Thijssen HH, Janssen GM, Baars LG. Lack of effect of Cimetidine on pharmacodynamics and kinetics of single oral doses of R- and S-acenocoumarol. Eur J Clin Pharmacol 1986; 30(5): 619–23PubMedCrossRef
56.
go back to reference Toon S, Heimark LD, Trager WF, et al. Metabolic fate of phenprocoumon in humans. J Pharm Sci 1985 Oct; 74(10): 1037–40PubMedCrossRef Toon S, Heimark LD, Trager WF, et al. Metabolic fate of phenprocoumon in humans. J Pharm Sci 1985 Oct; 74(10): 1037–40PubMedCrossRef
57.
go back to reference Kammerer B, Kahlich R, Ufer M, et al. Stereospecific pharmacokinetic characterisation of phenprocoumon metabolites, and mass-spectrometric identification of two novel metabolites in human plasma and liver microsomes. Anal Bioanal Chem 2005 Nov; 383(6): 909–17PubMedCrossRef Kammerer B, Kahlich R, Ufer M, et al. Stereospecific pharmacokinetic characterisation of phenprocoumon metabolites, and mass-spectrometric identification of two novel metabolites in human plasma and liver microsomes. Anal Bioanal Chem 2005 Nov; 383(6): 909–17PubMedCrossRef
58.
go back to reference Ufer M, Kammerer B, Kahlich R, et al. Genetic polymorphisms of cytochrome P450 2C9 causing reduced phenprocoumon (S)-7-hydroxylation in vitro and in vivo. Xenobiotica 2004 Sep; 34(9): 847–59PubMedCrossRef Ufer M, Kammerer B, Kahlich R, et al. Genetic polymorphisms of cytochrome P450 2C9 causing reduced phenprocoumon (S)-7-hydroxylation in vitro and in vivo. Xenobiotica 2004 Sep; 34(9): 847–59PubMedCrossRef
59.
go back to reference de Vries JX, Raedsch R, Volker U, et al. Biliary excretion of phenprocoumon and metabolites. Eur J Clin Pharmacol 1988; 35(4): 433–6PubMedCrossRef de Vries JX, Raedsch R, Volker U, et al. Biliary excretion of phenprocoumon and metabolites. Eur J Clin Pharmacol 1988; 35(4): 433–6PubMedCrossRef
60.
go back to reference Edelbroek PM, van Kempen GM, Hessing TJ, et al. Analysis of phenprocoumon and its hydroxylated and conjugated metabolites in human urine by high-performance liquid chromatography after solid-phase extraction. J Chromatogr 1990 Sep 14; 530(2): 347–58PubMed Edelbroek PM, van Kempen GM, Hessing TJ, et al. Analysis of phenprocoumon and its hydroxylated and conjugated metabolites in human urine by high-performance liquid chromatography after solid-phase extraction. J Chromatogr 1990 Sep 14; 530(2): 347–58PubMed
61.
go back to reference Heni N, Glogner P. Pharmacokinetics of phenprocoumon in man investigated using a gas Chromatographie method of drug analysis. Naunyn Schmiedebergs Arch Pharmacol 1976 May; 293(2): 183–6PubMedCrossRef Heni N, Glogner P. Pharmacokinetics of phenprocoumon in man investigated using a gas Chromatographie method of drug analysis. Naunyn Schmiedebergs Arch Pharmacol 1976 May; 293(2): 183–6PubMedCrossRef
62.
go back to reference Heimark LD, Toon S, Gibaldi M, et al. The effect of sulfinpyrazone on the disposition of pseudoracemic phenprocoumon in humans. Clin Pharmacol Ther 1987 Sep; 42(3): 312–9PubMedCrossRef Heimark LD, Toon S, Gibaldi M, et al. The effect of sulfinpyrazone on the disposition of pseudoracemic phenprocoumon in humans. Clin Pharmacol Ther 1987 Sep; 42(3): 312–9PubMedCrossRef
63.
go back to reference zu Schwabedissen CM, Mevissen V, Schmitz F, et al. Obesity is associated with a slower response to initial phenprocoumon therapy whereas CYP2C9 genotypes are not. Eur J Clin Pharmacol 2006 Sep; 62(9): 713–20CrossRef zu Schwabedissen CM, Mevissen V, Schmitz F, et al. Obesity is associated with a slower response to initial phenprocoumon therapy whereas CYP2C9 genotypes are not. Eur J Clin Pharmacol 2006 Sep; 62(9): 713–20CrossRef
64.
go back to reference Carlquist JF, Horne BD, Muhlestein JB, et al. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis 2006 Dec; 22(3): 191–7PubMedCrossRef Carlquist JF, Horne BD, Muhlestein JB, et al. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis 2006 Dec; 22(3): 191–7PubMedCrossRef
65.
go back to reference Herman D, Locatelli I, Grabnar I, et al. Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J 2005; 5(3): 193–202PubMedCrossRef Herman D, Locatelli I, Grabnar I, et al. Influence of CYP2C9 polymorphisms, demographic factors and concomitant drug therapy on warfarin metabolism and maintenance dose. Pharmacogenomics J 2005; 5(3): 193–202PubMedCrossRef
66.
go back to reference Kimura R, Miyashita K, Kokubo Y, et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 2007; 120(2): 181–6PubMedCrossRef Kimura R, Miyashita K, Kokubo Y, et al. Genotypes of vitamin K epoxide reductase, gamma-glutamyl carboxylase, and cytochrome P450 2C9 as determinants of daily warfarin dose in Japanese patients. Thromb Res 2007; 120(2): 181–6PubMedCrossRef
67.
go back to reference Millican E, Jacobsen-Lenzini PA, Milligan PE, et al. Genetic-based dosing in orthopaedic patients beginning warfarin therapy. Blood 2007 Sep 1; 110(5): 1511–5PubMedCrossRef Millican E, Jacobsen-Lenzini PA, Milligan PE, et al. Genetic-based dosing in orthopaedic patients beginning warfarin therapy. Blood 2007 Sep 1; 110(5): 1511–5PubMedCrossRef
68.
go back to reference Peyvandi F, Spreafico M, Siboni SM, et al. CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy. Clin Pharmacol Ther 2004 Mar; 75(3): 198–203PubMedCrossRef Peyvandi F, Spreafico M, Siboni SM, et al. CYP2C9 genotypes and dose requirements during the induction phase of oral anticoagulant therapy. Clin Pharmacol Ther 2004 Mar; 75(3): 198–203PubMedCrossRef
69.
go back to reference Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005 Oct 1; 106(7): 2329–33PubMedCrossRef Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 2005 Oct 1; 106(7): 2329–33PubMedCrossRef
70.
go back to reference Scordo MG, Pengo V, Spina E, et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002 Dec; 72(6): 702–10PubMedCrossRef Scordo MG, Pengo V, Spina E, et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002 Dec; 72(6): 702–10PubMedCrossRef
71.
go back to reference Taube J, Halsall D, Baglin T. Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on longterm treatment. Blood 2000 Sep 1; 96(5): 1816–9PubMed Taube J, Halsall D, Baglin T. Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on longterm treatment. Blood 2000 Sep 1; 96(5): 1816–9PubMed
72.
go back to reference Michaud V, Vanier MC, Brouillette D, et al. Combination of phenotype assessments and CYP2C9-VKORC1 polymorphisms in the determination of warfarin dose requirements in heavily medicated patients. Clin Pharmacol Ther 2008 May; 83(5): 740–8PubMedCrossRef Michaud V, Vanier MC, Brouillette D, et al. Combination of phenotype assessments and CYP2C9-VKORC1 polymorphisms in the determination of warfarin dose requirements in heavily medicated patients. Clin Pharmacol Ther 2008 May; 83(5): 740–8PubMedCrossRef
73.
go back to reference Wadelius M, Sorlin K, Wallerman O, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J 2004; 4(1): 40–8PubMedCrossRef Wadelius M, Sorlin K, Wallerman O, et al. Warfarin sensitivity related to CYP2C9, CYP3A5, ABCB1 (MDR1) and other factors. Pharmacogenomics J 2004; 4(1): 40–8PubMedCrossRef
74.
go back to reference Miao L, Yang J, Huang C, et al. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol 2007 Dec; 63(12): 1135–41PubMedCrossRef Miao L, Yang J, Huang C, et al. Contribution of age, body weight, and CYP2C9 and VKORC1 genotype to the anticoagulant response to warfarin: proposal for a new dosing regimen in Chinese patients. Eur J Clin Pharmacol 2007 Dec; 63(12): 1135–41PubMedCrossRef
75.
go back to reference Momary KM, Shapiro NL, Viana MA, et al. Factors influencing warfarin dose requirements in African-Americans. Pharmacogenomics 2007 Nov; 8(11): 1535–44PubMedCrossRef Momary KM, Shapiro NL, Viana MA, et al. Factors influencing warfarin dose requirements in African-Americans. Pharmacogenomics 2007 Nov; 8(11): 1535–44PubMedCrossRef
76.
go back to reference Lindh JD, Lundgren S, Holm L, et al. Several-fold increase in risk of overanticoagulation by CYP2C9 mutations. Clin Pharmacol Ther 2005 Nov; 78(5): 540–50PubMedCrossRef Lindh JD, Lundgren S, Holm L, et al. Several-fold increase in risk of overanticoagulation by CYP2C9 mutations. Clin Pharmacol Ther 2005 Nov; 78(5): 540–50PubMedCrossRef
77.
go back to reference Steward DJ, Haining RL, Henne KR, et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997 Oct; 7(5): 361–7PubMedCrossRef Steward DJ, Haining RL, Henne KR, et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997 Oct; 7(5): 361–7PubMedCrossRef
78.
go back to reference Schalekamp T, Brasse BP, Roijers JF, et al. VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther 2006 Jul; 80(1): 13–22PubMedCrossRef Schalekamp T, Brasse BP, Roijers JF, et al. VKORC1 and CYP2C9 genotypes and acenocoumarol anticoagulation status: interaction between both genotypes affects overanticoagulation. Clin Pharmacol Ther 2006 Jul; 80(1): 13–22PubMedCrossRef
79.
go back to reference Mark L, Marki-Zay J, Fodor L, et al. Cytochrome P450 2C9 polymorphism and acenocoumarol therapy. Kardiol Pol 2006 Apr; 64(4): 397–402; discussion 403–4PubMed Mark L, Marki-Zay J, Fodor L, et al. Cytochrome P450 2C9 polymorphism and acenocoumarol therapy. Kardiol Pol 2006 Apr; 64(4): 397–402; discussion 403–4PubMed
80.
go back to reference Tassies D, Freire C, Pijoan J, et al. Pharmacogenetics of acenocoumarol: cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. Haematologica 2002 Nov; 87(11): 1185–91PubMed Tassies D, Freire C, Pijoan J, et al. Pharmacogenetics of acenocoumarol: cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. Haematologica 2002 Nov; 87(11): 1185–91PubMed
81.
go back to reference Visser LE, van Vliet M, van Schaik RH, et al. The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics 2004 Jan; 14(1): 27–33PubMedCrossRef Visser LE, van Vliet M, van Schaik RH, et al. The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics 2004 Jan; 14(1): 27–33PubMedCrossRef
82.
go back to reference Schalekamp T, Brasse BP, Roijers JF, et al. VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 2007 Feb; 81(2): 185–93PubMedCrossRef Schalekamp T, Brasse BP, Roijers JF, et al. VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther 2007 Feb; 81(2): 185–93PubMedCrossRef
83.
go back to reference Schalekamp T, Oosterhof M, van Meegen E, et al. Effects of cytochrome P450 2C9 polymorphisms on phenprocoumon anticoagulation status. Clin Pharmacol Ther 2004 Nov; 76(5): 409–17PubMedCrossRef Schalekamp T, Oosterhof M, van Meegen E, et al. Effects of cytochrome P450 2C9 polymorphisms on phenprocoumon anticoagulation status. Clin Pharmacol Ther 2004 Nov; 76(5): 409–17PubMedCrossRef
84.
go back to reference Schelleman H, Chen Z, Kealey C, et al. Warfarin response and vitamin K epoxide reductase complex 1 in African Americans and Caucasians. Clin Pharmacol Ther 2007 May; 81(5): 742–7PubMedCrossRef Schelleman H, Chen Z, Kealey C, et al. Warfarin response and vitamin K epoxide reductase complex 1 in African Americans and Caucasians. Clin Pharmacol Ther 2007 May; 81(5): 742–7PubMedCrossRef
85.
go back to reference Herman D, Peternel P, Stegnar M, et al. The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb Haemost 2006 May; 95(5): 782–7PubMed Herman D, Peternel P, Stegnar M, et al. The influence of sequence variations in factor VII, gamma-glutamyl carboxylase and vitamin K epoxide reductase complex genes on warfarin dose requirement. Thromb Haemost 2006 May; 95(5): 782–7PubMed
86.
go back to reference D’Andrea G, D’Ambrosio RL, Di Perna P, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 2005 Jan 15; 105(2): 645–9PubMedCrossRef D’Andrea G, D’Ambrosio RL, Di Perna P, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 2005 Jan 15; 105(2): 645–9PubMedCrossRef
87.
go back to reference Zhu Y, Shennan M, Reynolds KK, et al. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes. Clin Chem 2007 Jul; 53(7): 1199–205PubMedCrossRef Zhu Y, Shennan M, Reynolds KK, et al. Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes. Clin Chem 2007 Jul; 53(7): 1199–205PubMedCrossRef
88.
go back to reference Borgiani P, Ciccacci C, Forte V, et al. Allelic variants in the CYP2C9 and VKORC1 loci and interindividual variability in the anticoagulant dose effect of warfarin in Italians. Pharmacogenomics 2007 Nov; 8(11): 1545–50PubMedCrossRef Borgiani P, Ciccacci C, Forte V, et al. Allelic variants in the CYP2C9 and VKORC1 loci and interindividual variability in the anticoagulant dose effect of warfarin in Italians. Pharmacogenomics 2007 Nov; 8(11): 1545–50PubMedCrossRef
89.
go back to reference Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999 Oct 15; 286(5439): 487–91PubMedCrossRef Evans WE, Relling MV. Pharmacogenomics: translating functional genomics into rational therapeutics. Science 1999 Oct 15; 286(5439): 487–91PubMedCrossRef
90.
go back to reference Yasar U, Eliasson E, Dahl ML, et al. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999 Jan 27; 254(3): 628–31PubMedCrossRef Yasar U, Eliasson E, Dahl ML, et al. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999 Jan 27; 254(3): 628–31PubMedCrossRef
91.
go back to reference Xie HG, Prasad HC, Kim RB, et al. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 2002 Nov 18; 54(10): 1257–70PubMedCrossRef Xie HG, Prasad HC, Kim RB, et al. CYP2C9 allelic variants: ethnic distribution and functional significance. Adv Drug Deliv Rev 2002 Nov 18; 54(10): 1257–70PubMedCrossRef
92.
go back to reference Kidd RS, Curry TB, Gallagher S, et al. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 2001 Dec; 11(9): 803–8PubMedCrossRef Kidd RS, Curry TB, Gallagher S, et al. Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 2001 Dec; 11(9): 803–8PubMedCrossRef
93.
go back to reference Yasar U, Aklillu E, Canaparo R, et al. Analysis of CYP2C9*5 in Caucasian, Oriental and black-African populations. Eur J Clin Pharmacol 2002 Nov; 58(8): 555–8PubMedCrossRef Yasar U, Aklillu E, Canaparo R, et al. Analysis of CYP2C9*5 in Caucasian, Oriental and black-African populations. Eur J Clin Pharmacol 2002 Nov; 58(8): 555–8PubMedCrossRef
94.
go back to reference Crespi CL, Miller VP. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPHxytochrome P450 oxidoreductase. Pharmacogenetics 1997 Jun; 7(3): 203–10PubMedCrossRef Crespi CL, Miller VP. The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPHxytochrome P450 oxidoreductase. Pharmacogenetics 1997 Jun; 7(3): 203–10PubMedCrossRef
95.
go back to reference Haining RL, Hunter AP, Veronese ME, et al. Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 1996 Sep 15; 333(2): 447–58PubMedCrossRef Haining RL, Hunter AP, Veronese ME, et al. Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 1996 Sep 15; 333(2): 447–58PubMedCrossRef
96.
go back to reference Rettie AE, Wienkers LC, Gonzalez FJ, et al. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994 Feb; 4(1): 39–42PubMedCrossRef Rettie AE, Wienkers LC, Gonzalez FJ, et al. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994 Feb; 4(1): 39–42PubMedCrossRef
97.
go back to reference Breckenridge A, Orme M, Wesseling H, et al. Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man. Clin Pharmacol Ther 1974 Apr; 15(4): 424–30PubMed Breckenridge A, Orme M, Wesseling H, et al. Pharmacokinetics and pharmacodynamics of the enantiomers of warfarin in man. Clin Pharmacol Ther 1974 Apr; 15(4): 424–30PubMed
98.
go back to reference Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 2001; 40(8): 587–603PubMedCrossRef Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 2001; 40(8): 587–603PubMedCrossRef
99.
go back to reference Loebstein R, Yonath H, Peleg D, et al. Interindividual variability in sensitivity to warfarin: nature or nurture? Clin Pharmacol Ther 2001 Aug; 70(2): 159–64PubMedCrossRef Loebstein R, Yonath H, Peleg D, et al. Interindividual variability in sensitivity to warfarin: nature or nurture? Clin Pharmacol Ther 2001 Aug; 70(2): 159–64PubMedCrossRef
100.
go back to reference Takahashi H, Kashima T, Nomizo Y, et al. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Clin Pharmacol Ther 1998 May; 63(5): 519–28PubMedCrossRef Takahashi H, Kashima T, Nomizo Y, et al. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Clin Pharmacol Ther 1998 May; 63(5): 519–28PubMedCrossRef
101.
go back to reference Takahashi H, Echizen H. Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin. Pharmacogenomics J 2003; 3(4): 202–14PubMedCrossRef Takahashi H, Echizen H. Pharmacogenetics of CYP2C9 and interindividual variability in anticoagulant response to warfarin. Pharmacogenomics J 2003; 3(4): 202–14PubMedCrossRef
102.
go back to reference Freeman BD, Zehnbauer BA, McGrath S, et al. Cytochrome P450 polymorphisms are associated with reduced warfarin dose. Surgery 2000 Aug; 128(2): 281–5PubMedCrossRef Freeman BD, Zehnbauer BA, McGrath S, et al. Cytochrome P450 polymorphisms are associated with reduced warfarin dose. Surgery 2000 Aug; 128(2): 281–5PubMedCrossRef
103.
go back to reference Kohnke H, Sorlin K, Granath G, et al. Warfarin dose related to apolipoprotein E (APOE) genotype. Eur J Clin Pharmacol 2005 Jul; 61(5–6): 381–8PubMedCrossRef Kohnke H, Sorlin K, Granath G, et al. Warfarin dose related to apolipoprotein E (APOE) genotype. Eur J Clin Pharmacol 2005 Jul; 61(5–6): 381–8PubMedCrossRef
104.
go back to reference Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and metaanalysis. Genet Med 2005 Feb; 7(2): 97–104PubMedCrossRef Sanderson S, Emery J, Higgins J. CYP2C9 gene variants, drug dose, and bleeding risk in warfarin-treated patients: a HuGEnet systematic review and metaanalysis. Genet Med 2005 Feb; 7(2): 97–104PubMedCrossRef
105.
go back to reference Bloch A, Ben-Chetrit E, Muszkat M, et al. Major bleeding caused by warfarin in a genetically susceptible patient. Pharmacotherapy 2002 Jan; 22(1): 97–101PubMedCrossRef Bloch A, Ben-Chetrit E, Muszkat M, et al. Major bleeding caused by warfarin in a genetically susceptible patient. Pharmacotherapy 2002 Jan; 22(1): 97–101PubMedCrossRef
106.
go back to reference Limdi NA, McGwin G, Goldstein JA, et al. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther 2008 Feb; 83(2): 312–21PubMedCrossRef Limdi NA, McGwin G, Goldstein JA, et al. Influence of CYP2C9 and VKORC1 1173C/T genotype on the risk of hemorrhagic complications in African-American and European-American patients on warfarin. Clin Pharmacol Ther 2008 Feb; 83(2): 312–21PubMedCrossRef
107.
go back to reference Takahashi H, Wilkinson GR, Padrini R, et al. CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin: similarities yet differences. Clin Pharmacol Ther 2004 May; 75(5): 376–80PubMedCrossRef Takahashi H, Wilkinson GR, Padrini R, et al. CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin: similarities yet differences. Clin Pharmacol Ther 2004 May; 75(5): 376–80PubMedCrossRef
108.
go back to reference Thijssen HH, Ritzen B. Acenocoumarol pharmacokinetics in relation to cytochrome P450 2C9 genotype. Clin Pharmacol Ther 2003 Jul; 74(1): 61–8PubMedCrossRef Thijssen HH, Ritzen B. Acenocoumarol pharmacokinetics in relation to cytochrome P450 2C9 genotype. Clin Pharmacol Ther 2003 Jul; 74(1): 61–8PubMedCrossRef
109.
go back to reference Visser LE, van Schaik RH, van Vliet M, et al. The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thromb Haemost 2004 Jul; 92(1): 61–6PubMed Visser LE, van Schaik RH, van Vliet M, et al. The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thromb Haemost 2004 Jul; 92(1): 61–6PubMed
110.
go back to reference Mark L, Marki-Zay J, Paragh G, et al. Retrospective analyses of acenocoumarol doses and bleeding complications in patients with wild type or variant cytochrome P450 CYP2C9 alleles. Thromb Haemost 2005 Feb; 93(2): 396–7PubMed Mark L, Marki-Zay J, Paragh G, et al. Retrospective analyses of acenocoumarol doses and bleeding complications in patients with wild type or variant cytochrome P450 CYP2C9 alleles. Thromb Haemost 2005 Feb; 93(2): 396–7PubMed
111.
go back to reference Kirchheiner J, Ufer M, Walter EC, et al. Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phenprocoumon in healthy volunteers. Pharmacogenetics 2004 Jan; 14(1): 19–26PubMedCrossRef Kirchheiner J, Ufer M, Walter EC, et al. Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phenprocoumon in healthy volunteers. Pharmacogenetics 2004 Jan; 14(1): 19–26PubMedCrossRef
112.
go back to reference Pauli RM, Lian JB, Mosher DF, et al. Association of congenital deficiency of multiple vitamin K-dependent coagulation factors and the phenotype of the warfarin embryopathy: clues to the mechanism of teratogenicity of coumarin derivatives. Am J Hum Genet 1987 Oct; 41(4): 566–83PubMed Pauli RM, Lian JB, Mosher DF, et al. Association of congenital deficiency of multiple vitamin K-dependent coagulation factors and the phenotype of the warfarin embryopathy: clues to the mechanism of teratogenicity of coumarin derivatives. Am J Hum Genet 1987 Oct; 41(4): 566–83PubMed
113.
go back to reference Cain D, Hutson SM, Wallin R. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. J Biol Chem 1997 Nov 14; 272(46): 29068–75PubMedCrossRef Cain D, Hutson SM, Wallin R. Assembly of the warfarin-sensitive vitamin K 2,3-epoxide reductase enzyme complex in the endoplasmic reticulum membrane. J Biol Chem 1997 Nov 14; 272(46): 29068–75PubMedCrossRef
114.
go back to reference Reitsma PH, van der Heijden JF, Groot AP, et al. A C1173T dimorphism in the VKORC1 gene determines coumarin sensitivity and bleeding risk. PLoS Med 2005 Oct; 2(10): e312PubMedCrossRef Reitsma PH, van der Heijden JF, Groot AP, et al. A C1173T dimorphism in the VKORC1 gene determines coumarin sensitivity and bleeding risk. PLoS Med 2005 Oct; 2(10): e312PubMedCrossRef
115.
go back to reference Rieder MJ, Reiner AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005 Jun 2; 352(22): 2285–93PubMedCrossRef Rieder MJ, Reiner AP, Gage BF, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 2005 Jun 2; 352(22): 2285–93PubMedCrossRef
116.
go back to reference Wadelius M, Chen LY, Downes K, et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 2005; 5(4): 262–70PubMedCrossRef Wadelius M, Chen LY, Downes K, et al. Common VKORC1 and GGCX polymorphisms associated with warfarin dose. Pharmacogenomics J 2005; 5(4): 262–70PubMedCrossRef
117.
go back to reference Osman A, Enstrom C, Arbring K, et al. Main haplotypes and mutational analysis of vitamin K epoxide reductase (VKORC1) in a Swedish population: a retrospective analysis of case records. J Thromb Haemost 2006 Aug; 4(8): 1723–9PubMedCrossRef Osman A, Enstrom C, Arbring K, et al. Main haplotypes and mutational analysis of vitamin K epoxide reductase (VKORC1) in a Swedish population: a retrospective analysis of case records. J Thromb Haemost 2006 Aug; 4(8): 1723–9PubMedCrossRef
118.
go back to reference Loebstein R, Dvoskin I, Halkin H, et al. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 2007 Mar 15; 109(6): 2477–80PubMedCrossRef Loebstein R, Dvoskin I, Halkin H, et al. A coding VKORC1 Asp36Tyr polymorphism predisposes to warfarin resistance. Blood 2007 Mar 15; 109(6): 2477–80PubMedCrossRef
119.
go back to reference Obayashi K, Nakamura K, Kawana J, et al. VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Clin Pharmacol Ther 2006 Aug; 80(2): 169–78PubMedCrossRef Obayashi K, Nakamura K, Kawana J, et al. VKORC1 gene variations are the major contributors of variation in warfarin dose in Japanese patients. Clin Pharmacol Ther 2006 Aug; 80(2): 169–78PubMedCrossRef
120.
go back to reference Veenstra DL, You JH, Rieder MJ, et al. Association of vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genomics 2005 Oct; 15(10): 687–91PubMedCrossRef Veenstra DL, You JH, Rieder MJ, et al. Association of vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genomics 2005 Oct; 15(10): 687–91PubMedCrossRef
121.
go back to reference Takahashi H, Wilkinson GR, Nutescu EA, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 2006 Feb; 16(2): 101–10PubMedCrossRef Takahashi H, Wilkinson GR, Nutescu EA, et al. Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra- and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 2006 Feb; 16(2): 101–10PubMedCrossRef
122.
go back to reference Geisen C, Watzka M, Sittinger K, et al. VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost 2005 Oct; 94(4): 773–9PubMed Geisen C, Watzka M, Sittinger K, et al. VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost 2005 Oct; 94(4): 773–9PubMed
123.
go back to reference Yuan HY, Chen JJ, Lee MT, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 2005 Jul 1; 14(13): 1745–51PubMedCrossRef Yuan HY, Chen JJ, Lee MT, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 2005 Jul 1; 14(13): 1745–51PubMedCrossRef
124.
go back to reference Bodin L, Verstuyft C, Tregouet DA, et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 2005 Jul 1; 106(1): 135–40PubMedCrossRef Bodin L, Verstuyft C, Tregouet DA, et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood 2005 Jul 1; 106(1): 135–40PubMedCrossRef
125.
go back to reference Rost S, Fregin A, Ivaskevicius V, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004 Feb 5; 427(6974): 537–41PubMedCrossRef Rost S, Fregin A, Ivaskevicius V, et al. Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 2004 Feb 5; 427(6974): 537–41PubMedCrossRef
126.
go back to reference Harrington DJ, Underwood S, Morse C, et al. Pharmacodynamic resistance to warfarin associated with a Val66Met substitution in vitamin K epoxide reductase complex subunit 1. Thromb Haemost 2005 Jan; 93(1): 23–6PubMed Harrington DJ, Underwood S, Morse C, et al. Pharmacodynamic resistance to warfarin associated with a Val66Met substitution in vitamin K epoxide reductase complex subunit 1. Thromb Haemost 2005 Jan; 93(1): 23–6PubMed
127.
go back to reference Tham LS, Goh BC, Nafziger A, et al. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther 2006 Oct; 80(4): 346–55PubMedCrossRef Tham LS, Goh BC, Nafziger A, et al. A warfarin-dosing model in Asians that uses single-nucleotide polymorphisms in vitamin K epoxide reductase complex and cytochrome P450 2C9. Clin Pharmacol Ther 2006 Oct; 80(4): 346–55PubMedCrossRef
128.
go back to reference Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J 2007 Apr; 7(2): 99–111PubMedCrossRef Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J 2007 Apr; 7(2): 99–111PubMedCrossRef
129.
go back to reference Cain D, Hutson SM, Wallin R. Warfarin resistance is associated with a protein component of the vitamin K 2,3-epoxide reductase enzyme complex in rat liver. Thromb Haemost 1998 Jul; 80(1): 128–33PubMed Cain D, Hutson SM, Wallin R. Warfarin resistance is associated with a protein component of the vitamin K 2,3-epoxide reductase enzyme complex in rat liver. Thromb Haemost 1998 Jul; 80(1): 128–33PubMed
130.
go back to reference Bredschneider M, Klein K, Murdter TE, et al. Genetic polymorphisms of glutathione S-transferase A1, the major glutathione S-transferase in human liver: consequences for enzyme expression and busulfan conjugation. Clin Pharmacol Ther 2002 Jun; 71(6): 479–87PubMedCrossRef Bredschneider M, Klein K, Murdter TE, et al. Genetic polymorphisms of glutathione S-transferase A1, the major glutathione S-transferase in human liver: consequences for enzyme expression and busulfan conjugation. Clin Pharmacol Ther 2002 Jun; 71(6): 479–87PubMedCrossRef
131.
go back to reference Morel F, Rauch C, Coles B, et al. The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter. Pharmacogenetics 2002 Jun; 12(4): 277–86PubMedCrossRef Morel F, Rauch C, Coles B, et al. The human glutathione transferase alpha locus: genomic organization of the gene cluster and functional characterization of the genetic polymorphism in the hGSTA1 promoter. Pharmacogenetics 2002 Jun; 12(4): 277–86PubMedCrossRef
132.
go back to reference Loebstein R, Vecsler M, Kurnik D, et al. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Clin Pharmacol Ther 2005 May; 77(5): 365–72PubMedCrossRef Loebstein R, Vecsler M, Kurnik D, et al. Common genetic variants of microsomal epoxide hydrolase affect warfarin dose requirements beyond the effect of cytochrome P450 2C9. Clin Pharmacol Ther 2005 May; 77(5): 365–72PubMedCrossRef
133.
go back to reference Hassett C, Aicher L, Sidhu JS, et al. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet 1994 Mar; 3(3): 421–8PubMedCrossRef Hassett C, Aicher L, Sidhu JS, et al. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet 1994 Mar; 3(3): 421–8PubMedCrossRef
134.
go back to reference Omiecinski CJ, Hassett C, Hosagrahara V. Epoxide hydrolase: polymorphism and role in toxicology. Toxicol Lett 2000 Mar 15; 112–113: 365–70 Omiecinski CJ, Hassett C, Hosagrahara V. Epoxide hydrolase: polymorphism and role in toxicology. Toxicol Lett 2000 Mar 15; 112–113: 365–70
135.
go back to reference Hassett C, Lin J, Carty CL, et al. Human hepatic microsomal epoxide hydrolase: comparative analysis of polymorphic expression. Arch Biochem Biophys 1997 Jan 15; 337(2): 275–83PubMedCrossRef Hassett C, Lin J, Carty CL, et al. Human hepatic microsomal epoxide hydrolase: comparative analysis of polymorphic expression. Arch Biochem Biophys 1997 Jan 15; 337(2): 275–83PubMedCrossRef
136.
go back to reference Shearer MJ. The roles of vitamins D and K in bone health and osteoporosis prevention. Proc Nutr Soc 1997 Nov; 56(3): 915–37PubMedCrossRef Shearer MJ. The roles of vitamins D and K in bone health and osteoporosis prevention. Proc Nutr Soc 1997 Nov; 56(3): 915–37PubMedCrossRef
137.
go back to reference Berkner KL, Runge KW. The physiology of vitamin K nutriture and vitamin K-dependent protein function in atherosclerosis. J Thromb Haemost 2004 Dec; 2(12): 2118–32PubMedCrossRef Berkner KL, Runge KW. The physiology of vitamin K nutriture and vitamin K-dependent protein function in atherosclerosis. J Thromb Haemost 2004 Dec; 2(12): 2118–32PubMedCrossRef
138.
go back to reference Saupe J, Shearer MJ, Kohlmeier M. Phylloquinone transport and its influence on gamma-carboxyglutamate residues of osteocalcin in patients on maintenance hemodialysis. Am J Clin Nutr 1993 Aug; 58(2): 204–8PubMed Saupe J, Shearer MJ, Kohlmeier M. Phylloquinone transport and its influence on gamma-carboxyglutamate residues of osteocalcin in patients on maintenance hemodialysis. Am J Clin Nutr 1993 Aug; 58(2): 204–8PubMed
139.
go back to reference Kohlmeier M, Salomon A, Saupe J, et al. Transport of vitamin K to bone in humans. J Nutr 1996 Apr; 126 (4 Suppl.): 1192S–6SPubMed Kohlmeier M, Salomon A, Saupe J, et al. Transport of vitamin K to bone in humans. J Nutr 1996 Apr; 126 (4 Suppl.): 1192S–6SPubMed
140.
go back to reference Wadelius M, Chen LY, Eriksson N, et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet 2007 Mar; 121(1): 23–34PubMedCrossRef Wadelius M, Chen LY, Eriksson N, et al. Association of warfarin dose with genes involved in its action and metabolism. Hum Genet 2007 Mar; 121(1): 23–34PubMedCrossRef
141.
go back to reference Sconce EA, Daly AK, Khan TI, et al. APOE genotype makes a small contribution to warfarin dose requirements. Pharmacogenet Genomics 2006 Aug; 16(8): 609–11PubMedCrossRef Sconce EA, Daly AK, Khan TI, et al. APOE genotype makes a small contribution to warfarin dose requirements. Pharmacogenet Genomics 2006 Aug; 16(8): 609–11PubMedCrossRef
142.
go back to reference Lal S, Sandanaraj E, Jada SR, et al. Influence of APOE genotypes and VKORC1 haplotypes on warfarin dose requirements in Asian patients. Br J Clin Pharmacol 2008 Feb; 65(2): 260–4PubMedCrossRef Lal S, Sandanaraj E, Jada SR, et al. Influence of APOE genotypes and VKORC1 haplotypes on warfarin dose requirements in Asian patients. Br J Clin Pharmacol 2008 Feb; 65(2): 260–4PubMedCrossRef
143.
go back to reference Kuo WL, Stafford DW, Cruces J, et al. Chromosomal localization of the gammaglutamyl carboxylase gene at 2p12. Genomics 1995 Feb 10; 25(3): 746–8PubMedCrossRef Kuo WL, Stafford DW, Cruces J, et al. Chromosomal localization of the gammaglutamyl carboxylase gene at 2p12. Genomics 1995 Feb 10; 25(3): 746–8PubMedCrossRef
144.
go back to reference Lingenfelter SE, Berkner KL. Isolation of the human gamma-carboxylase and a gamma-carboxylase-associated protein from factor IX-expressing mammalian cells. Biochemistry 1996 Jun 25; 35(25): 8234–43PubMedCrossRef Lingenfelter SE, Berkner KL. Isolation of the human gamma-carboxylase and a gamma-carboxylase-associated protein from factor IX-expressing mammalian cells. Biochemistry 1996 Jun 25; 35(25): 8234–43PubMedCrossRef
145.
go back to reference Suttie JW, Canfield LM, Shah DV. Microsomal vitamin K-dependent carboxylase. Methods Enzymol 1980; 67: 180–5PubMedCrossRef Suttie JW, Canfield LM, Shah DV. Microsomal vitamin K-dependent carboxylase. Methods Enzymol 1980; 67: 180–5PubMedCrossRef
146.
go back to reference Wu SM, Stafford DW, Frazier LD, et al. Genomic sequence and transcription start site for the human gamma-glutamyl carboxylase. Blood 1997 Jun 1; 89(11): 4058–62PubMed Wu SM, Stafford DW, Frazier LD, et al. Genomic sequence and transcription start site for the human gamma-glutamyl carboxylase. Blood 1997 Jun 1; 89(11): 4058–62PubMed
147.
go back to reference Rieder MJ, Reiner AP, Rettie AE. Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J Thromb Haemost 2007 Nov; 5(11): 2227–34PubMedCrossRef Rieder MJ, Reiner AP, Rettie AE. Gamma-glutamyl carboxylase (GGCX) tagSNPs have limited utility for predicting warfarin maintenance dose. J Thromb Haemost 2007 Nov; 5(11): 2227–34PubMedCrossRef
148.
go back to reference Hylek EM, Regan S, Go AS, et al. Clinical predictors of prolonged delay in return of the international normalized ratio to within the therapeutic range after excessive anticoagulation with warfarin. Ann Intern Med 2001 Sep 18; 135(6): 393–400PubMed Hylek EM, Regan S, Go AS, et al. Clinical predictors of prolonged delay in return of the international normalized ratio to within the therapeutic range after excessive anticoagulation with warfarin. Ann Intern Med 2001 Sep 18; 135(6): 393–400PubMed
149.
go back to reference Hamberg AK, Dahl ML, Barban M, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther 2007 Apr; 81(4): 529–38PubMedCrossRef Hamberg AK, Dahl ML, Barban M, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther 2007 Apr; 81(4): 529–38PubMedCrossRef
150.
go back to reference Almog S, Shafran N, Halkin H, et al. Mechanism of warfarin potentiation by amiodarone: dose- and concentration-dependent inhibition of warfarin elimination. Eur J Clin Pharmacol 1985; 28(3): 257–61PubMedCrossRef Almog S, Shafran N, Halkin H, et al. Mechanism of warfarin potentiation by amiodarone: dose- and concentration-dependent inhibition of warfarin elimination. Eur J Clin Pharmacol 1985; 28(3): 257–61PubMedCrossRef
151.
go back to reference Transon C, Leemann T, Vogt N, et al. In vivo inhibition profile of cytochrome P450TB (CYP2C9) by (+/-)-fluvastatin. Clin Pharmacol Ther 1995 Oct; 58(4): 412–7PubMedCrossRef Transon C, Leemann T, Vogt N, et al. In vivo inhibition profile of cytochrome P450TB (CYP2C9) by (+/-)-fluvastatin. Clin Pharmacol Ther 1995 Oct; 58(4): 412–7PubMedCrossRef
152.
go back to reference Hemeryck A, De Vriendt C, Belpaire FM. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)-warfarin using human liver microsomes. Eur J Clin Pharmacol 1999 Feb; 54(12): 947–51PubMedCrossRef Hemeryck A, De Vriendt C, Belpaire FM. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)-warfarin using human liver microsomes. Eur J Clin Pharmacol 1999 Feb; 54(12): 947–51PubMedCrossRef
154.
go back to reference Chan E, McLachlan A, O’Reilly R, et al. Stereochemical aspects of warfarin drug interactions: use of a combined pharmacokinetic-pharmacodynamic model. Clin Pharmacol Ther 1994 Sep; 56(3): 286–94PubMedCrossRef Chan E, McLachlan A, O’Reilly R, et al. Stereochemical aspects of warfarin drug interactions: use of a combined pharmacokinetic-pharmacodynamic model. Clin Pharmacol Ther 1994 Sep; 56(3): 286–94PubMedCrossRef
155.
go back to reference Wittkowsky AK. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. Semin Vasc Med 2003 Aug; 3(3): 221–30PubMedCrossRef Wittkowsky AK. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. Semin Vasc Med 2003 Aug; 3(3): 221–30PubMedCrossRef
156.
go back to reference Madabushi R, Frank B, Drewelow B, et al. Hyperforin in St John’s wort drug interactions. Eur J Clin Pharmacol 2006 Mar; 62(3): 225–33PubMedCrossRef Madabushi R, Frank B, Drewelow B, et al. Hyperforin in St John’s wort drug interactions. Eur J Clin Pharmacol 2006 Mar; 62(3): 225–33PubMedCrossRef
157.
go back to reference Harder S, Thurmann P. Clinically important drug interactions with anticoagulants: an update. Clin Pharmacokinet 1996 Jun; 30(6): 416–44PubMedCrossRef Harder S, Thurmann P. Clinically important drug interactions with anticoagulants: an update. Clin Pharmacokinet 1996 Jun; 30(6): 416–44PubMedCrossRef
158.
go back to reference Lubetsky A, Dekel-Stern E, Chetrit A, et al. Vitamin K intake and sensitivity to warfarin in patients consuming regular diets. Thromb Haemost 1999 Mar; 81(3): 396–9PubMed Lubetsky A, Dekel-Stern E, Chetrit A, et al. Vitamin K intake and sensitivity to warfarin in patients consuming regular diets. Thromb Haemost 1999 Mar; 81(3): 396–9PubMed
159.
go back to reference Wells PS, Holbrook AM, Crowther NR, et al. Interactions of warfarin with drugs and food. Ann Intern Med 1994 Nov 1; 121(9): 676–83PubMed Wells PS, Holbrook AM, Crowther NR, et al. Interactions of warfarin with drugs and food. Ann Intern Med 1994 Nov 1; 121(9): 676–83PubMed
160.
go back to reference Zhao F, Loke C, Rankin SC, et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther 2004 Sep; 76(3): 210–9PubMedCrossRef Zhao F, Loke C, Rankin SC, et al. Novel CYP2C9 genetic variants in Asian subjects and their influence on maintenance warfarin dose. Clin Pharmacol Ther 2004 Sep; 76(3): 210–9PubMedCrossRef
161.
go back to reference Kuehn BM. Health agencies update: warfarin label update. JAMA 2007 Sep 26; 298(12): 1389 Kuehn BM. Health agencies update: warfarin label update. JAMA 2007 Sep 26; 298(12): 1389
162.
go back to reference Anderson JL, Horne BD, Stevens SM, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 2007 Nov 27; 116(22): 2563–70PubMedCrossRef Anderson JL, Horne BD, Stevens SM, et al. Randomized trial of genotype-guided versus standard warfarin dosing in patients initiating oral anticoagulation. Circulation 2007 Nov 27; 116(22): 2563–70PubMedCrossRef
163.
go back to reference Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther 2008 Mar; 83(3): 460–70PubMedCrossRef Caraco Y, Blotnick S, Muszkat M. CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation: a prospective randomized controlled study. Clin Pharmacol Ther 2008 Mar; 83(3): 460–70PubMedCrossRef
Metadata
Title
Pharmacogenetics of Oral Anticoagulants
A Basis for Dose Individualization
Authors
Simone Stehle
Julia Kirchheiner
Andreas Lazar
Prof. Dr med. Uwe Fuhr
Publication date
01-09-2008
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 9/2008
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200847090-00002