Skip to main content
Top
Published in: Clinical Pharmacokinetics 7/2008

01-07-2008 | Review Article

Pharmacokinetic/Pharmacodynamic Modelling in Diabetes Mellitus

Authors: Cornelia B. Landersdorfer, Prof. William J. Jusko

Published in: Clinical Pharmacokinetics | Issue 7/2008

Login to get access

Abstract

Diabetes mellitus is a major health risk in many countries, and the incidence rates are increasing. Diverse therapeutic agents are applied to treat this condition. Since 1960, numerous mathematical models have been developed to describe the glucose-insulin system, analyse data from diagnostic tests and quantify drug effects. This review summarizes the present state-of-the-art in diabetes modelling, with a focus on models describing drug effects, and identifies major strengths and limitations of the published models.
For diagnostic purposes, the minimal model has remained the most popular choice for several decades, and numerous extensions have been developed. Use of the minimal model is limited for applications other than diagnostic tests. More mechanistic models that include glucose-insulin feedback in both directions have been applied. The use of biophase distribution models for the description of drug effects is not always appropriate. More recently, the effects of various antidiabetic agents on glucose and insulin have been modelled with indirect response models. Such models provide good curve fits and mechanistic descriptions of the effects of antidiabetic drugs on glucose-insulin homeostasis. These and other types of models were used to describe secondary drug effects on glucose and insulin, and effects on ancillary biomarkers. Modelling of disease progression in diabetes can utilize indirect response models as a disturbance of homeostasis.
Future needs are to include glucose-insulin feedback more often, develop mechanistic models for new drug groups, consider dual drug effects on complementary subsystems, and incorporate elements of disease progression.
Literature
2.
go back to reference LeRoith D. Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med 2002 Oct 28; 113 Suppl. 6A: 3S–11SPubMedCrossRef LeRoith D. Beta-cell dysfunction and insulin resistance in type 2 diabetes: role of metabolic and genetic abnormalities. Am J Med 2002 Oct 28; 113 Suppl. 6A: 3S–11SPubMedCrossRef
3.
go back to reference US Centers for Disease Control and Prevention (CDC). National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2005. Atlanta (GA): CDC, 2005 US Centers for Disease Control and Prevention (CDC). National diabetes fact sheet: general information and national estimates on diabetes in the United States, 2005. Atlanta (GA): CDC, 2005
4.
go back to reference American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008 Mar; 31(3): 596–615CrossRef American Diabetes Association. Economic costs of diabetes in the U.S. in 2007. Diabetes Care 2008 Mar; 31(3): 596–615CrossRef
5.
go back to reference Graham G, Gupta S, Aarons L. Determination of an optimal dosage regimen using a Bayesian decision analysis of efficacy and adverse effect data. J Pharmacokinet Pharmacodyn 2002 Feb; 29(1): 67–88PubMedCrossRef Graham G, Gupta S, Aarons L. Determination of an optimal dosage regimen using a Bayesian decision analysis of efficacy and adverse effect data. J Pharmacokinet Pharmacodyn 2002 Feb; 29(1): 67–88PubMedCrossRef
6.
go back to reference Boutayeb A, Chetouani A. A critical review of mathematical models and data used in diabetology. Biomed Eng Online 2006; 5: 43PubMedCrossRef Boutayeb A, Chetouani A. A critical review of mathematical models and data used in diabetology. Biomed Eng Online 2006; 5: 43PubMedCrossRef
7.
go back to reference Makroglou A, Li J, Kuang Y. Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Appl Numer Math 2006; 56: 559–73CrossRef Makroglou A, Li J, Kuang Y. Mathematical models and software tools for the glucose-insulin regulatory system and diabetes: an overview. Appl Numer Math 2006; 56: 559–73CrossRef
8.
9.
go back to reference Mari A. Mathematical modeling in glucose metabolism and insulin secretion. Curr Opin Clin Nutr Metab Care 2002 Sep; 5(5): 495–501PubMedCrossRef Mari A. Mathematical modeling in glucose metabolism and insulin secretion. Curr Opin Clin Nutr Metab Care 2002 Sep; 5(5): 495–501PubMedCrossRef
10.
go back to reference Pacini G. Mathematical models of insulin secretion in physiological and clinical investigations. Comput Methods Programs Biomed 1994 Jan; 41(3–4): 269–85PubMedCrossRef Pacini G. Mathematical models of insulin secretion in physiological and clinical investigations. Comput Methods Programs Biomed 1994 Jan; 41(3–4): 269–85PubMedCrossRef
11.
go back to reference Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005; 65(3): 385–411PubMedCrossRef Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005; 65(3): 385–411PubMedCrossRef
12.
go back to reference Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001 Dec 13; 414(6865): 799–806PubMedCrossRef Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001 Dec 13; 414(6865): 799–806PubMedCrossRef
13.
go back to reference Mlinar B, Marc J, Janez A, et al. Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta 2007 Jan; 375(1–2): 20–35PubMedCrossRef Mlinar B, Marc J, Janez A, et al. Molecular mechanisms of insulin resistance and associated diseases. Clin Chim Acta 2007 Jan; 375(1–2): 20–35PubMedCrossRef
14.
go back to reference Raju B, Cryer PE. Maintenance of the postabsorptive plasma glucose concentration: insulin or insulin plus glucagon? Am J Physiol Endocrinol Metab 2005 Aug; 289(2): E181–6PubMedCrossRef Raju B, Cryer PE. Maintenance of the postabsorptive plasma glucose concentration: insulin or insulin plus glucagon? Am J Physiol Endocrinol Metab 2005 Aug; 289(2): E181–6PubMedCrossRef
15.
go back to reference Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005 Apr 9–15; 365(9467): 1333–46PubMedCrossRef Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005 Apr 9–15; 365(9467): 1333–46PubMedCrossRef
16.
go back to reference Katz J, Tayek JA. Gluconeogenesis and the Cori cycle in 12-, 20-, and 40-h-fasted humans. Am J Physiol 1998 Sep; 275 (3 Pt 1): E537–42PubMed Katz J, Tayek JA. Gluconeogenesis and the Cori cycle in 12-, 20-, and 40-h-fasted humans. Am J Physiol 1998 Sep; 275 (3 Pt 1): E537–42PubMed
17.
go back to reference Kjems LL, Christiansen E, Volund A, et al. Validation of methods for measurement of insulin secretion in humans in vivo. Diabetes 2000 Apr; 49(4): 580–8PubMedCrossRef Kjems LL, Christiansen E, Volund A, et al. Validation of methods for measurement of insulin secretion in humans in vivo. Diabetes 2000 Apr; 49(4): 580–8PubMedCrossRef
18.
go back to reference Nolan CJ, Madiraju MS, Delghingaro-Augusto V, et al. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 2006 Dec; 55 Suppl. 2: S16–23PubMedCrossRef Nolan CJ, Madiraju MS, Delghingaro-Augusto V, et al. Fatty acid signaling in the beta-cell and insulin secretion. Diabetes 2006 Dec; 55 Suppl. 2: S16–23PubMedCrossRef
19.
go back to reference Newsholme P, Keane D, Welters HJ, et al. Life and death decisions of the pancreatic beta-cell: the role of fatty acids. Clin Sci (Lond) 2007 Jan; 112(1): 27–42CrossRef Newsholme P, Keane D, Welters HJ, et al. Life and death decisions of the pancreatic beta-cell: the role of fatty acids. Clin Sci (Lond) 2007 Jan; 112(1): 27–42CrossRef
20.
go back to reference Tremblay F, Lavigne C, Jacques H, et al. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr 2007 Aug 21; 27: 293–310PubMedCrossRef Tremblay F, Lavigne C, Jacques H, et al. Role of dietary proteins and amino acids in the pathogenesis of insulin resistance. Annu Rev Nutr 2007 Aug 21; 27: 293–310PubMedCrossRef
21.
go back to reference Marchetti P, Lupi R, Del Prato S, et al. The pancreatic beta-cell in human type. Nutr Metab Cardiovasc Dis 2006 Mar; 16 Suppl. 1: S3–6PubMedCrossRef Marchetti P, Lupi R, Del Prato S, et al. The pancreatic beta-cell in human type. Nutr Metab Cardiovasc Dis 2006 Mar; 16 Suppl. 1: S3–6PubMedCrossRef
22.
go back to reference Singh-Franco D, Robles G, Gazze D. Pramlintide acetate injection for the treatment of type 1 and type 2 diabetes mellitus. Clin Ther 2007 Apr; 29(4): 535–62PubMedCrossRef Singh-Franco D, Robles G, Gazze D. Pramlintide acetate injection for the treatment of type 1 and type 2 diabetes mellitus. Clin Ther 2007 Apr; 29(4): 535–62PubMedCrossRef
23.
go back to reference Ahren B, Larsson H. Impaired glucose tolerance (IGT) is associated with reduced insulin-induced suppression of glucagon concentrations. Diabetologia 2001 Nov; 44(11): 1998–2003PubMedCrossRef Ahren B, Larsson H. Impaired glucose tolerance (IGT) is associated with reduced insulin-induced suppression of glucagon concentrations. Diabetologia 2001 Nov; 44(11): 1998–2003PubMedCrossRef
24.
go back to reference Ludvik B, Thomaseth K, Nolan JJ, et al. Inverse relation between amylin and glucagon secretion in healthy and diabetic human subjects. Eur J Clin Invest 2003 Apr; 33(4): 316–22PubMedCrossRef Ludvik B, Thomaseth K, Nolan JJ, et al. Inverse relation between amylin and glucagon secretion in healthy and diabetic human subjects. Eur J Clin Invest 2003 Apr; 33(4): 316–22PubMedCrossRef
25.
go back to reference Wookey PJ, Lutz TA, Andrikopoulos S. Amylin in the periphery II: an updated mini-review. Sci World J 2006; 6: 1642–55CrossRef Wookey PJ, Lutz TA, Andrikopoulos S. Amylin in the periphery II: an updated mini-review. Sci World J 2006; 6: 1642–55CrossRef
27.
go back to reference Colburn WA, Gottlieb AB, Koda J, et al. Pharmacokinetics and pharmacodynamics of AC137 (25,28,29 tripro-amylin, human) after intravenous bolus and infusion doses in patients with insulin-dependent diabetes. J Clin Pharmacol 1996 Jan; 36(1): 13–24PubMed Colburn WA, Gottlieb AB, Koda J, et al. Pharmacokinetics and pharmacodynamics of AC137 (25,28,29 tripro-amylin, human) after intravenous bolus and infusion doses in patients with insulin-dependent diabetes. J Clin Pharmacol 1996 Jan; 36(1): 13–24PubMed
28.
go back to reference Kerckhoffs DA, Arner P, Bolinder J. Lipolysis and lactate production in human skeletal muscle and adipose tissue following glucose ingestion. Clin Sci (Lond) 1998 Jan; 94(1): 71–7 Kerckhoffs DA, Arner P, Bolinder J. Lipolysis and lactate production in human skeletal muscle and adipose tissue following glucose ingestion. Clin Sci (Lond) 1998 Jan; 94(1): 71–7
29.
go back to reference Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006 Nov 11; 368(9548): 1696–705PubMedCrossRef Drucker DJ, Nauck MA. The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006 Nov 11; 368(9548): 1696–705PubMedCrossRef
30.
go back to reference Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007 May; 132(6): 2131–57PubMedCrossRef Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology 2007 May; 132(6): 2131–57PubMedCrossRef
31.
go back to reference Deacon CF, Nauck MA, Meier J, et al. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 2000 Oct; 85(10): 3575–81PubMedCrossRef Deacon CF, Nauck MA, Meier J, et al. Degradation of endogenous and exogenous gastric inhibitory polypeptide in healthy and in type 2 diabetic subjects as revealed using a new assay for the intact peptide. J Clin Endocrinol Metab 2000 Oct; 85(10): 3575–81PubMedCrossRef
32.
go back to reference Lam TK, Carpentier A, Lewis GF, et al. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrinol Metab 2003 May; 284(5): E863–73PubMed Lam TK, Carpentier A, Lewis GF, et al. Mechanisms of the free fatty acid-induced increase in hepatic glucose production. Am J Physiol Endocrinol Metab 2003 May; 284(5): E863–73PubMed
33.
go back to reference Almon RR, Dubois DC, Jin JY, et al. Temporal profiling of the transcriptional basis for the development of corticosteroid-induced insulin resistance in rat muscle. J Endocrinol 2005 Jan; 184(1): 219–32PubMedCrossRef Almon RR, Dubois DC, Jin JY, et al. Temporal profiling of the transcriptional basis for the development of corticosteroid-induced insulin resistance in rat muscle. J Endocrinol 2005 Jan; 184(1): 219–32PubMedCrossRef
34.
go back to reference Koistinen HA, Zierath JR. Regulation of glucose transport in human skeletal muscle. Ann Med 2002; 34(6): 410–8PubMedCrossRef Koistinen HA, Zierath JR. Regulation of glucose transport in human skeletal muscle. Ann Med 2002; 34(6): 410–8PubMedCrossRef
35.
go back to reference DeFronzo RA, Gunnarsson R, Bjorkman O, et al. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest 1985 Jul; 76(1): 149–55PubMedCrossRef DeFronzo RA, Gunnarsson R, Bjorkman O, et al. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest 1985 Jul; 76(1): 149–55PubMedCrossRef
36.
go back to reference Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963 Apr 13; I: 785–9CrossRef Randle PJ, Garland PB, Hales CN, et al. The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963 Apr 13; I: 785–9CrossRef
37.
go back to reference Delarue J, Magnan C. Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care 2007 Mar; 10(2): 142–8PubMedCrossRef Delarue J, Magnan C. Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care 2007 Mar; 10(2): 142–8PubMedCrossRef
38.
go back to reference Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002 Jun; 32 Suppl. 3: 14–23PubMedCrossRef Boden G, Shulman GI. Free fatty acids in obesity and type 2 diabetes: defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest 2002 Jun; 32 Suppl. 3: 14–23PubMedCrossRef
39.
go back to reference Quon MJ. Advances in kinetic analysis of insulin-stimulated GLUT-4 translocation in adipose cells. Am J Physiol 1994 Jan; 266 (1 Pt 1): E144–50PubMed Quon MJ. Advances in kinetic analysis of insulin-stimulated GLUT-4 translocation in adipose cells. Am J Physiol 1994 Jan; 266 (1 Pt 1): E144–50PubMed
40.
go back to reference Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006 Jul; 116(7): 1784–92PubMedCrossRef Kadowaki T, Yamauchi T, Kubota N, et al. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 2006 Jul; 116(7): 1784–92PubMedCrossRef
41.
go back to reference Dyck DJ, Heigenhauser GJ, Bruce CR. The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol (Oxf) 2006 Jan; 186(1): 5–16CrossRef Dyck DJ, Heigenhauser GJ, Bruce CR. The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol (Oxf) 2006 Jan; 186(1): 5–16CrossRef
42.
go back to reference Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin — the classical, resistin —the controversial, adiponectin — the promising, and more to come. Best Pract Res Clin Endocrinol Metab 2005 Dec; 19(4): 525–46PubMedCrossRef Koerner A, Kratzsch J, Kiess W. Adipocytokines: leptin — the classical, resistin —the controversial, adiponectin — the promising, and more to come. Best Pract Res Clin Endocrinol Metab 2005 Dec; 19(4): 525–46PubMedCrossRef
43.
go back to reference DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999 Aug 17; 131(4): 281–303PubMed DeFronzo RA. Pharmacologic therapy for type 2 diabetes mellitus. Ann Intern Med 1999 Aug 17; 131(4): 281–303PubMed
44.
go back to reference Wajchenberg BL. Beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 2007 Apr; 28(2): 187–218PubMedCrossRef Wajchenberg BL. Beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev 2007 Apr; 28(2): 187–218PubMedCrossRef
45.
go back to reference Guo L, Tabrizchi R. Peroxisome proliferator-activated receptor gamma as a drug target in the pathogenesis of insulin resistance. Pharmacol Ther 2006 Jul; 111(1): 145–73PubMedCrossRef Guo L, Tabrizchi R. Peroxisome proliferator-activated receptor gamma as a drug target in the pathogenesis of insulin resistance. Pharmacol Ther 2006 Jul; 111(1): 145–73PubMedCrossRef
46.
go back to reference Gastaldelli A, Miyazaki Y, Mahankali A, et al. The effect of pioglitazone on the liver: role of adiponectin. Diabetes Care 2006 Oct; 29(10): 2275–81PubMedCrossRef Gastaldelli A, Miyazaki Y, Mahankali A, et al. The effect of pioglitazone on the liver: role of adiponectin. Diabetes Care 2006 Oct; 29(10): 2275–81PubMedCrossRef
47.
go back to reference Edelman SV, Darsow T, Frias JP. Pramlintide in the treatment of diabetes. Int J Clin Pract 2006 Dec; 60(12): 1647–53PubMedCrossRef Edelman SV, Darsow T, Frias JP. Pramlintide in the treatment of diabetes. Int J Clin Pract 2006 Dec; 60(12): 1647–53PubMedCrossRef
48.
go back to reference Berman M. Insulin kinetics, models, and delivery schedules. Diabetes Care 1980 Mar-Apr; 3(2): 266–9PubMedCrossRef Berman M. Insulin kinetics, models, and delivery schedules. Diabetes Care 1980 Mar-Apr; 3(2): 266–9PubMedCrossRef
49.
go back to reference Bergman RN, Cobelli C. Minimal modeling, partition analysis, and the estimation of insulin sensitivity. Fed Proc 1980 Jan; 39(1): 110–5PubMed Bergman RN, Cobelli C. Minimal modeling, partition analysis, and the estimation of insulin sensitivity. Fed Proc 1980 Jan; 39(1): 110–5PubMed
50.
go back to reference Bolie VW. Coefficients of normal blood glucose regulation. J Appl Physiol 1961 Sep; 16: 783–8PubMed Bolie VW. Coefficients of normal blood glucose regulation. J Appl Physiol 1961 Sep; 16: 783–8PubMed
51.
go back to reference Insel PA, Liljenquist JE, Tobin JD, et al. Insulin control of glucose metabolism in man: a new kinetic analysis. J Clin Invest 1975 May; 55(5): 1057–66PubMedCrossRef Insel PA, Liljenquist JE, Tobin JD, et al. Insulin control of glucose metabolism in man: a new kinetic analysis. J Clin Invest 1975 May; 55(5): 1057–66PubMedCrossRef
52.
go back to reference Sherwin RS, Kramer KJ, Tobin JD, et al. A model of the kinetics of insulin in man. J Clin Invest 1974 May; 53(5): 1481–92PubMedCrossRef Sherwin RS, Kramer KJ, Tobin JD, et al. A model of the kinetics of insulin in man. J Clin Invest 1974 May; 53(5): 1481–92PubMedCrossRef
53.
go back to reference Srinivasan R, Kadish AH, Sridhar R. A mathematical model for the control mechanism of free fatty acid-glucose metabolism in normal humans. Comput Biomed Res 1970 Apr; 3(2): 146–65PubMedCrossRef Srinivasan R, Kadish AH, Sridhar R. A mathematical model for the control mechanism of free fatty acid-glucose metabolism in normal humans. Comput Biomed Res 1970 Apr; 3(2): 146–65PubMedCrossRef
54.
go back to reference Bergman RN, Ider YZ, Bowden CR, et al. Quantitative estimation of insulin sensitivity. Am J Physiol 1979 Jun; 236(6): E667–77PubMed Bergman RN, Ider YZ, Bowden CR, et al. Quantitative estimation of insulin sensitivity. Am J Physiol 1979 Jun; 236(6): E667–77PubMed
55.
go back to reference Turner RC, Holman RR, Matthews D, et al. Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism 1979 Nov; 28(11): 1086–96PubMedCrossRef Turner RC, Holman RR, Matthews D, et al. Insulin deficiency and insulin resistance interaction in diabetes: estimation of their relative contribution by feedback analysis from basal plasma insulin and glucose concentrations. Metabolism 1979 Nov; 28(11): 1086–96PubMedCrossRef
56.
go back to reference Himsworth H, Ker R. Insulin-sensitive and insulin insensitive types of diabetes mellitus. Clin Sci 1939; 4: 119–22 Himsworth H, Ker R. Insulin-sensitive and insulin insensitive types of diabetes mellitus. Clin Sci 1939; 4: 119–22
57.
go back to reference Steele R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 1959 Sep 25; 82: 420–30PubMedCrossRef Steele R. Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 1959 Sep 25; 82: 420–30PubMedCrossRef
58.
go back to reference Ackerman E, Gatewood LC, Rosevear JW, et al. Model studies of blood-glucose regulation. Bull Math Biophys 1965; 27 Suppl.: 21–37PubMedCrossRef Ackerman E, Gatewood LC, Rosevear JW, et al. Model studies of blood-glucose regulation. Bull Math Biophys 1965; 27 Suppl.: 21–37PubMedCrossRef
59.
go back to reference DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979 Sep; 237(3): E214–23PubMed DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979 Sep; 237(3): E214–23PubMed
60.
go back to reference Andres R, Swerdloff R, Pozesky T, et al. Manual feedback technique for control of glucose concentration. In: Skeggs JL, editor. Automation in analytical chemistry. New York: Medaid, 1966: 486–501 Andres R, Swerdloff R, Pozesky T, et al. Manual feedback technique for control of glucose concentration. In: Skeggs JL, editor. Automation in analytical chemistry. New York: Medaid, 1966: 486–501
61.
go back to reference Kjems LL, Volund A, Madsbad S. Quantification of beta-cell function during IVGTT in type II and non-diabetic subjects: assessment of insulin secretion by mathematical methods. Diabetologia 2001 Oct; 44(10): 1339–48PubMedCrossRef Kjems LL, Volund A, Madsbad S. Quantification of beta-cell function during IVGTT in type II and non-diabetic subjects: assessment of insulin secretion by mathematical methods. Diabetologia 2001 Oct; 44(10): 1339–48PubMedCrossRef
62.
go back to reference Monzillo LU, Hamdy O. Evaluation of insulin sensitivity in clinical practice and in research settings. Nutr Rev 2003 Dec; 61(12): 397–412PubMedCrossRef Monzillo LU, Hamdy O. Evaluation of insulin sensitivity in clinical practice and in research settings. Nutr Rev 2003 Dec; 61(12): 397–412PubMedCrossRef
63.
go back to reference Wallace TM, Matthews DR. The assessment of insulin resistance in man. Diabet Med 2002 Jul; 19(7): 527–34PubMedCrossRef Wallace TM, Matthews DR. The assessment of insulin resistance in man. Diabet Med 2002 Jul; 19(7): 527–34PubMedCrossRef
64.
go back to reference Tornoe CW, Jacobsen JL, Madsen H. Grey-box pharmacokinetic/pharmacodynamic modelling of a euglycaemic clamp study. J Math Biol 2004 Jun; 48(6): 591–604PubMedCrossRef Tornoe CW, Jacobsen JL, Madsen H. Grey-box pharmacokinetic/pharmacodynamic modelling of a euglycaemic clamp study. J Math Biol 2004 Jun; 48(6): 591–604PubMedCrossRef
65.
go back to reference Picchini U, Ditlevsen S, De Gaetano A. Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations. J Math Biol 2006 Nov; 53(5): 771–96PubMedCrossRef Picchini U, Ditlevsen S, De Gaetano A. Modeling the euglycemic hyperinsulinemic clamp by stochastic differential equations. J Math Biol 2006 Nov; 53(5): 771–96PubMedCrossRef
66.
go back to reference Mager DE, Abernethy DR, Egan JM, et al. Exendin-4 pharmacodynamics: insights from the hyperglycemic clamp technique. J Pharmacol Exp Ther 2004 Nov; 311(2): 830–5PubMedCrossRef Mager DE, Abernethy DR, Egan JM, et al. Exendin-4 pharmacodynamics: insights from the hyperglycemic clamp technique. J Pharmacol Exp Ther 2004 Nov; 311(2): 830–5PubMedCrossRef
67.
go back to reference Woodworth JR, Howey DC, Bowsher RR. Establishment of time-action profiles for regular and NPH insulin using spharmacodynamic modeling. Diabetes Care 1994 Jan; 17(1): 64–9PubMedCrossRef Woodworth JR, Howey DC, Bowsher RR. Establishment of time-action profiles for regular and NPH insulin using spharmacodynamic modeling. Diabetes Care 1994 Jan; 17(1): 64–9PubMedCrossRef
68.
go back to reference Hoenig M, Thomaseth K, Brandao J, et al. Assessment and mathematical modeling of glucose turnover and insulin sensitivity in lean and obese cats. Domest Anim Endocrinol 2006 Nov; 31(4): 373–89PubMedCrossRef Hoenig M, Thomaseth K, Brandao J, et al. Assessment and mathematical modeling of glucose turnover and insulin sensitivity in lean and obese cats. Domest Anim Endocrinol 2006 Nov; 31(4): 373–89PubMedCrossRef
70.
go back to reference Toffolo G, Bergman RN, Finegood DT, et al. Quantitative estimation of beta cell sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in the dog. Diabetes 1980 Dec; 29(12): 979–90PubMedCrossRef Toffolo G, Bergman RN, Finegood DT, et al. Quantitative estimation of beta cell sensitivity to glucose in the intact organism: a minimal model of insulin kinetics in the dog. Diabetes 1980 Dec; 29(12): 979–90PubMedCrossRef
71.
go back to reference Bergman RN. Pathogenesis and prediction of diabetes mellitus: lessons from integrative physiology. Mt Sinai J Med 2002 Oct; 69(5): 280–90PubMed Bergman RN. Pathogenesis and prediction of diabetes mellitus: lessons from integrative physiology. Mt Sinai J Med 2002 Oct; 69(5): 280–90PubMed
72.
go back to reference Cobelli C, Bettini F, Caumo A, et al. Overestimation of minimal model glucose effectiveness in presence of insulin response is due to undermodeling. Am J Physiol 1998 Dec; 275 (6 Pt 1): E1031–6PubMed Cobelli C, Bettini F, Caumo A, et al. Overestimation of minimal model glucose effectiveness in presence of insulin response is due to undermodeling. Am J Physiol 1998 Dec; 275 (6 Pt 1): E1031–6PubMed
73.
74.
go back to reference De Gaetano A, Arino O. Mathematical modelling of the intravenous glucose tolerance test. J Math Biol 2000 Feb; 40(2): 136–68PubMedCrossRef De Gaetano A, Arino O. Mathematical modelling of the intravenous glucose tolerance test. J Math Biol 2000 Feb; 40(2): 136–68PubMedCrossRef
75.
go back to reference Bergman RN. New concepts in extracellular signaling for insulin action: the single gateway hypothesis. Recent Prog Horm Res 1997; 52: 359–85; discussion 385-7PubMed Bergman RN. New concepts in extracellular signaling for insulin action: the single gateway hypothesis. Recent Prog Horm Res 1997; 52: 359–85; discussion 385-7PubMed
76.
go back to reference Bergman RN. Lilly Lecture 1989: toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1989 Dec; 38(12): 1512–27 Bergman RN. Lilly Lecture 1989: toward physiological understanding of glucose tolerance. Minimal-model approach. Diabetes 1989 Dec; 38(12): 1512–27
77.
go back to reference Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest 1981 Dec; 68(6): 1456–67PubMedCrossRef Bergman RN, Phillips LS, Cobelli C. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J Clin Invest 1981 Dec; 68(6): 1456–67PubMedCrossRef
78.
go back to reference Polonsky KS, Licinio-Paixao J, Given BD, et al. Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients. J Clin Invest 1986 Jan; 77(1): 98–105PubMedCrossRef Polonsky KS, Licinio-Paixao J, Given BD, et al. Use of biosynthetic human C-peptide in the measurement of insulin secretion rates in normal volunteers and type I diabetic patients. J Clin Invest 1986 Jan; 77(1): 98–105PubMedCrossRef
79.
go back to reference Tura A, Ludvik B, Nolan JJ, et al. Insulin and C-peptide secretion and kinetics in humans: direct and model-based measurements during OGTT. Am J Physiol Endocrinol Metab 2001 Nov; 281(5): E966–74PubMed Tura A, Ludvik B, Nolan JJ, et al. Insulin and C-peptide secretion and kinetics in humans: direct and model-based measurements during OGTT. Am J Physiol Endocrinol Metab 2001 Nov; 281(5): E966–74PubMed
80.
go back to reference Toffolo G, Campioni M, Basu R, et al. A minimal model of insulin secretion and kinetics to assess hepatic insulin extraction. Am J Physiol Endocrinol Metab 2006 Jan; 290(1): E169–76PubMedCrossRef Toffolo G, Campioni M, Basu R, et al. A minimal model of insulin secretion and kinetics to assess hepatic insulin extraction. Am J Physiol Endocrinol Metab 2006 Jan; 290(1): E169–76PubMedCrossRef
81.
go back to reference Roy A, Parker RS. Dynamic modeling of free fatty acid, glucose, and insulin: an extended “minimal model”. Diabetes Technol Ther 2006 Dec; 8(6): 617–26PubMedCrossRef Roy A, Parker RS. Dynamic modeling of free fatty acid, glucose, and insulin: an extended “minimal model”. Diabetes Technol Ther 2006 Dec; 8(6): 617–26PubMedCrossRef
82.
go back to reference Fabietti PG, Canonico V, Federici MO, et al. Control oriented model of insulin and glucose dynamics in type 1 diabetics. Med Biol Eng Comput 2006 Mar; 44(1–2): 69–78PubMedCrossRef Fabietti PG, Canonico V, Federici MO, et al. Control oriented model of insulin and glucose dynamics in type 1 diabetics. Med Biol Eng Comput 2006 Mar; 44(1–2): 69–78PubMedCrossRef
83.
go back to reference Derouich M, Boutayeb A. The effect of physical exercise on the dynamics of glucose and insulin. J Biomech 2002 Jul; 35(7): 911–7PubMedCrossRef Derouich M, Boutayeb A. The effect of physical exercise on the dynamics of glucose and insulin. J Biomech 2002 Jul; 35(7): 911–7PubMedCrossRef
84.
go back to reference Cobelli C, Pacini G, Toffolo G, et al. Estimation of insulin sensitivity and glucose clearance from minimal model: new insights from labeled IVGTT. Am J Physiol 1986 May; 250 (5 Pt 1): E591–8PubMed Cobelli C, Pacini G, Toffolo G, et al. Estimation of insulin sensitivity and glucose clearance from minimal model: new insights from labeled IVGTT. Am J Physiol 1986 May; 250 (5 Pt 1): E591–8PubMed
85.
go back to reference Cobelli C, Caumo A, Omenetto M. Minimal model SG overestimation and SI underestimation: improved accuracy by a Bayesian two-compartment model. Am J Physiol 1999 Sep; 277 (3 Pt 1): E481–8PubMed Cobelli C, Caumo A, Omenetto M. Minimal model SG overestimation and SI underestimation: improved accuracy by a Bayesian two-compartment model. Am J Physiol 1999 Sep; 277 (3 Pt 1): E481–8PubMed
86.
go back to reference Hovorka R, Shojaee-Moradie F, Carroll PV, et al. Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. Am J Physiol Endocrinol Metab 2002 May; 282(5): E992–1007PubMed Hovorka R, Shojaee-Moradie F, Carroll PV, et al. Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. Am J Physiol Endocrinol Metab 2002 May; 282(5): E992–1007PubMed
87.
go back to reference Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985 Jul; 28(7): 412–9PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985 Jul; 28(7): 412–9PubMedCrossRef
88.
go back to reference Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 2004 Jun; 27(6): 1487–95PubMedCrossRef Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care 2004 Jun; 27(6): 1487–95PubMedCrossRef
89.
go back to reference Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998 Dec; 21(12): 2191–2PubMedCrossRef Levy JC, Matthews DR, Hermans MP. Correct homeostasis model assessment (HOMA) evaluation uses the computer program. Diabetes Care 1998 Dec; 21(12): 2191–2PubMedCrossRef
90.
go back to reference Chang AM, Smith MJ, Bloem CJ, et al. Limitation of the homeostasis model assessment to predict insulin resistance and beta-cell dysfunction in older people. J Clin Endocrinol Metab 2006 Feb; 91(2): 629–34PubMedCrossRef Chang AM, Smith MJ, Bloem CJ, et al. Limitation of the homeostasis model assessment to predict insulin resistance and beta-cell dysfunction in older people. J Clin Endocrinol Metab 2006 Feb; 91(2): 629–34PubMedCrossRef
91.
go back to reference Li J, Kuang Y, Li B. Analysis of IVGTT glucose-insulin interaction models with time delay. Discrete Contin Dynam Systems Series B 2001; 1(1): 103–24CrossRef Li J, Kuang Y, Li B. Analysis of IVGTT glucose-insulin interaction models with time delay. Discrete Contin Dynam Systems Series B 2001; 1(1): 103–24CrossRef
92.
go back to reference Silber HE, Jauslin PM, Frey N, et al. An integrated model for glucose and insulin regulation in healthy volunteers and type 2 diabetic patients following intravenous glucose provocations. J Clin Pharmacol 2007 Sep; 47(9): 1159–71PubMedCrossRef Silber HE, Jauslin PM, Frey N, et al. An integrated model for glucose and insulin regulation in healthy volunteers and type 2 diabetic patients following intravenous glucose provocations. J Clin Pharmacol 2007 Sep; 47(9): 1159–71PubMedCrossRef
93.
go back to reference Jauslin PM, Silber HE, Frey N, et al. A disease model describing the regulation of the glucose-insulin system in diabetic patients after IVGTT and OGTT [abstract no. 799; online]. Annual Meeting of the Population Approach Group in Europe; 2005 Jun 16–17; Pamplona. Available from URL: http://www.page-meeting.org/default.asp?keuze=search [Accessed 2008 May 14] Jauslin PM, Silber HE, Frey N, et al. A disease model describing the regulation of the glucose-insulin system in diabetic patients after IVGTT and OGTT [abstract no. 799; online]. Annual Meeting of the Population Approach Group in Europe; 2005 Jun 16–17; Pamplona. Available from URL: http://​www.​page-meeting.​org/​default.​asp?​keuze=​search [Accessed 2008 May 14]
94.
go back to reference Jauslin PM, Silber HE, Frey N, et al. An integrated glucose-insulin model to describe oral glucose tolerance test data in type 2 diabetics. J Clin Pharmacol 2007 Oct; 47(10): 1244–55PubMedCrossRef Jauslin PM, Silber HE, Frey N, et al. An integrated glucose-insulin model to describe oral glucose tolerance test data in type 2 diabetics. J Clin Pharmacol 2007 Oct; 47(10): 1244–55PubMedCrossRef
95.
go back to reference Dansirikul C, Karlsson MO. Insulin secretion and hepatic extraction during euglycemic clamp study: modelling of insulin and C-peptide data [abstract no. 1142; online]. Annual Meeting of the Population Approach Group in Europe; 2007 Jun 13–15; Copenhagen. Available from URL: http://www.page-meeting.org/default.asp?keuze=search [Accessed 2008 May 14] Dansirikul C, Karlsson MO. Insulin secretion and hepatic extraction during euglycemic clamp study: modelling of insulin and C-peptide data [abstract no. 1142; online]. Annual Meeting of the Population Approach Group in Europe; 2007 Jun 13–15; Copenhagen. Available from URL: http://​www.​page-meeting.​org/​default.​asp?​keuze=​search [Accessed 2008 May 14]
96.
go back to reference Gupta N, Hoffman RP, Veng-Pedersen P. Pharmacokinetic/pharmacodynamic differentiation of pancreatic responsiveness in obese and lean children. Biopharm Drug Dispos 2005 Oct; 26(7): 287–94PubMedCrossRef Gupta N, Hoffman RP, Veng-Pedersen P. Pharmacokinetic/pharmacodynamic differentiation of pancreatic responsiveness in obese and lean children. Biopharm Drug Dispos 2005 Oct; 26(7): 287–94PubMedCrossRef
97.
go back to reference Gupta N, Hoffman RP, Veng-Pedersen P. Pharmacokinetic/pharmacodynamic insulin-glucose analysis for differentiation of beta-cell function: an 18 month follow-up study in pre-pubertal lean and obese children. Biopharm Drug Dispos 2006 Sep; 27(6): 257–65PubMedCrossRef Gupta N, Hoffman RP, Veng-Pedersen P. Pharmacokinetic/pharmacodynamic insulin-glucose analysis for differentiation of beta-cell function: an 18 month follow-up study in pre-pubertal lean and obese children. Biopharm Drug Dispos 2006 Sep; 27(6): 257–65PubMedCrossRef
98.
go back to reference Caumo A, Luzi L. First-phase insulin secretion: does it exist in real life? Considerations on shape and function. Am J Physiol Endocrinol Metab 2004 Sep; 287(3): E371–85PubMedCrossRef Caumo A, Luzi L. First-phase insulin secretion: does it exist in real life? Considerations on shape and function. Am J Physiol Endocrinol Metab 2004 Sep; 287(3): E371–85PubMedCrossRef
99.
go back to reference Eaton RP, Allen RC, Schade DS, et al. Prehepatic insulin production in man: kinetic analysis using peripheral connecting peptide behavior. J Clin Endocrinol Metab 1980 Sep; 51(3): 520–8PubMedCrossRef Eaton RP, Allen RC, Schade DS, et al. Prehepatic insulin production in man: kinetic analysis using peripheral connecting peptide behavior. J Clin Endocrinol Metab 1980 Sep; 51(3): 520–8PubMedCrossRef
100.
go back to reference Volund A, Polonsky KS, Bergman RN. Calculated pattern of intraportal insulin appearance without independent assessment of C-peptide kinetics. Diabetes 1987 Oct; 36(10): 1195–202PubMedCrossRef Volund A, Polonsky KS, Bergman RN. Calculated pattern of intraportal insulin appearance without independent assessment of C-peptide kinetics. Diabetes 1987 Oct; 36(10): 1195–202PubMedCrossRef
101.
go back to reference Watanabe RM, Volund A, Roy S, et al. Prehepatic beta-cell secretion during the intravenous glucose tolerance test in humans: application of a combined model of insulin and C-peptide kinetics. J Clin Endocrinol Metab 1989 Oct; 69(4): 790–7PubMedCrossRef Watanabe RM, Volund A, Roy S, et al. Prehepatic beta-cell secretion during the intravenous glucose tolerance test in humans: application of a combined model of insulin and C-peptide kinetics. J Clin Endocrinol Metab 1989 Oct; 69(4): 790–7PubMedCrossRef
102.
go back to reference Christiansen E, Kjems LL, Volund A, et al. Insulin secretion rates estimated by two mathematical methods in pancreas-kidney transplant recipients. Am J Physiol 1998 Apr; 274 (4 Pt 1): E716–25PubMed Christiansen E, Kjems LL, Volund A, et al. Insulin secretion rates estimated by two mathematical methods in pancreas-kidney transplant recipients. Am J Physiol 1998 Apr; 274 (4 Pt 1): E716–25PubMed
103.
go back to reference Lima JJ, Matsushima N, Kissoon N, et al. Modeling the metabolic effects of terbutaline in beta2-adrenergic receptor diplotypes. Clin Pharmacol Ther 2004 Jul; 76(1): 27–37PubMedCrossRef Lima JJ, Matsushima N, Kissoon N, et al. Modeling the metabolic effects of terbutaline in beta2-adrenergic receptor diplotypes. Clin Pharmacol Ther 2004 Jul; 76(1): 27–37PubMedCrossRef
104.
go back to reference Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 1993 Aug; 21(4): 457–78PubMed Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 1993 Aug; 21(4): 457–78PubMed
105.
go back to reference Jusko WJ, Ko HC. Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther 1994 Oct; 56(4): 406–19PubMedCrossRef Jusko WJ, Ko HC. Physiologic indirect response models characterize diverse types of pharmacodynamic effects. Clin Pharmacol Ther 1994 Oct; 56(4): 406–19PubMedCrossRef
106.
go back to reference Sharma A, Jusko WJ. Characterization of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 1996 Dec; 24(6): 611–35PubMed Sharma A, Jusko WJ. Characterization of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm 1996 Dec; 24(6): 611–35PubMed
107.
go back to reference Krzyzanski W, Jusko WJ. Mathematical formalism and characteristics of four basic models of indirect pharmacodynamic responses for drug infusions. J Pharmacokinet Biopharm 1998 Aug; 26(4): 385–408PubMed Krzyzanski W, Jusko WJ. Mathematical formalism and characteristics of four basic models of indirect pharmacodynamic responses for drug infusions. J Pharmacokinet Biopharm 1998 Aug; 26(4): 385–408PubMed
108.
go back to reference Hanze E, Green B, Duffull SB, et al. The influence of metformin on HbA1c: a PKPD model [poster no. T3379]. AAPS Annual Meeting and Exposition; 2006 Oct 29–Nov 2; San Antonio (TX) Hanze E, Green B, Duffull SB, et al. The influence of metformin on HbA1c: a PKPD model [poster no. T3379]. AAPS Annual Meeting and Exposition; 2006 Oct 29–Nov 2; San Antonio (TX)
109.
go back to reference de Winter W, DeJongh J, Post T, et al. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. J Pharmacokinet Pharmacodyn 2006 Jun; 33(3): 313–43PubMedCrossRef de Winter W, DeJongh J, Post T, et al. A mechanism-based disease progression model for comparison of long-term effects of pioglitazone, metformin and gliclazide on disease processes underlying type 2 diabetes mellitus. J Pharmacokinet Pharmacodyn 2006 Jun; 33(3): 313–43PubMedCrossRef
110.
go back to reference Koeslag JH, Saunders PT, Terblanche E. A reappraisal of the blood glucose homeostat which comprehensively explains the type 2 diabetes mellitus-syndrome X complex. J Physiol 2003 Jun 1; 549 (Pt 2): 333–46PubMedCrossRef Koeslag JH, Saunders PT, Terblanche E. A reappraisal of the blood glucose homeostat which comprehensively explains the type 2 diabetes mellitus-syndrome X complex. J Physiol 2003 Jun 1; 549 (Pt 2): 333–46PubMedCrossRef
111.
go back to reference Ibbini MS, Masadeh MA, Amer MM. A semiclosed-loop optimal control system for blood glucose level in diabetics. J Med Eng Technol 2004 Sep–Oct; 28(5): 189–96PubMedCrossRef Ibbini MS, Masadeh MA, Amer MM. A semiclosed-loop optimal control system for blood glucose level in diabetics. J Med Eng Technol 2004 Sep–Oct; 28(5): 189–96PubMedCrossRef
112.
go back to reference Schlotthauer G, Gamero LG, Torres ME, et al. Modeling, identification and nonlinear model predictive control of type I diabetic patient. Med Eng Phys 2006 Apr; 28(3): 240–50PubMedCrossRef Schlotthauer G, Gamero LG, Torres ME, et al. Modeling, identification and nonlinear model predictive control of type I diabetic patient. Med Eng Phys 2006 Apr; 28(3): 240–50PubMedCrossRef
113.
go back to reference Parker RS, Doyle 3rd FJ, Peppas NA. A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 1999 Feb; 46(2): 148–57PubMedCrossRef Parker RS, Doyle 3rd FJ, Peppas NA. A model-based algorithm for blood glucose control in type I diabetic patients. IEEE Trans Biomed Eng 1999 Feb; 46(2): 148–57PubMedCrossRef
114.
go back to reference Fabietti PG, Canonico V, Orsini-Federici M, et al. Clinical validation of a new control-oriented model of insulin and glucose dynamics in subjects with type 1 diabetes. Diabetes Technol Ther 2007 Aug; 9(4): 327–38PubMedCrossRef Fabietti PG, Canonico V, Orsini-Federici M, et al. Clinical validation of a new control-oriented model of insulin and glucose dynamics in subjects with type 1 diabetes. Diabetes Technol Ther 2007 Aug; 9(4): 327–38PubMedCrossRef
115.
go back to reference Tiran J, Avruch LI, Albisser AM. A circulation and organs model for insulin dynamics. Am J Physiol 1979 Oct; 237(4): E331–9PubMed Tiran J, Avruch LI, Albisser AM. A circulation and organs model for insulin dynamics. Am J Physiol 1979 Oct; 237(4): E331–9PubMed
116.
go back to reference Tiran J, Galle KR, Porte Jr D. A simulation model of extracellular glucose distribution in the human body. Ann Biomed Eng 1975 Mar; 3(1): 34–46PubMedCrossRef Tiran J, Galle KR, Porte Jr D. A simulation model of extracellular glucose distribution in the human body. Ann Biomed Eng 1975 Mar; 3(1): 34–46PubMedCrossRef
117.
go back to reference Yamasaki Y, Tiran J, Albisser AM. Modeling glucose disposal in diabetic dogs fed mixed meals. Am J Physiol 1984 Jan; 246 (1 Pt 1): E52–61PubMed Yamasaki Y, Tiran J, Albisser AM. Modeling glucose disposal in diabetic dogs fed mixed meals. Am J Physiol 1984 Jan; 246 (1 Pt 1): E52–61PubMed
118.
go back to reference Porksen N, Hollingdal M, Juhl C, et al. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 2002 Feb; 51 Suppl. 1: S245–54PubMedCrossRef Porksen N, Hollingdal M, Juhl C, et al. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes 2002 Feb; 51 Suppl. 1: S245–54PubMedCrossRef
119.
go back to reference Simon C, Brandenberger G. Ultradian oscillations of insulin secretion in humans. Diabetes 2002 Feb; 51 Suppl. 1: S258–61PubMedCrossRef Simon C, Brandenberger G. Ultradian oscillations of insulin secretion in humans. Diabetes 2002 Feb; 51 Suppl. 1: S258–61PubMedCrossRef
120.
go back to reference Boden G, Ruiz J, Urbain JL, et al. Evidence for a circadian rhythm of insulin secretion. Am J Physiol 1996 Aug; 271 (2 Pt 1): E246–52PubMed Boden G, Ruiz J, Urbain JL, et al. Evidence for a circadian rhythm of insulin secretion. Am J Physiol 1996 Aug; 271 (2 Pt 1): E246–52PubMed
121.
go back to reference Sturis J, Polonsky KS, Mosekilde E, et al. Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. Am J Physiol 1991 May; 260 (5 Pt 1): E801–9PubMed Sturis J, Polonsky KS, Mosekilde E, et al. Computer model for mechanisms underlying ultradian oscillations of insulin and glucose. Am J Physiol 1991 May; 260 (5 Pt 1): E801–9PubMed
122.
go back to reference Shapiro ET, Tillil H, Polonsky KS, et al. Oscillations in insulin secretion during constant glucose infusion in normal man: relationship to changes in plasma glucose. J Clin Endocrinol Metab 1988 Aug; 67(2): 307–14PubMedCrossRef Shapiro ET, Tillil H, Polonsky KS, et al. Oscillations in insulin secretion during constant glucose infusion in normal man: relationship to changes in plasma glucose. J Clin Endocrinol Metab 1988 Aug; 67(2): 307–14PubMedCrossRef
123.
go back to reference Tolic IM, Mosekilde E, Sturis J. Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion. J Theor Biol 2000 Dec 7; 207(3): 361–75PubMedCrossRef Tolic IM, Mosekilde E, Sturis J. Modeling the insulin-glucose feedback system: the significance of pulsatile insulin secretion. J Theor Biol 2000 Dec 7; 207(3): 361–75PubMedCrossRef
124.
go back to reference Li J, Kuang Y, Mason CC. Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J Theor Biol 2006 Oct 7; 242(3): 722–35PubMedCrossRef Li J, Kuang Y, Mason CC. Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays. J Theor Biol 2006 Oct 7; 242(3): 722–35PubMedCrossRef
125.
go back to reference Berman M, McGuire EA, Roth J, et al. Kinetic modeling of insulin binding to receptors and degradation in vivo in the rabbit. Diabetes 1980 Jan; 29(1): 50–9PubMed Berman M, McGuire EA, Roth J, et al. Kinetic modeling of insulin binding to receptors and degradation in vivo in the rabbit. Diabetes 1980 Jan; 29(1): 50–9PubMed
126.
go back to reference Jones RH, Sonksen PH, Boroujerdi MA, et al. Number and affinity of insulin receptors in intact human subjects. Diabetologia 1984 Aug; 27(2): 207–11PubMed Jones RH, Sonksen PH, Boroujerdi MA, et al. Number and affinity of insulin receptors in intact human subjects. Diabetologia 1984 Aug; 27(2): 207–11PubMed
127.
go back to reference de Beaudrap P, Witten G, Biltz G, et al. Mechanistic model of fuel selection in the muscle. J Theor Biol 2006 Sep 7; 242(1): 151–63PubMedCrossRef de Beaudrap P, Witten G, Biltz G, et al. Mechanistic model of fuel selection in the muscle. J Theor Biol 2006 Sep 7; 242(1): 151–63PubMedCrossRef
128.
go back to reference Davis EA, Cuesta-Munoz A, Raoul M, et al. Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis. Diabetologia 1999 Oct; 42(10): 1175–86PubMedCrossRef Davis EA, Cuesta-Munoz A, Raoul M, et al. Mutants of glucokinase cause hypoglycaemia- and hyperglycaemia syndromes and their analysis illuminates fundamental quantitative concepts of glucose homeostasis. Diabetologia 1999 Oct; 42(10): 1175–86PubMedCrossRef
129.
go back to reference Sedaghat AR, Sherman A, Quon MJ. A mathematical model of metabolic insulin signaling pathways. Am J Physiol Endocrinol Metab 2002 Nov; 283(5): E1084–101PubMed Sedaghat AR, Sherman A, Quon MJ. A mathematical model of metabolic insulin signaling pathways. Am J Physiol Endocrinol Metab 2002 Nov; 283(5): E1084–101PubMed
130.
go back to reference Sweet IR, Li G, Najafi H, et al. Effect of a glucokinase inhibitor on energy production and insulin release in pancreatic islets. Am J Physiol 1996 Sep; 271 (3 Pt 1): E606–25PubMed Sweet IR, Li G, Najafi H, et al. Effect of a glucokinase inhibitor on energy production and insulin release in pancreatic islets. Am J Physiol 1996 Sep; 271 (3 Pt 1): E606–25PubMed
131.
go back to reference Mosekilde E, Jensen KS, Binder C, et al. Modeling absorption kinetics of subcutaneous injected soluble insulin. J Pharmacokinet Biopharm 1989 Feb; 17(1): 67–87PubMed Mosekilde E, Jensen KS, Binder C, et al. Modeling absorption kinetics of subcutaneous injected soluble insulin. J Pharmacokinet Biopharm 1989 Feb; 17(1): 67–87PubMed
132.
go back to reference Mosekilde E, Sosnovtseva OV, Holstein-Rathlou NH. Mechanism-based modeling of complex biomedical systems. Basic Clin Pharmacol Toxicol 2005 Mar; 96(3): 212–24PubMedCrossRef Mosekilde E, Sosnovtseva OV, Holstein-Rathlou NH. Mechanism-based modeling of complex biomedical systems. Basic Clin Pharmacol Toxicol 2005 Mar; 96(3): 212–24PubMedCrossRef
133.
go back to reference Osterman-Golkar SM, Vesper HW. Assessment of the relationship between glucose and A1c using kinetic modeling. J Diabetes Complications 2006 Sep–Oct; 20(5): 285–94PubMedCrossRef Osterman-Golkar SM, Vesper HW. Assessment of the relationship between glucose and A1c using kinetic modeling. J Diabetes Complications 2006 Sep–Oct; 20(5): 285–94PubMedCrossRef
134.
go back to reference Beach KW. A theoretical model to predict the behavior of glycosylated hemoglobin levels. J Theor Biol 1979 Dec 7; 81(3): 547–61PubMedCrossRef Beach KW. A theoretical model to predict the behavior of glycosylated hemoglobin levels. J Theor Biol 1979 Dec 7; 81(3): 547–61PubMedCrossRef
135.
go back to reference Shi K, Tahara Y, Noma Y, et al. The response of glycated albumin to blood glucose change in the circulation in streptozotocin-diabetic rats -comparison of theoretical values with experimental data. Diabetes Res Clin Pract 1992 Sep; 17(3): 153–60PubMedCrossRef Shi K, Tahara Y, Noma Y, et al. The response of glycated albumin to blood glucose change in the circulation in streptozotocin-diabetic rats -comparison of theoretical values with experimental data. Diabetes Res Clin Pract 1992 Sep; 17(3): 153–60PubMedCrossRef
136.
go back to reference Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 2003 May; 31(5): 510–8PubMedCrossRef Mager DE, Wyska E, Jusko WJ. Diversity of mechanism-based pharmacodynamic models. Drug Metab Dispos 2003 May; 31(5): 510–8PubMedCrossRef
137.
go back to reference Danhof M, de Jongh J, De Lange EC, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 2007; 47: 357–400PubMedCrossRef Danhof M, de Jongh J, De Lange EC, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol 2007; 47: 357–400PubMedCrossRef
138.
go back to reference Furchgott RF. The pharmacology of vascular smooth muscle. Pharmacol Rev 1955 Jun; 7(2): 183–265PubMed Furchgott RF. The pharmacology of vascular smooth muscle. Pharmacol Rev 1955 Jun; 7(2): 183–265PubMed
139.
go back to reference Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979 Mar; 25(3): 358–71PubMed Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979 Mar; 25(3): 358–71PubMed
140.
go back to reference Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol (Lond) 1910; 40: IV–VII Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol (Lond) 1910; 40: IV–VII
141.
go back to reference Wagner JG. Kinetics of pharmacologic response: I. Proposed relationships between response and drug concentration in the intact animal and man. J Theor Biol 1968 Aug; 20(2): 173–201PubMedCrossRef Wagner JG. Kinetics of pharmacologic response: I. Proposed relationships between response and drug concentration in the intact animal and man. J Theor Biol 1968 Aug; 20(2): 173–201PubMedCrossRef
142.
go back to reference Brown SA, Nelson RW, Bottoms GD. Models for the pharmacokinetics and pharmacodynamics of insulin in alloxan-induced diabetic dogs. J Pharm Sci 1987 Apr; 76(4): 295–9PubMedCrossRef Brown SA, Nelson RW, Bottoms GD. Models for the pharmacokinetics and pharmacodynamics of insulin in alloxan-induced diabetic dogs. J Pharm Sci 1987 Apr; 76(4): 295–9PubMedCrossRef
143.
go back to reference Miyazaki M, Mukai H, Iwanaga K, et al. Pharmacokinetic-pharmacodynamic modelling of human insulin: validity of pharmacological availability as a substitute for extent of bioavailability. J Pharm Pharmacol 2001 Sep; 53(9): 1235–46PubMedCrossRef Miyazaki M, Mukai H, Iwanaga K, et al. Pharmacokinetic-pharmacodynamic modelling of human insulin: validity of pharmacological availability as a substitute for extent of bioavailability. J Pharm Pharmacol 2001 Sep; 53(9): 1235–46PubMedCrossRef
144.
go back to reference Lin S, Chien YW. Pharmacokinetic-pharmacodynamic modelling of insulin: comparison of indirect pharmacodynamic response with effect-compartment link models. J Pharm Pharmacol 2002 Jun; 54(6): 791–800PubMedCrossRef Lin S, Chien YW. Pharmacokinetic-pharmacodynamic modelling of insulin: comparison of indirect pharmacodynamic response with effect-compartment link models. J Pharm Pharmacol 2002 Jun; 54(6): 791–800PubMedCrossRef
145.
go back to reference Rydberg T, Jonsson A, Karlsson MO, et al. Concentration-effect relations of glibenclamide and its active metabolites in man: modelling of pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 1997 Apr; 43(4): 373–81PubMedCrossRef Rydberg T, Jonsson A, Karlsson MO, et al. Concentration-effect relations of glibenclamide and its active metabolites in man: modelling of pharmacokinetics and pharmacodynamics. Br J Clin Pharmacol 1997 Apr; 43(4): 373–81PubMedCrossRef
146.
go back to reference Frey N, Laveille C, Paraire M, et al. Population PKPD modelling of the long-term hypoglycaemic effect of gliclazide given as a once-a-day modified release (MR) formulation. Br J Clin Pharmacol 2003 Feb; 55(2): 147–57PubMedCrossRef Frey N, Laveille C, Paraire M, et al. Population PKPD modelling of the long-term hypoglycaemic effect of gliclazide given as a once-a-day modified release (MR) formulation. Br J Clin Pharmacol 2003 Feb; 55(2): 147–57PubMedCrossRef
147.
go back to reference Kirchheiner J, Bauer S, Meineke I, et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 2002 Mar; 12(2): 101–9PubMedCrossRef Kirchheiner J, Bauer S, Meineke I, et al. Impact of CYP2C9 and CYP2C19 polymorphisms on tolbutamide kinetics and the insulin and glucose response in healthy volunteers. Pharmacogenetics 2002 Mar; 12(2): 101–9PubMedCrossRef
148.
go back to reference Herman GA, Bergman A, Stevens C, et al. Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol Metab 2006 Nov; 91(11): 4612–9PubMedCrossRef Herman GA, Bergman A, Stevens C, et al. Effect of single oral doses of sitagliptin, a dipeptidyl peptidase-4 inhibitor, on incretin and plasma glucose levels after an oral glucose tolerance test in patients with type 2 diabetes. J Clin Endocrinol Metab 2006 Nov; 91(11): 4612–9PubMedCrossRef
149.
go back to reference Young MA, Eckland DJ, Eastmond R, et al. Establishing the dose response curve for metabolic control with troglitazone, an insulin action enhancer, in type 2 diabetes patients. Ann Med 1998 Apr; 30(2): 206–12PubMedCrossRef Young MA, Eckland DJ, Eastmond R, et al. Establishing the dose response curve for metabolic control with troglitazone, an insulin action enhancer, in type 2 diabetes patients. Ann Med 1998 Apr; 30(2): 206–12PubMedCrossRef
150.
go back to reference Bertacca A, Ciccarone A, Cecchetti P, et al. Continually high insulin levels impair Akt phosphorylation and glucose transport in human myoblasts. Metabolism 2005 Dec; 54(12): 1687–93PubMedCrossRef Bertacca A, Ciccarone A, Cecchetti P, et al. Continually high insulin levels impair Akt phosphorylation and glucose transport in human myoblasts. Metabolism 2005 Dec; 54(12): 1687–93PubMedCrossRef
151.
go back to reference Gavin 3rd JR, Roth J, Neville Jr DM, et al. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci U S A 1974 Jan; 71(1): 84–8PubMedCrossRef Gavin 3rd JR, Roth J, Neville Jr DM, et al. Insulin-dependent regulation of insulin receptor concentrations: a direct demonstration in cell culture. Proc Natl Acad Sci U S A 1974 Jan; 71(1): 84–8PubMedCrossRef
152.
go back to reference Bertacca A, Ciccarone A, Cecchetti P, et al. High insulin levels impair intracellular receptor trafficking in human cultured myoblasts. Diabetes Res Clin Pract 2007 Dec; 78(3): 316–23PubMedCrossRef Bertacca A, Ciccarone A, Cecchetti P, et al. High insulin levels impair intracellular receptor trafficking in human cultured myoblasts. Diabetes Res Clin Pract 2007 Dec; 78(3): 316–23PubMedCrossRef
153.
go back to reference Melander A, Donnelly R, Rydberg T. Is there a concentration-effect relationship for sulphonylureas? Clin Pharmacokinet 1998 Mar; 34(3): 181–8PubMedCrossRef Melander A, Donnelly R, Rydberg T. Is there a concentration-effect relationship for sulphonylureas? Clin Pharmacokinet 1998 Mar; 34(3): 181–8PubMedCrossRef
154.
go back to reference Agerso H, Vicini P. Pharmacodynamics of NN2211, a novel long acting GLP-1 derivative. Eur J Pharm Sci 2003 Jun; 19(2–3): 141–50PubMedCrossRef Agerso H, Vicini P. Pharmacodynamics of NN2211, a novel long acting GLP-1 derivative. Eur J Pharm Sci 2003 Jun; 19(2–3): 141–50PubMedCrossRef
155.
go back to reference Osterberg O, Erichsen L, Ingwersen SH, et al. Pharmacokinetic and pharmacodynamic properties of insulin aspart and human insulin. J Pharmacokinet Pharmacodyn 2003 Jun; 30(3): 221–35PubMedCrossRef Osterberg O, Erichsen L, Ingwersen SH, et al. Pharmacokinetic and pharmacodynamic properties of insulin aspart and human insulin. J Pharmacokinet Pharmacodyn 2003 Jun; 30(3): 221–35PubMedCrossRef
156.
go back to reference Vicini P, Avogaro A, Spilker ME, et al. Epinephrine effects on insulin-glucose dynamics: the labeled IVGTT two-compartment minimal model approach. Am J Physiol Endocrinol Metab 2002 Jul; 283(1): E78–84PubMed Vicini P, Avogaro A, Spilker ME, et al. Epinephrine effects on insulin-glucose dynamics: the labeled IVGTT two-compartment minimal model approach. Am J Physiol Endocrinol Metab 2002 Jul; 283(1): E78–84PubMed
157.
go back to reference Mari A, Sallas WM, He YL, et al. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes. J Clin Endocrinol Metab 2005 Aug; 90(8): 4888–94PubMedCrossRef Mari A, Sallas WM, He YL, et al. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes. J Clin Endocrinol Metab 2005 Aug; 90(8): 4888–94PubMedCrossRef
158.
go back to reference Rostami-Hodjegan A, Peacey SR, George E, et al. Population-based modeling to demonstrate extrapancreatic effects of tolbutamide. Am J Physiol 1998 Apr; 274 (4 Pt 1): E758–71PubMed Rostami-Hodjegan A, Peacey SR, George E, et al. Population-based modeling to demonstrate extrapancreatic effects of tolbutamide. Am J Physiol 1998 Apr; 274 (4 Pt 1): E758–71PubMed
159.
go back to reference Kirchheiner J, Brockmoller J, Meineke I, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 2002 Apr; 71(4): 286–96PubMedCrossRef Kirchheiner J, Brockmoller J, Meineke I, et al. Impact of CYP2C9 amino acid polymorphisms on glyburide kinetics and on the insulin and glucose response in healthy volunteers. Clin Pharmacol Ther 2002 Apr; 71(4): 286–96PubMedCrossRef
160.
go back to reference Yun HY, Park HC, Kang W, et al. Pharmacokinetic and pharmacodynamic modelling of the effects of glimepiride on insulin secretion and glucose lowering in healthy humans. J Clin Pharm Ther 2006 Oct; 31(5): 469–76PubMedCrossRef Yun HY, Park HC, Kang W, et al. Pharmacokinetic and pharmacodynamic modelling of the effects of glimepiride on insulin secretion and glucose lowering in healthy humans. J Clin Pharm Ther 2006 Oct; 31(5): 469–76PubMedCrossRef
161.
go back to reference Lee SH, Kwon KI. Pharmacokinetic-pharmacodynamic modeling for the relationship between glucose-lowering effect and plasma concentration of metformin in volunteers. Arch Pharm Res 2004 Jul; 27(7): 806–10PubMedCrossRef Lee SH, Kwon KI. Pharmacokinetic-pharmacodynamic modeling for the relationship between glucose-lowering effect and plasma concentration of metformin in volunteers. Arch Pharm Res 2004 Jul; 27(7): 806–10PubMedCrossRef
162.
go back to reference Gopalakrishnan M, Suarez S, Hickey AJ, et al. Population pharmacokinetic-pharmacodynamic modeling of subcutaneous and pulmonary insulin in rats. J Pharmacokinet Pharmacodyn 2005 Aug; 32(3–4): 485–500PubMedCrossRef Gopalakrishnan M, Suarez S, Hickey AJ, et al. Population pharmacokinetic-pharmacodynamic modeling of subcutaneous and pulmonary insulin in rats. J Pharmacokinet Pharmacodyn 2005 Aug; 32(3–4): 485–500PubMedCrossRef
163.
go back to reference Benincosa L, Jusko WJ. Novel method of treatment. Geneva: World Intellectual Property Organization, 1999. Publ. no. W0/2000/027341 Benincosa L, Jusko WJ. Novel method of treatment. Geneva: World Intellectual Property Organization, 1999. Publ. no. W0/2000/027341
164.
165.
go back to reference Stepensky D, Friedman M, Raz I, et al. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab Dispos 2002 Aug; 30(8): 861–8PubMedCrossRef Stepensky D, Friedman M, Raz I, et al. Pharmacokinetic-pharmacodynamic analysis of the glucose-lowering effect of metformin in diabetic rats reveals first-pass pharmacodynamic effect. Drug Metab Dispos 2002 Aug; 30(8): 861–8PubMedCrossRef
166.
go back to reference Hamrén B, Bjork E, Sunzel M, et al. Models for plasma glucose, HbA1c, and hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar treatment. Clin Pharmacol Ther. Epub 2008 Mar 19 Hamrén B, Bjork E, Sunzel M, et al. Models for plasma glucose, HbA1c, and hemoglobin interrelationships in patients with type 2 diabetes following tesaglitazar treatment. Clin Pharmacol Ther. Epub 2008 Mar 19
167.
go back to reference Hong Y, Rohatagi S, Habtemariam B, et al. Population exposure-response modeling of metformin in patients with type 2 diabetes mellitus. J Clin Pharmacol. Epub 2008 Mar 27 Hong Y, Rohatagi S, Habtemariam B, et al. Population exposure-response modeling of metformin in patients with type 2 diabetes mellitus. J Clin Pharmacol. Epub 2008 Mar 27
168.
go back to reference Gumbhir-Shah K, Kellerman DJ, DeGraw S, et al. Pharmacokinetics and pharmacodynamics of cumulative single doses of inhaled salbutamol enantiomers in asthmatic subjects. Pulm Pharmacol Ther 1999; 12(6): 353–62PubMedCrossRef Gumbhir-Shah K, Kellerman DJ, DeGraw S, et al. Pharmacokinetics and pharmacodynamics of cumulative single doses of inhaled salbutamol enantiomers in asthmatic subjects. Pulm Pharmacol Ther 1999; 12(6): 353–62PubMedCrossRef
169.
go back to reference Gumbhir-Shah K, Kellerman DJ, DeGraw S, et al. Pharmacokinetic and pharmacodynamic characteristics and safety of inhaled albuterol enantiomers in healthy volunteers. J Clin Pharmacol 1998 Dec; 38(12): 1096–106PubMed Gumbhir-Shah K, Kellerman DJ, DeGraw S, et al. Pharmacokinetic and pharmacodynamic characteristics and safety of inhaled albuterol enantiomers in healthy volunteers. J Clin Pharmacol 1998 Dec; 38(12): 1096–106PubMed
170.
go back to reference Kveiborg B, Christiansen B, Major-Petersen A, et al. Metabolic effects of beta-adrenoceptor antagonists with special emphasis on carvedilol. Am J Cardiovasc Drugs 2006; 6(4): 209–17PubMedCrossRef Kveiborg B, Christiansen B, Major-Petersen A, et al. Metabolic effects of beta-adrenoceptor antagonists with special emphasis on carvedilol. Am J Cardiovasc Drugs 2006; 6(4): 209–17PubMedCrossRef
171.
go back to reference Larsen JL, Bennett RG, Burkman T, et al. Tacrolimus and sirolimus cause insulin resistance in normal Sprague Dawley rats. Transplantation 2006 Aug 27; 82(4): 466–70PubMedCrossRef Larsen JL, Bennett RG, Burkman T, et al. Tacrolimus and sirolimus cause insulin resistance in normal Sprague Dawley rats. Transplantation 2006 Aug 27; 82(4): 466–70PubMedCrossRef
172.
go back to reference Amamoto T, Kumai T, Nakaya S, et al. The elucidation of the mechanism of weight gain and glucose tolerance abnormalities induced by chlorpromazine. J Pharmacol Sci 2006 Oct; 102(2): 213–9PubMedCrossRef Amamoto T, Kumai T, Nakaya S, et al. The elucidation of the mechanism of weight gain and glucose tolerance abnormalities induced by chlorpromazine. J Pharmacol Sci 2006 Oct; 102(2): 213–9PubMedCrossRef
173.
go back to reference Wirshing DA, Boyd JA, Meng LR, et al. The effects of novel antipsychotics on glucose and lipid levels. J Clin Psychiatry 2002 Oct; 63(10): 856–65PubMedCrossRef Wirshing DA, Boyd JA, Meng LR, et al. The effects of novel antipsychotics on glucose and lipid levels. J Clin Psychiatry 2002 Oct; 63(10): 856–65PubMedCrossRef
174.
go back to reference Ramaswamy K, Masand PS, Nasrallah HA. Do certain atypical antipsychotics increase the risk of diabetes? A critical review of 17 pharmacoepidemiologic studies. Ann Clin Psychiatry 2006 Jul–Sep; 18(3): 183–94PubMedCrossRef Ramaswamy K, Masand PS, Nasrallah HA. Do certain atypical antipsychotics increase the risk of diabetes? A critical review of 17 pharmacoepidemiologic studies. Ann Clin Psychiatry 2006 Jul–Sep; 18(3): 183–94PubMedCrossRef
175.
go back to reference Houseknecht KL, Robertson AS, Zavadoski W, et al. Acute effects of atypical antipsychotics on whole-body insulin resistance in rats: implications for adverse metabolic effects. Neuropsychopharmacology 2007 Feb; 32(2): 289–97PubMedCrossRef Houseknecht KL, Robertson AS, Zavadoski W, et al. Acute effects of atypical antipsychotics on whole-body insulin resistance in rats: implications for adverse metabolic effects. Neuropsychopharmacology 2007 Feb; 32(2): 289–97PubMedCrossRef
176.
go back to reference Chiu CC, Chen KP, Liu HC, et al. The early effect of olanzapine and risperidone on insulin secretion in atypical-naive schizophrenic patients. J Clin Psychopharmacol 2006 Oct; 26(5): 504–7PubMedCrossRef Chiu CC, Chen KP, Liu HC, et al. The early effect of olanzapine and risperidone on insulin secretion in atypical-naive schizophrenic patients. J Clin Psychopharmacol 2006 Oct; 26(5): 504–7PubMedCrossRef
177.
go back to reference Yip C, Lee AJ. Gatifloxacin-induced hyperglycemia: a case report and summary of the current literature. Clin Ther 2006 Nov; 28(11): 1857–66PubMedCrossRef Yip C, Lee AJ. Gatifloxacin-induced hyperglycemia: a case report and summary of the current literature. Clin Ther 2006 Nov; 28(11): 1857–66PubMedCrossRef
178.
go back to reference Yamada C, Nagashima K, Takahashi A, et al. Gatifloxacin acutely stimulates insulin secretion and chronically suppresses insulin biosynthesis. Eur J Pharmacol 2006 Dec 28; 553(1–3): 67–72PubMedCrossRef Yamada C, Nagashima K, Takahashi A, et al. Gatifloxacin acutely stimulates insulin secretion and chronically suppresses insulin biosynthesis. Eur J Pharmacol 2006 Dec 28; 553(1–3): 67–72PubMedCrossRef
179.
go back to reference Ishiwata Y, Sanada Y, Yasuhara M. Effects of gatifloxacin on serum glucose concentration in normal and diabetic rats. Biol Pharm Bull 2006 Mar; 29(3): 527–31PubMedCrossRef Ishiwata Y, Sanada Y, Yasuhara M. Effects of gatifloxacin on serum glucose concentration in normal and diabetic rats. Biol Pharm Bull 2006 Mar; 29(3): 527–31PubMedCrossRef
180.
go back to reference Zillich AJ, Garg J, Basu S, et al. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension 2006 Aug; 48(2): 219–24PubMedCrossRef Zillich AJ, Garg J, Basu S, et al. Thiazide diuretics, potassium, and the development of diabetes: a quantitative review. Hypertension 2006 Aug; 48(2): 219–24PubMedCrossRef
181.
go back to reference Doyle ME, Egan JM. Pharmacological agents that directly modulate insulin secretion. Pharmacol Rev 2003 Mar; 55(1): 105–31PubMedCrossRef Doyle ME, Egan JM. Pharmacological agents that directly modulate insulin secretion. Pharmacol Rev 2003 Mar; 55(1): 105–31PubMedCrossRef
182.
go back to reference Cusi K, Kashyap S, Gastaldelli A, et al. Effects on insulin secretion and insulin action of a 48-h reduction of plasma free fatty acids with acipimox in nondiabetic subjects genetically predisposed to type 2 diabetes. Am J Physiol Endocrinol Metab 2007 Jun; 292(6): E1775–81PubMedCrossRef Cusi K, Kashyap S, Gastaldelli A, et al. Effects on insulin secretion and insulin action of a 48-h reduction of plasma free fatty acids with acipimox in nondiabetic subjects genetically predisposed to type 2 diabetes. Am J Physiol Endocrinol Metab 2007 Jun; 292(6): E1775–81PubMedCrossRef
183.
go back to reference Derendorf H, Hochhaus G, Mollmann H, et al. Receptor-based pharmacokinetic-pharmacodynamic analysis of corticosteroids. J Clin Pharmacol 1993 Feb; 33(2): 115–23PubMed Derendorf H, Hochhaus G, Mollmann H, et al. Receptor-based pharmacokinetic-pharmacodynamic analysis of corticosteroids. J Clin Pharmacol 1993 Feb; 33(2): 115–23PubMed
184.
go back to reference Sato S, Katayama K, Kakemi M, et al. A kinetic study of chlorpromazine on the hyperglycemic response in rats: II. Effect of chlorpromazine on plasma glucose. J Pharmacobiodyn 1988 Jul; 11(7): 492–503PubMedCrossRef Sato S, Katayama K, Kakemi M, et al. A kinetic study of chlorpromazine on the hyperglycemic response in rats: II. Effect of chlorpromazine on plasma glucose. J Pharmacobiodyn 1988 Jul; 11(7): 492–503PubMedCrossRef
185.
go back to reference Sato S, Mizuno S, Hatanaka T, et al. A kinetic study of chlorpromazine on the hyperglycemic response in rats: I. Effect of chlorpromazine on plasma catecholamines. J Pharmacobiodyn 1988 Jul; 11(7): 486–91PubMedCrossRef Sato S, Mizuno S, Hatanaka T, et al. A kinetic study of chlorpromazine on the hyperglycemic response in rats: I. Effect of chlorpromazine on plasma catecholamines. J Pharmacobiodyn 1988 Jul; 11(7): 486–91PubMedCrossRef
186.
go back to reference Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 2000 May; 43(5): 533–49PubMedCrossRef Nonogaki K. New insights into sympathetic regulation of glucose and fat metabolism. Diabetologia 2000 May; 43(5): 533–49PubMedCrossRef
187.
go back to reference Lesko LJ, Atkinson Jr AJ. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 2001; 41: 347–66PubMedCrossRef Lesko LJ, Atkinson Jr AJ. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 2001; 41: 347–66PubMedCrossRef
188.
go back to reference Colburn WA, Lee JW. Biomarkers, validation and pharmacokinetic-pharmacodynamic modelling. Clin Pharmacokinet 2003; 42(12): 997–1022PubMedCrossRef Colburn WA, Lee JW. Biomarkers, validation and pharmacokinetic-pharmacodynamic modelling. Clin Pharmacokinet 2003; 42(12): 997–1022PubMedCrossRef
189.
go back to reference Danhof M, Alvan G, Dahl SG, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling: a new classification of biomarkers. Pharm Res 2005 Sep; 22(9): 1432–7PubMedCrossRef Danhof M, Alvan G, Dahl SG, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling: a new classification of biomarkers. Pharm Res 2005 Sep; 22(9): 1432–7PubMedCrossRef
190.
go back to reference van Griensven JM, Jusko WJ, Lemkes HH, et al. Tolrestat pharmacokinetic and pharmacodynamic effects on red blood cell sorbitol levels in normal volunteers and in patients with insulin-dependent diabetes. Clin Pharmacol Ther 1995 Dec; 58(6): 631–40PubMedCrossRef van Griensven JM, Jusko WJ, Lemkes HH, et al. Tolrestat pharmacokinetic and pharmacodynamic effects on red blood cell sorbitol levels in normal volunteers and in patients with insulin-dependent diabetes. Clin Pharmacol Ther 1995 Dec; 58(6): 631–40PubMedCrossRef
191.
go back to reference Hamrén B, Ericsson H, Öhman P, et al. Pharmacokinetic and pharmacodynamic modelling of the dual PPAR α/β agonist tesaglitazar in patients with manifestations of insulin resistance [abstract no. 808; online]. Annual Meeting of the Population Approach Group in Europe; 2005 Jun 16–17; Pamplona. Available from URL: http://www.page-meeting.org/default.asp?keuze=search [Accessed 2008 May 14] Hamrén B, Ericsson H, Öhman P, et al. Pharmacokinetic and pharmacodynamic modelling of the dual PPAR α/β agonist tesaglitazar in patients with manifestations of insulin resistance [abstract no. 808; online]. Annual Meeting of the Population Approach Group in Europe; 2005 Jun 16–17; Pamplona. Available from URL: http://​www.​page-meeting.​org/​default.​asp?​keuze=​search [Accessed 2008 May 14]
192.
go back to reference van Schaick EA, Zuideveld KP, Tukker HE, et al. Metabolic and cardiovascular effects of the adenosine A1 receptor agonist N6-(p-sulfophenyl)adenosine in diabetic Zucker rats: influence of the disease on the selectivity of action. J Pharmacol Exp Ther 1998 Oct; 287(1): 21–30PubMed van Schaick EA, Zuideveld KP, Tukker HE, et al. Metabolic and cardiovascular effects of the adenosine A1 receptor agonist N6-(p-sulfophenyl)adenosine in diabetic Zucker rats: influence of the disease on the selectivity of action. J Pharmacol Exp Ther 1998 Oct; 287(1): 21–30PubMed
193.
go back to reference Van der Graaf PH, Van Schaick EA, Visser SA, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling of antilipolytic effects of adenosine A(1) receptor agonists in rats: prediction of tissue-dependent efficacy in vivo. J Pharmacol Exp Ther 1999 Aug; 290(2): 702–9PubMed Van der Graaf PH, Van Schaick EA, Visser SA, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling of antilipolytic effects of adenosine A(1) receptor agonists in rats: prediction of tissue-dependent efficacy in vivo. J Pharmacol Exp Ther 1999 Aug; 290(2): 702–9PubMed
194.
go back to reference Jin JY, DuBois DC, Almon RR, et al. Receptor/gene-mediated pharmacodynamic effects of methylprednisolone on phosphoenolpyruvate carboxykinase regulation in rat liver. J Pharmacol Exp Ther 2004 Apr; 309(1): 328–39PubMedCrossRef Jin JY, DuBois DC, Almon RR, et al. Receptor/gene-mediated pharmacodynamic effects of methylprednisolone on phosphoenolpyruvate carboxykinase regulation in rat liver. J Pharmacol Exp Ther 2004 Apr; 309(1): 328–39PubMedCrossRef
195.
go back to reference Summers RL, Montani J-P. Mathematical model of glucose homeostasis for the study of metabolic states. J Miss Acad Sci 1989; 34: 25–31 Summers RL, Montani J-P. Mathematical model of glucose homeostasis for the study of metabolic states. J Miss Acad Sci 1989; 34: 25–31
196.
go back to reference Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007 May; 132(6): 2169–80PubMedCrossRef Shoelson SE, Herrero L, Naaz A. Obesity, inflammation, and insulin resistance. Gastroenterology 2007 May; 132(6): 2169–80PubMedCrossRef
197.
go back to reference Rangamani P, Sirovich L. Survival and apoptotic pathways initiated by TNF-alpha: modeling and predictions. Biotechnol Bioeng 2007 Aug 1; 97(5): 1216–29PubMedCrossRef Rangamani P, Sirovich L. Survival and apoptotic pathways initiated by TNF-alpha: modeling and predictions. Biotechnol Bioeng 2007 Aug 1; 97(5): 1216–29PubMedCrossRef
198.
go back to reference Keith M, Norwich KH, Wong W, et al. The tissue distribution of tumor necrosis factor-alpha in rats: a compartmental model. Metabolism 2000 Oct; 49(10): 1309–17PubMedCrossRef Keith M, Norwich KH, Wong W, et al. The tissue distribution of tumor necrosis factor-alpha in rats: a compartmental model. Metabolism 2000 Oct; 49(10): 1309–17PubMedCrossRef
199.
go back to reference Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006 Dec 14; 444(7121): 840–6PubMedCrossRef Kahn SE, Hull RL, Utzschneider KM. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 2006 Dec 14; 444(7121): 840–6PubMedCrossRef
200.
go back to reference Krzyzanski W, Jusko WJ. Note: caution in use of empirical equations for pharmacodynamic indirect response models. J Pharmacokinet Biopharm 1998 Dec; 26(6): 735–41PubMed Krzyzanski W, Jusko WJ. Note: caution in use of empirical equations for pharmacodynamic indirect response models. J Pharmacokinet Biopharm 1998 Dec; 26(6): 735–41PubMed
201.
go back to reference Black JW, Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 1983 Dec 22; 220(1219): 141–62PubMedCrossRef Black JW, Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 1983 Dec 22; 220(1219): 141–62PubMedCrossRef
202.
go back to reference Howard BV, Klimes I, Vasquez B, et al. The antilipolytic action of insulin in obese subjects with resistance to its glucoregulatory action. J Clin Endocrinol Metab 1984 Mar; 58(3): 544–8PubMedCrossRef Howard BV, Klimes I, Vasquez B, et al. The antilipolytic action of insulin in obese subjects with resistance to its glucoregulatory action. J Clin Endocrinol Metab 1984 Mar; 58(3): 544–8PubMedCrossRef
203.
go back to reference Sturm K, Levstik L, Demopoulos VJ, et al. Permeability characteristics of novel aldose reductase inhibitors using rat jejunum in vitro. Eur J Pharm Sci 2006 May; 28(1–2): 128–33PubMedCrossRef Sturm K, Levstik L, Demopoulos VJ, et al. Permeability characteristics of novel aldose reductase inhibitors using rat jejunum in vitro. Eur J Pharm Sci 2006 May; 28(1–2): 128–33PubMedCrossRef
205.
go back to reference Holford NHG, Mould DR, Peck C. Disease progression models. In: Atkinson A, editor. Principles of clinical pharmacology. New York: Academic Press, 2001 Holford NHG, Mould DR, Peck C. Disease progression models. In: Atkinson A, editor. Principles of clinical pharmacology. New York: Academic Press, 2001
206.
go back to reference Levy J, Atkinson AB, Bell PM, et al. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study. Diabet Med 1998 Apr; 15(4): 290–6PubMedCrossRef Levy J, Atkinson AB, Bell PM, et al. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study. Diabet Med 1998 Apr; 15(4): 290–6PubMedCrossRef
207.
go back to reference Mould DR. Developing models of disease progression. In: Ette EI, Williams PJ, editors. Pharmacometrics. Hoboken (NJ): John Wiley & Sons, Inc., 2007: 547–81CrossRef Mould DR. Developing models of disease progression. In: Ette EI, Williams PJ, editors. Pharmacometrics. Hoboken (NJ): John Wiley & Sons, Inc., 2007: 547–81CrossRef
208.
go back to reference Chan PL, Holford NH. Drug treatment effects on disease progression. Annu Rev Pharmacol Toxicol 2001; 41: 625–59PubMedCrossRef Chan PL, Holford NH. Drug treatment effects on disease progression. Annu Rev Pharmacol Toxicol 2001; 41: 625–59PubMedCrossRef
209.
go back to reference Post TM, Freijer JI, DeJongh J, et al. Disease system analysis: basic disease progression models in degenerative disease. Pharm Res 2005 Jul; 22(7): 1038–49PubMedCrossRef Post TM, Freijer JI, DeJongh J, et al. Disease system analysis: basic disease progression models in degenerative disease. Pharm Res 2005 Jul; 22(7): 1038–49PubMedCrossRef
210.
go back to reference Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006 Dec 7; 355(23): 2427–43PubMedCrossRef Kahn SE, Haffner SM, Heise MA, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006 Dec 7; 355(23): 2427–43PubMedCrossRef
211.
go back to reference Topp B, Promislow K, de Vries G, et al. A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 2000 Oct 21; 206(4): 605–19PubMedCrossRef Topp B, Promislow K, de Vries G, et al. A model of beta-cell mass, insulin, and glucose kinetics: pathways to diabetes. J Theor Biol 2000 Oct 21; 206(4): 605–19PubMedCrossRef
212.
go back to reference Hamrén B. Safety and efficacy modelling in anti-diabetic drug development [PhD thesis]. Uppsala: Uppsala University, 2008 Hamrén B. Safety and efficacy modelling in anti-diabetic drug development [PhD thesis]. Uppsala: Uppsala University, 2008
213.
go back to reference Bagust A, Beale S. Deteriorating beta-cell function in type 2 diabetes: a long-term model. QJM 2003 Apr; 96(4): 281–8PubMedCrossRef Bagust A, Beale S. Deteriorating beta-cell function in type 2 diabetes: a long-term model. QJM 2003 Apr; 96(4): 281–8PubMedCrossRef
214.
go back to reference Kahn R. Dealing with complexity in clinical diabetes: the value of Archimedes. Diabetes Care 2003 Nov; 26(11): 3168–71PubMedCrossRef Kahn R. Dealing with complexity in clinical diabetes: the value of Archimedes. Diabetes Care 2003 Nov; 26(11): 3168–71PubMedCrossRef
215.
go back to reference Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998 May 12; 97(18): 1837–47PubMedCrossRef Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998 May 12; 97(18): 1837–47PubMedCrossRef
216.
go back to reference Brown JB, Russell A, Chan W, et al. The global diabetes model: user friendly version 3.0. Diabetes Res Clin Pract 2000 Nov; 50 Suppl. 3: S15–46PubMedCrossRef Brown JB, Russell A, Chan W, et al. The global diabetes model: user friendly version 3.0. Diabetes Res Clin Pract 2000 Nov; 50 Suppl. 3: S15–46PubMedCrossRef
217.
go back to reference Eddy DM, Schlessinger L. Archimedes: a trial-validated model of diabetes. Diabetes Care 2003 Nov; 26(11): 3093–101PubMedCrossRef Eddy DM, Schlessinger L. Archimedes: a trial-validated model of diabetes. Diabetes Care 2003 Nov; 26(11): 3093–101PubMedCrossRef
218.
go back to reference Eddy DM, Schlessinger L. Validation of the Archimedes diabetes model. Diabetes Care 2003 Nov; 26(11): 3102–10PubMedCrossRef Eddy DM, Schlessinger L. Validation of the Archimedes diabetes model. Diabetes Care 2003 Nov; 26(11): 3102–10PubMedCrossRef
219.
go back to reference Klinke 2nd DJ. Integrating epidemiological data into a mechanistic model of type 2 diabetes: validating the prevalence of virtual patients. Ann Biomed Eng 2008 Feb; 36(2): 321–34PubMedCrossRef Klinke 2nd DJ. Integrating epidemiological data into a mechanistic model of type 2 diabetes: validating the prevalence of virtual patients. Ann Biomed Eng 2008 Feb; 36(2): 321–34PubMedCrossRef
220.
go back to reference Young DL, Ramanujan S, Kreuwel HT, et al. Mechanisms mediating anti-CD3 antibody efficacy: insights from a mathematical model of type 1 diabetes. Ann N Y Acad Sci 2006 Oct; 1079: 369–73PubMedCrossRef Young DL, Ramanujan S, Kreuwel HT, et al. Mechanisms mediating anti-CD3 antibody efficacy: insights from a mathematical model of type 1 diabetes. Ann N Y Acad Sci 2006 Oct; 1079: 369–73PubMedCrossRef
222.
go back to reference Schlessinger L, Eddy DM. Archimedes: a new model for simulating health care systems — the mathematical formulation. J Biomed Inform 2002 Feb; 35(1): 37–50PubMedCrossRef Schlessinger L, Eddy DM. Archimedes: a new model for simulating health care systems — the mathematical formulation. J Biomed Inform 2002 Feb; 35(1): 37–50PubMedCrossRef
223.
go back to reference Mount Hood 4 Modeling Group. Computer modeling of diabetes and its complications: a report on the Fourth Mount Hood Challenge Meeting. Diabetes Care 2007 Jun; 30(6): 1638–46CrossRef Mount Hood 4 Modeling Group. Computer modeling of diabetes and its complications: a report on the Fourth Mount Hood Challenge Meeting. Diabetes Care 2007 Jun; 30(6): 1638–46CrossRef
224.
go back to reference American Diabetes Association Consensus Panel. Guidelines for computer modeling of diabetes and its complications. Diabetes Care 2004 Sep; 27(9): 2262–5CrossRef American Diabetes Association Consensus Panel. Guidelines for computer modeling of diabetes and its complications. Diabetes Care 2004 Sep; 27(9): 2262–5CrossRef
Metadata
Title
Pharmacokinetic/Pharmacodynamic Modelling in Diabetes Mellitus
Authors
Cornelia B. Landersdorfer
Prof. William J. Jusko
Publication date
01-07-2008
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 7/2008
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200847070-00001