Skip to main content
Top
Published in: Clinical Pharmacokinetics 2/2008

01-02-2008 | Review Article

Clinical Pharmacology of Artemisinin-Based Combination Therapies

Authors: Prof. Francesca T. Aweeka, Polina I. German

Published in: Clinical Pharmacokinetics | Issue 2/2008

Login to get access

Abstract

Malaria, a disease transmitted by the female Anopheles mosquito, has had devastating effects on human populations for more than 4000 years. Treatment of the disease with single drugs, such as chloroquine, sulfadoxine/pyrimethamine or mefloquine, has led to the emergence of resistant Plasmodium falciparum parasites that lead to the most severe form of the illness. Artemisinin-based combination therapies are currently recommended by WHO for the treatment of uncomplicated P. falciparum malaria. Artemisinin and semisynthetic derivatives, including artesunate, artemether and dihydroartemisinin, are short-acting antimalarial agents that kill parasites more rapidly than conventional antimalarials, and are active against both the sexual and asexual stages of the parasite cycle. Artemisinin fever clearance time is shortened to 32 hours as compared with 2–3 days with older agents. To delay or prevent emergence of resistance, artemisinins are combined with one of several longer-acting drugs — amodiaquine, mefloquine, sulfadoxine/pyrimethamine or lumefantrine — which permit elimination of the residual malarial parasites.
The clinical pharmacology of artemisinin-based combination therapies is highly complex. The short-acting artemisinins and their long-acting counterparts are metabolized and/or inhibit/induce cytochrome P450 enzymes, and may thus participate in drug-drug interactions with multiple drugs on the market. Alterations in antimalarial drug plasma concentrations may lead to either suboptimal efficacy or drug toxicity and may compromise treatment.
Footnotes
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literature
3.
go back to reference Talisuna AO, Bloland P, D’Allessandro U. History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev 2004; 17(1): 235–54PubMedCrossRef Talisuna AO, Bloland P, D’Allessandro U. History, dynamics, and public health importance of malaria parasite resistance. Clin Microbiol Rev 2004; 17(1): 235–54PubMedCrossRef
4.
go back to reference Nosten F, van Vugt M, Price R, et al. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in Western Thailand: a prospective study. Lancet 2000; 356: 297–302PubMedCrossRef Nosten F, van Vugt M, Price R, et al. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in Western Thailand: a prospective study. Lancet 2000; 356: 297–302PubMedCrossRef
6.
go back to reference White NJ. Antimalarial drug resistance. J Clin Invest 2004; 113(8): 1084–92PubMed White NJ. Antimalarial drug resistance. J Clin Invest 2004; 113(8): 1084–92PubMed
7.
go back to reference Karema C, Fanello CI, van Overmeir C, et al. Safety and efficacy of dihydroartemisinin/piperaquine (Artekin) for the treatment of uncomplicated Plasmodium falciparum malaria in Rwandan children. Trans R Soc Trop Med Hyg 2006; 100(12): 1105–11PubMedCrossRef Karema C, Fanello CI, van Overmeir C, et al. Safety and efficacy of dihydroartemisinin/piperaquine (Artekin) for the treatment of uncomplicated Plasmodium falciparum malaria in Rwandan children. Trans R Soc Trop Med Hyg 2006; 100(12): 1105–11PubMedCrossRef
8.
go back to reference Denis MB, Davis TM, Hewitt S, et al. Efficacy and safety of dihydroartemisininpiperaquine (Artekin) in Cambodian children and adults with uncomplicated falciparum malaria. Clin Infect Dis 2002; 35: 1469–75PubMedCrossRef Denis MB, Davis TM, Hewitt S, et al. Efficacy and safety of dihydroartemisininpiperaquine (Artekin) in Cambodian children and adults with uncomplicated falciparum malaria. Clin Infect Dis 2002; 35: 1469–75PubMedCrossRef
9.
go back to reference van Agtmael MA, Eggelte TA, van Boxtel CJ. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci 1999; 20(5): 199–205PubMedCrossRef van Agtmael MA, Eggelte TA, van Boxtel CJ. Artemisinin drugs in the treatment of malaria: from medicinal herb to registered medication. Trends Pharmacol Sci 1999; 20(5): 199–205PubMedCrossRef
11.
go back to reference Hsu E. The history of qing hao in the Chinese material medica. Trans R Soc Trop Med Hyg 2006 Jun; 100(6): 505–8PubMedCrossRef Hsu E. The history of qing hao in the Chinese material medica. Trans R Soc Trop Med Hyg 2006 Jun; 100(6): 505–8PubMedCrossRef
12.
go back to reference Wiesner J, Ortmann R, Jomaa H, et al. New antimalarial drugs. Angew Chem Int Ed Engl 2003; 42(43): 5274–93PubMedCrossRef Wiesner J, Ortmann R, Jomaa H, et al. New antimalarial drugs. Angew Chem Int Ed Engl 2003; 42(43): 5274–93PubMedCrossRef
13.
go back to reference Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 1998; 79(1): 55–87PubMedCrossRef Foley M, Tilley L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol Ther 1998; 79(1): 55–87PubMedCrossRef
14.
go back to reference D’Alessandro U, ter Kuile FO. Amodiaquine, malaria, pregnancy: the old new drug. Lancet 2006; 368: 1306–7PubMedCrossRef D’Alessandro U, ter Kuile FO. Amodiaquine, malaria, pregnancy: the old new drug. Lancet 2006; 368: 1306–7PubMedCrossRef
15.
go back to reference Lefevre G, Thomsen MS. Clinical pharmacokinetics of artemether and lumefantrine (Riamet®). Clin Drug Invest 1999; 18(6): 467–80CrossRef Lefevre G, Thomsen MS. Clinical pharmacokinetics of artemether and lumefantrine (Riamet®). Clin Drug Invest 1999; 18(6): 467–80CrossRef
16.
go back to reference Simpson JA, Price R, ter Kuile F, et al. Population pharmacokinetics of mefloquine in patients with acute falciparum malaria. Clin Pharmacol Ther 1999; 66(5): 472–84PubMedCrossRef Simpson JA, Price R, ter Kuile F, et al. Population pharmacokinetics of mefloquine in patients with acute falciparum malaria. Clin Pharmacol Ther 1999; 66(5): 472–84PubMedCrossRef
17.
go back to reference Ashley EA, Stepniewska K, Lindegårdh N, et al. Population pharmacokinetic assessment of a new regimen of mefloquine used in combination treatment of uncomplicated falciparum malaria. Antimicrob Agents Chemother 2006 Jul; 50(7): 2281–5PubMedCrossRef Ashley EA, Stepniewska K, Lindegårdh N, et al. Population pharmacokinetic assessment of a new regimen of mefloquine used in combination treatment of uncomplicated falciparum malaria. Antimicrob Agents Chemother 2006 Jul; 50(7): 2281–5PubMedCrossRef
18.
go back to reference Davis TME, Hung T, Sim I, et al. Piperaquine: a resurgent antimalarial drug. Drugs 2006; 65(1): 75–87CrossRef Davis TME, Hung T, Sim I, et al. Piperaquine: a resurgent antimalarial drug. Drugs 2006; 65(1): 75–87CrossRef
19.
go back to reference White NJ. Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans R Soc Trop Med Hyg 1994; 88 Suppl. 1: S41–3PubMedCrossRef White NJ. Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives. Trans R Soc Trop Med Hyg 1994; 88 Suppl. 1: S41–3PubMedCrossRef
20.
go back to reference Golenser J, Waknine JH, Krugliak M, et al. Current perspectives on the mechanism of action of artemisinins. Int J Parasitol 2006; 36(14): 1427–41PubMedCrossRef Golenser J, Waknine JH, Krugliak M, et al. Current perspectives on the mechanism of action of artemisinins. Int J Parasitol 2006; 36(14): 1427–41PubMedCrossRef
21.
go back to reference Eckstein-Ludwig U, Webb RJ, Van Goethem ID, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 2003; 424(6951): 957–61PubMedCrossRef Eckstein-Ludwig U, Webb RJ, Van Goethem ID, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature 2003; 424(6951): 957–61PubMedCrossRef
22.
go back to reference Li W, Mo W, Shen D, et al. Yeast model uncovers dual roles of mitochondria in the action of artemisinin. PLoS Genet 2005; 1(3): e36PubMedCrossRef Li W, Mo W, Shen D, et al. Yeast model uncovers dual roles of mitochondria in the action of artemisinin. PLoS Genet 2005; 1(3): e36PubMedCrossRef
23.
go back to reference Krishna S, Woodrow CJ, Staines HM, et al. Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends Mol Med 2006; 12(5): 200–5PubMedCrossRef Krishna S, Woodrow CJ, Staines HM, et al. Re-evaluation of how artemisinins work in light of emerging evidence of in vitro resistance. Trends Mol Med 2006; 12(5): 200–5PubMedCrossRef
24.
go back to reference Vyas N, Avery BA, Avery MA, et al. Carrier-mediated partitioning of artemisinin into Plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother 2002; 46(1): 105–9PubMedCrossRef Vyas N, Avery BA, Avery MA, et al. Carrier-mediated partitioning of artemisinin into Plasmodium falciparum-infected erythrocytes. Antimicrob Agents Chemother 2002; 46(1): 105–9PubMedCrossRef
25.
go back to reference Famin O, Ginsburg H. Differential effects of 4-aminoquinoline-containing anti-malarial drugs on hemoglobin digestion in Plasmodium falciparum-infected erythrocytes. Biochem Pharmacol 2002; 63(3): 393–8PubMedCrossRef Famin O, Ginsburg H. Differential effects of 4-aminoquinoline-containing anti-malarial drugs on hemoglobin digestion in Plasmodium falciparum-infected erythrocytes. Biochem Pharmacol 2002; 63(3): 393–8PubMedCrossRef
26.
go back to reference Zhang JM, Krugliak M, Ginsburg H. The fate of ferriprotorphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Mol Biochem Parasitol 1999; 99: 129–41PubMedCrossRef Zhang JM, Krugliak M, Ginsburg H. The fate of ferriprotorphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Mol Biochem Parasitol 1999; 99: 129–41PubMedCrossRef
27.
go back to reference Famin O, Krugliak M, Ginsburg H. Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs. Biochem Pharmacol 1999; 58: 59–68PubMedCrossRef Famin O, Krugliak M, Ginsburg H. Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs. Biochem Pharmacol 1999; 58: 59–68PubMedCrossRef
28.
go back to reference Novartis Pharma AG. Product monograph: Coartem®/Riamet®. A novel anti-malarial combination: one product, two concepts. Basel: Novartis Pharma AG, 2005 Novartis Pharma AG. Product monograph: Coartem®/Riamet®. A novel anti-malarial combination: one product, two concepts. Basel: Novartis Pharma AG, 2005
30.
go back to reference Triglia R, Cowman AF. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci U S A 1994; 91(15): 7149–53PubMedCrossRef Triglia R, Cowman AF. Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci U S A 1994; 91(15): 7149–53PubMedCrossRef
31.
go back to reference Sibley CH, Hyde JE, Sims PF, et al. Pyrimethamine-sufadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol 2001; 17(12): 582–8PubMedCrossRef Sibley CH, Hyde JE, Sims PF, et al. Pyrimethamine-sufadoxine resistance in Plasmodium falciparum: what next? Trends Parasitol 2001; 17(12): 582–8PubMedCrossRef
32.
go back to reference Balint GA. Artemisinin and its derivatives: an important new class of antimalarial drugs. Pharmacol Ther 2001; 90(2-3): 261–5PubMedCrossRef Balint GA. Artemisinin and its derivatives: an important new class of antimalarial drugs. Pharmacol Ther 2001; 90(2-3): 261–5PubMedCrossRef
33.
go back to reference Karbwang J, Thomas CG, Na Bangchang K, et al. Pharmacokinetics of artemether after oral administration to healthy Thai males and patients with acute, uncomplicated falciparum malaria. Br J Clin Pharmacol 1994; 37(3): 249–53PubMedCrossRef Karbwang J, Thomas CG, Na Bangchang K, et al. Pharmacokinetics of artemether after oral administration to healthy Thai males and patients with acute, uncomplicated falciparum malaria. Br J Clin Pharmacol 1994; 37(3): 249–53PubMedCrossRef
34.
go back to reference Benakis A, Paris M, Loutan L, et al. Pharmacokinetics of artemisinin and artesunate after oral administration in healthy volunteers. Am J Trop Med Hyg 1997; 56(1): 17–23PubMed Benakis A, Paris M, Loutan L, et al. Pharmacokinetics of artemisinin and artesunate after oral administration in healthy volunteers. Am J Trop Med Hyg 1997; 56(1): 17–23PubMed
35.
go back to reference Sidhu JS, Ashton M. Single-dose, comparative study of venous capillary and salivary artemisinin concentrations in healthy, male adults. Am J Trop Med Hyg 1997; 56(1): 13–6PubMed Sidhu JS, Ashton M. Single-dose, comparative study of venous capillary and salivary artemisinin concentrations in healthy, male adults. Am J Trop Med Hyg 1997; 56(1): 13–6PubMed
36.
go back to reference Svensson US, Ashton M, Trinh NH, et al. Artemisinin induces omeprazole metabolism in human beings. Clin Pharmacol Ther 1998; 64(2): 160–7PubMedCrossRef Svensson US, Ashton M, Trinh NH, et al. Artemisinin induces omeprazole metabolism in human beings. Clin Pharmacol Ther 1998; 64(2): 160–7PubMedCrossRef
37.
go back to reference Svensson US, Jouppila MM, Hoffmann KJ, et al. Characterization of the human liver in vitro metabolic pattern of artemisinin and auto-induction in the rat by use of nonlinear mixed effects modeling. Biopharm Drug Dispos 2003; 24(2): 71–85PubMedCrossRef Svensson US, Jouppila MM, Hoffmann KJ, et al. Characterization of the human liver in vitro metabolic pattern of artemisinin and auto-induction in the rat by use of nonlinear mixed effects modeling. Biopharm Drug Dispos 2003; 24(2): 71–85PubMedCrossRef
38.
go back to reference Simonsson US, Jansson B, Hai TN, et al. Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin Pharmacol Ther 2003; 74(1): 32–43PubMedCrossRef Simonsson US, Jansson B, Hai TN, et al. Artemisinin autoinduction is caused by involvement of cytochrome P450 2B6 but not 2C9. Clin Pharmacol Ther 2003; 74(1): 32–43PubMedCrossRef
39.
go back to reference Li Q, Xie LH, Si Y, et al. Toxicokinetics and hydrolysis of artelinate and artesunate in malaria-infected rats. Int J Toxicol 2005; 24(4): 241–50PubMedCrossRef Li Q, Xie LH, Si Y, et al. Toxicokinetics and hydrolysis of artelinate and artesunate in malaria-infected rats. Int J Toxicol 2005; 24(4): 241–50PubMedCrossRef
42.
go back to reference Karunajeewa HA, Ilett KF, Dufall K, et al. Disposition of artesunate and dihydroartemisinin after administration of artesunate suppositories in children from Papua New Guinea with uncomplicated malaria. Antimicrob Agents Chemother 2004; 48(8): 2966–72PubMedCrossRef Karunajeewa HA, Ilett KF, Dufall K, et al. Disposition of artesunate and dihydroartemisinin after administration of artesunate suppositories in children from Papua New Guinea with uncomplicated malaria. Antimicrob Agents Chemother 2004; 48(8): 2966–72PubMedCrossRef
43.
go back to reference Dondorp A, Nosten F, Stepniewska K, et al. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 2005; 366(9487): 717–25PubMedCrossRef Dondorp A, Nosten F, Stepniewska K, et al. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 2005; 366(9487): 717–25PubMedCrossRef
44.
go back to reference Newton PN, Barnes KI, Smith PJ, et al. The pharmacokinetics of intravenous artesunate in adults with severe falciparum malaria. Eur J Clin Pharmacol 2006; 62(12): 1003–9PubMedCrossRef Newton PN, Barnes KI, Smith PJ, et al. The pharmacokinetics of intravenous artesunate in adults with severe falciparum malaria. Eur J Clin Pharmacol 2006; 62(12): 1003–9PubMedCrossRef
45.
go back to reference Ilett KF, Ethell BT, Maggs JL, et al. Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos 2002; 30(9): 1005–12PubMedCrossRef Ilett KF, Ethell BT, Maggs JL, et al. Glucuronidation of dihydroartemisinin in vivo and by human liver microsomes and expressed UDP-glucuronosyltransferases. Drug Metab Dispos 2002; 30(9): 1005–12PubMedCrossRef
46.
go back to reference Teja-Isavadharm P, Watt G, Eamsila C, et al. Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated P. falciparum malaria. Am J Trop Med Hyg 2001; 65(6): 717–21PubMed Teja-Isavadharm P, Watt G, Eamsila C, et al. Comparative pharmacokinetics and effect kinetics of orally administered artesunate in healthy volunteers and patients with uncomplicated P. falciparum malaria. Am J Trop Med Hyg 2001; 65(6): 717–21PubMed
47.
go back to reference Li Q, Xie LH, Haeberle A, et al. The evaluation of radiolabeled artesunate on tissue distribution in rats and protein binding in humans. Am J Trop Med Hyg 2006; 75(5): 817–26PubMed Li Q, Xie LH, Haeberle A, et al. The evaluation of radiolabeled artesunate on tissue distribution in rats and protein binding in humans. Am J Trop Med Hyg 2006; 75(5): 817–26PubMed
48.
go back to reference Batty KT, Ilett KF, Davis TME. Protein binding and α:β anomer ratio of dihydroartemisinin in vivo. Br J Clin Pharmacol 2004; 57(4): 529–33PubMedCrossRef Batty KT, Ilett KF, Davis TME. Protein binding and α:β anomer ratio of dihydroartemisinin in vivo. Br J Clin Pharmacol 2004; 57(4): 529–33PubMedCrossRef
49.
go back to reference Winstanley PA, Edwards G, Orme MLE, et al. Effect of dose size on amodiaquine pharmacokinetics after oral administration. Eur J Clin Pharmacol 1987; 33: 331–3PubMedCrossRef Winstanley PA, Edwards G, Orme MLE, et al. Effect of dose size on amodiaquine pharmacokinetics after oral administration. Eur J Clin Pharmacol 1987; 33: 331–3PubMedCrossRef
50.
go back to reference Winstanley PA, Edwards G, Orme MLE, et al. The disposition of amodiaquine in man after oral administration. Br J Clin Pharmacol 1987; 23(1): 1–7PubMedCrossRef Winstanley PA, Edwards G, Orme MLE, et al. The disposition of amodiaquine in man after oral administration. Br J Clin Pharmacol 1987; 23(1): 1–7PubMedCrossRef
51.
go back to reference Li XQ, Bjorkman A, Andersson RB, et al. Amodiaquine clearance and its metabolism to N-dessethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther 2002; 300(2): 399–407PubMedCrossRef Li XQ, Bjorkman A, Andersson RB, et al. Amodiaquine clearance and its metabolism to N-dessethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther 2002; 300(2): 399–407PubMedCrossRef
52.
go back to reference Churchill FC, Patchen LC, Campbell CC, et al. Amodiaquine as a prodrug: the importance of metabolite(s) in the antimalarial effect of amodiaquine in humans. Life Sci 1985; 36: 53–62PubMedCrossRef Churchill FC, Patchen LC, Campbell CC, et al. Amodiaquine as a prodrug: the importance of metabolite(s) in the antimalarial effect of amodiaquine in humans. Life Sci 1985; 36: 53–62PubMedCrossRef
53.
go back to reference Jewell H, Maggs JL, Harrison AC, et al. Role of hepatic metabolism in the bioactivation and detoxication of amodiaquine. Xenobiotica 1995; 25(2): 199–217PubMedCrossRef Jewell H, Maggs JL, Harrison AC, et al. Role of hepatic metabolism in the bioactivation and detoxication of amodiaquine. Xenobiotica 1995; 25(2): 199–217PubMedCrossRef
54.
go back to reference Christie G, Breckenridge AM, Park BK. Drug-protein conjugates: XVIII. Detection of antibodies towards the antimalarial amodiaquine and its quinone imine metabolite in man and the rat. Biochem Pharmacol 1989; 38(9): 1451–8PubMedCrossRef Christie G, Breckenridge AM, Park BK. Drug-protein conjugates: XVIII. Detection of antibodies towards the antimalarial amodiaquine and its quinone imine metabolite in man and the rat. Biochem Pharmacol 1989; 38(9): 1451–8PubMedCrossRef
55.
go back to reference Harrison AC, Kitteringham NR, Clarke JB, et al. The mechanism of bioactivation and antigen formation of amodiaquine in the rat. Biochem Pharmacol 1992; 43(7): 1421–30PubMedCrossRef Harrison AC, Kitteringham NR, Clarke JB, et al. The mechanism of bioactivation and antigen formation of amodiaquine in the rat. Biochem Pharmacol 1992; 43(7): 1421–30PubMedCrossRef
56.
go back to reference Maggs JL, Kitteringham NR, Breckenridge AM, et al. Autoxidative formation of a chemically reactive intermediate from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol 1987; 36(13): 2061–2PubMedCrossRef Maggs JL, Kitteringham NR, Breckenridge AM, et al. Autoxidative formation of a chemically reactive intermediate from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol 1987; 36(13): 2061–2PubMedCrossRef
57.
go back to reference Maggs JL, Tingle MD, Kitteringham NR, et al. Drug-protein conjugates: XIV. Mechanisms of formation of protein-arylating intermediates from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol 1988; 37(2): 303–11PubMedCrossRef Maggs JL, Tingle MD, Kitteringham NR, et al. Drug-protein conjugates: XIV. Mechanisms of formation of protein-arylating intermediates from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol 1988; 37(2): 303–11PubMedCrossRef
58.
go back to reference Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine: clinical implications. Clin Pharmacokinet 1996; 30(4): 263–99PubMedCrossRef Krishna S, White NJ. Pharmacokinetics of quinine, chloroquine and amodiaquine: clinical implications. Clin Pharmacokinet 1996; 30(4): 263–99PubMedCrossRef
59.
go back to reference Giao PT, de Vries PJ. Pharmacokinetic interactions of antimalarial agents. Clin Pharmacokinet 2001; 40(5): 343–73PubMedCrossRef Giao PT, de Vries PJ. Pharmacokinetic interactions of antimalarial agents. Clin Pharmacokinet 2001; 40(5): 343–73PubMedCrossRef
60.
go back to reference Parikh S, Ouedraogo JB, Goldstein JA, et al. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther 2007; 82(2): 197–203PubMedCrossRef Parikh S, Ouedraogo JB, Goldstein JA, et al. Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa. Clin Pharmacol Ther 2007; 82(2): 197–203PubMedCrossRef
61.
go back to reference Dai D, Zeldin DC, Blaisdell JA, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001; 11: 597–607PubMedCrossRef Dai D, Zeldin DC, Blaisdell JA, et al. Polymorphisms in human CYP2C8 decrease metabolism of the anticancer drug paclitaxel and arachidonic acid. Pharmacogenetics 2001; 11: 597–607PubMedCrossRef
62.
go back to reference Bahadur N, Leathart JB, Mutch E, et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6a-hydroxylase activity in human liver microsomes. Biochem Pharmacol 2002; 64: 1579–89PubMedCrossRef Bahadur N, Leathart JB, Mutch E, et al. CYP2C8 polymorphisms in Caucasians and their relationship with paclitaxel 6a-hydroxylase activity in human liver microsomes. Biochem Pharmacol 2002; 64: 1579–89PubMedCrossRef
63.
go back to reference Hayeshi R, Masimirembwa C, Mukanganyama S, et al. The potential inhibitor effects of antiparasitic drugs and natural products on P-glycoprotein mediated efflux. Eur J Pharm Sci 2006; 29(1): 70–81PubMedCrossRef Hayeshi R, Masimirembwa C, Mukanganyama S, et al. The potential inhibitor effects of antiparasitic drugs and natural products on P-glycoprotein mediated efflux. Eur J Pharm Sci 2006; 29(1): 70–81PubMedCrossRef
64.
go back to reference Wennerholm A, Nordmark A, Pihlsgård M, et al. Amodiaquine, its desethylated metabolite, or both, inhibit the metabolism of debrisoquine (CYP2D6) and losartan (CYP2C9). Eur J Clin Pharmacol 2006; 62: 539–46PubMedCrossRef Wennerholm A, Nordmark A, Pihlsgård M, et al. Amodiaquine, its desethylated metabolite, or both, inhibit the metabolism of debrisoquine (CYP2D6) and losartan (CYP2C9). Eur J Clin Pharmacol 2006; 62: 539–46PubMedCrossRef
65.
go back to reference German P, Greenhouse B, Coates C, et al. Hepatotoxicity due to a drug interaction between amodiaquine plus artesunate and efavirenz. Clin Infect Dis 2007; 44(6): 889–91PubMedCrossRef German P, Greenhouse B, Coates C, et al. Hepatotoxicity due to a drug interaction between amodiaquine plus artesunate and efavirenz. Clin Infect Dis 2007; 44(6): 889–91PubMedCrossRef
66.
go back to reference Price R, Simpson JA, Teja-Isavatharm P, et al. Pharmacokinetics of mefloquine combined with artesunate in children with acute falciparum malaria. Antimicrob Agents Chemother 1999; 43(2): 341–6PubMed Price R, Simpson JA, Teja-Isavatharm P, et al. Pharmacokinetics of mefloquine combined with artesunate in children with acute falciparum malaria. Antimicrob Agents Chemother 1999; 43(2): 341–6PubMed
67.
go back to reference Nosten F, Luxemburger C, ter Kuile FO, et al. Mefloquine treatment of acute falciparum malaria: a prospective study of non-serious adverse effects in 3673 patients. Bull World Health Organ 1995; 73(5): 631–42PubMed Nosten F, Luxemburger C, ter Kuile FO, et al. Mefloquine treatment of acute falciparum malaria: a prospective study of non-serious adverse effects in 3673 patients. Bull World Health Organ 1995; 73(5): 631–42PubMed
68.
go back to reference Gimenez F, Pennie RA, Koren G, et al. Stereoselective pharmacokinetics of mefloquine in healthy Caucasians after multiple doses. J Pharm Sci 1994; 83(6): 824–7PubMedCrossRef Gimenez F, Pennie RA, Koren G, et al. Stereoselective pharmacokinetics of mefloquine in healthy Caucasians after multiple doses. J Pharm Sci 1994; 83(6): 824–7PubMedCrossRef
69.
go back to reference Martin C, Gimenez F, Bangchang KN, et al. Whole blood concentrations of mefloquine enantiomers in healthy Thai volunteers. Eur J Clin Pharmacol 1994; 47(1): 85–7PubMedCrossRef Martin C, Gimenez F, Bangchang KN, et al. Whole blood concentrations of mefloquine enantiomers in healthy Thai volunteers. Eur J Clin Pharmacol 1994; 47(1): 85–7PubMedCrossRef
70.
go back to reference Crevoisier C, Handschin J, Barré J, et al. Food increases the bioavailability of mefloquine. Eur J Clin Pharmacol 1997; 53(2): 135–9PubMedCrossRef Crevoisier C, Handschin J, Barré J, et al. Food increases the bioavailability of mefloquine. Eur J Clin Pharmacol 1997; 53(2): 135–9PubMedCrossRef
71.
go back to reference Dao NV, Quoc NP, Ngoa ND, et al. Fatty food does not alter blood mefloquine concentrations in the treatment of falciparum malaria. Trans R Soc Trop Med Hyg 2005; 99(12): 927–31PubMedCrossRef Dao NV, Quoc NP, Ngoa ND, et al. Fatty food does not alter blood mefloquine concentrations in the treatment of falciparum malaria. Trans R Soc Trop Med Hyg 2005; 99(12): 927–31PubMedCrossRef
72.
go back to reference Karbwang J, Na-Bangchang K. Clinical application of mefloquine pharmacokinetics in the treatment of P. falciparum malaria. Fundam Clin Pharmacol 1994; 8(6): 491–502PubMedCrossRef Karbwang J, Na-Bangchang K. Clinical application of mefloquine pharmacokinetics in the treatment of P. falciparum malaria. Fundam Clin Pharmacol 1994; 8(6): 491–502PubMedCrossRef
73.
go back to reference Pham YT, Nosten F, Farinotti R, et al. Cerebral uptake of mefloquine enantiomers in fatal cerebral malaria. Int J Clin Pharmacol Ther 1999; 37(1): 58–61PubMed Pham YT, Nosten F, Farinotti R, et al. Cerebral uptake of mefloquine enantiomers in fatal cerebral malaria. Int J Clin Pharmacol Ther 1999; 37(1): 58–61PubMed
74.
go back to reference Fontaine F, de Sousa G, Burcham PC, et al. Role of cytochrome P450 3A in the metabolism of mefloquine in human and animal hepatocytes. Life Sci 2000; 66(22): 2193–212PubMedCrossRef Fontaine F, de Sousa G, Burcham PC, et al. Role of cytochrome P450 3A in the metabolism of mefloquine in human and animal hepatocytes. Life Sci 2000; 66(22): 2193–212PubMedCrossRef
75.
go back to reference Karbwang J, Thanavibul A, Na Bangchang K, et al. Pharmacokinetics of mefloquine alone or in combination with artesunate. Bull World Health Organ 1994; 72(1): 83–7PubMed Karbwang J, Thanavibul A, Na Bangchang K, et al. Pharmacokinetics of mefloquine alone or in combination with artesunate. Bull World Health Organ 1994; 72(1): 83–7PubMed
76.
go back to reference Davis TM, England M, Dunlop AM, et al. Assessment of the effect of mefloquine on artesunate pharmacokinetics in healthy male volunteers. Antimicrob Agents Chemother 2007; 51(3): 1099–101PubMedCrossRef Davis TM, England M, Dunlop AM, et al. Assessment of the effect of mefloquine on artesunate pharmacokinetics in healthy male volunteers. Antimicrob Agents Chemother 2007; 51(3): 1099–101PubMedCrossRef
77.
go back to reference Rigtitid W, Wongnawa M, Mahatthanatrakul W, et al. Effect of rifampin on plasma concentrations of mefloquine in healthy volunteers. J Pharm Pharmacol 2000; 52(10): 1265–9CrossRef Rigtitid W, Wongnawa M, Mahatthanatrakul W, et al. Effect of rifampin on plasma concentrations of mefloquine in healthy volunteers. J Pharm Pharmacol 2000; 52(10): 1265–9CrossRef
78.
go back to reference Khaliq Y, Gallicano K, Tisdale C, et al. Pharmacokinetic interaction between mefloquine and ritonavir in healthy volunteers. Br J Clin Pharmacol 2001; 51(6): 591–600PubMedCrossRef Khaliq Y, Gallicano K, Tisdale C, et al. Pharmacokinetic interaction between mefloquine and ritonavir in healthy volunteers. Br J Clin Pharmacol 2001; 51(6): 591–600PubMedCrossRef
79.
go back to reference Ridtitid W, Wongnawa M, Mahatthanatrakul W, et al. Ketoconazole increases plasma concentrations of antimalarial mefloquine in healthy human volunteers. J Clin Pharm Ther 2005; 30(3): 285–90PubMedCrossRef Ridtitid W, Wongnawa M, Mahatthanatrakul W, et al. Ketoconazole increases plasma concentrations of antimalarial mefloquine in healthy human volunteers. J Clin Pharm Ther 2005; 30(3): 285–90PubMedCrossRef
80.
81.
go back to reference Bhoir SI, Bhoir CI, Bhagwat AM, et al. Determination of sulfadoxine in human blood plasma using packed-column supercritical fluid chromatography. J Chromatogr B Biomed Sci Appl 2001; 757(1): 39–47PubMedCrossRef Bhoir SI, Bhoir CI, Bhagwat AM, et al. Determination of sulfadoxine in human blood plasma using packed-column supercritical fluid chromatography. J Chromatogr B Biomed Sci Appl 2001; 757(1): 39–47PubMedCrossRef
82.
go back to reference Cavallito JC, Nichol CA, Brenckman Jr WD, et al. Lipid-soluble inhibitors of dihydrofolate reductase: I. Kinetics, tissue distribution, and extent of metabolism of pyrimethamine, metoprine, and etoprine in the rat, dog, and man. Drug Metab Dispos 1978; 6(3): 329–37PubMed Cavallito JC, Nichol CA, Brenckman Jr WD, et al. Lipid-soluble inhibitors of dihydrofolate reductase: I. Kinetics, tissue distribution, and extent of metabolism of pyrimethamine, metoprine, and etoprine in the rat, dog, and man. Drug Metab Dispos 1978; 6(3): 329–37PubMed
84.
go back to reference Wiedekamm E, Plozza-Nottebrock H, Forgo I, et al. Plasma concentrations of pyrimethamine and sulfadoxine and evaluation of pharmacokinetic data by computerized curve fitting. Bull World Health Organ 1982; 60(1): 115–22 Wiedekamm E, Plozza-Nottebrock H, Forgo I, et al. Plasma concentrations of pyrimethamine and sulfadoxine and evaluation of pharmacokinetic data by computerized curve fitting. Bull World Health Organ 1982; 60(1): 115–22
85.
go back to reference Edstein MD. Pharmacokinetics of suldaoxine and pyrimethamine after Fansidar administration in man. Chemotherapy 1987; 33(4): 229–33PubMedCrossRef Edstein MD. Pharmacokinetics of suldaoxine and pyrimethamine after Fansidar administration in man. Chemotherapy 1987; 33(4): 229–33PubMedCrossRef
86.
go back to reference Hombhanjie FW. Effect of a single oral dose of Fansidar on the pharmacokinetics of halofantrine in healthy volunteers: a preliminary report. Br J Clin Pharmacol 2000; 49(3): 283–4CrossRef Hombhanjie FW. Effect of a single oral dose of Fansidar on the pharmacokinetics of halofantrine in healthy volunteers: a preliminary report. Br J Clin Pharmacol 2000; 49(3): 283–4CrossRef
87.
go back to reference Ansdell VE, Wright SG, Hutchinson DBA. Megaloblastic anaemia associated with combined pyrimethamine and co-trimoxazole administration. Lancet 1976; II(7997): 1257CrossRef Ansdell VE, Wright SG, Hutchinson DBA. Megaloblastic anaemia associated with combined pyrimethamine and co-trimoxazole administration. Lancet 1976; II(7997): 1257CrossRef
88.
go back to reference Fleming AF, Warrell DA, Dickmeiss H. Co-trimoxazole and the blood [letter]. Lancet 1974; II(7875): 284–5CrossRef Fleming AF, Warrell DA, Dickmeiss H. Co-trimoxazole and the blood [letter]. Lancet 1974; II(7875): 284–5CrossRef
91.
go back to reference Lefèvre G, Looareesuwan S, Treeprasertsuk S, et al. A clinical and pharmacokinetic trial of six doses of artemether-lumefantrine for multidrug-resistant Plasmodium falciparum malaria in Thailand. Am J Trop Med Hyg 2001; 64(5–6): 247–56PubMed Lefèvre G, Looareesuwan S, Treeprasertsuk S, et al. A clinical and pharmacokinetic trial of six doses of artemether-lumefantrine for multidrug-resistant Plasmodium falciparum malaria in Thailand. Am J Trop Med Hyg 2001; 64(5–6): 247–56PubMed
92.
go back to reference Novartis Pharma AG. Product monograph: Coartem®/Riamet®. Basel: Novartis Pharma AG, 1999 Mar Novartis Pharma AG. Product monograph: Coartem®/Riamet®. Basel: Novartis Pharma AG, 1999 Mar
93.
go back to reference van Agtmael MA, Gupta V, van der Wösten TH, et al. Grapefruit juice increases the bioavailability of artemether. Eur J Clin Pharmacol 1999; 55(5): 405–10PubMedCrossRef van Agtmael MA, Gupta V, van der Wösten TH, et al. Grapefruit juice increases the bioavailability of artemether. Eur J Clin Pharmacol 1999; 55(5): 405–10PubMedCrossRef
94.
go back to reference Leo KU, Grace JM, Li Q, et al. Effects of Plasmodium berghei infection on arteether metabolism and disposition. Pharmacology 1997; 54: 276–84PubMedCrossRef Leo KU, Grace JM, Li Q, et al. Effects of Plasmodium berghei infection on arteether metabolism and disposition. Pharmacology 1997; 54: 276–84PubMedCrossRef
95.
go back to reference Batty KT, Ilett KF, Edwards G, et al. Assessment of the effect of malaria infection on hepatic clearance of dihydroartemisinin using rat liver perfusions and microsomes. Br J Pharmacol 1998; 125: 159–67PubMedCrossRef Batty KT, Ilett KF, Edwards G, et al. Assessment of the effect of malaria infection on hepatic clearance of dihydroartemisinin using rat liver perfusions and microsomes. Br J Pharmacol 1998; 125: 159–67PubMedCrossRef
96.
go back to reference Teja-Isavadharm P, Nosten F, Kyle DE, et al. Comparative bioavailability of oral, rectal, and intramuscular artemether in healthy subjects: use of simultaneous measurement by high performance liquid chromatography and bioassay. Br J Clin Pharmacol 1996 Nov; 42(5): 599–604PubMed Teja-Isavadharm P, Nosten F, Kyle DE, et al. Comparative bioavailability of oral, rectal, and intramuscular artemether in healthy subjects: use of simultaneous measurement by high performance liquid chromatography and bioassay. Br J Clin Pharmacol 1996 Nov; 42(5): 599–604PubMed
97.
go back to reference van Agtmael MA, Dien TK, Van Der Graaf CA, et al. The contribution of the enzymes CYP2D6 and CYP2c19 in the demethylation of artemether in healthy volunteers. Eur J Drug Metab Pharmacokinet 1998; 23(3): 429–36PubMedCrossRef van Agtmael MA, Dien TK, Van Der Graaf CA, et al. The contribution of the enzymes CYP2D6 and CYP2c19 in the demethylation of artemether in healthy volunteers. Eur J Drug Metab Pharmacokinet 1998; 23(3): 429–36PubMedCrossRef
98.
go back to reference Colussi D, Parisot C, Legay F, et al. Binding of artemether and lumefantrine to plasma proteins and erythrocytes. Eur J Pharm Sci 1999; 9(1): 9–16PubMedCrossRef Colussi D, Parisot C, Legay F, et al. Binding of artemether and lumefantrine to plasma proteins and erythrocytes. Eur J Pharm Sci 1999; 9(1): 9–16PubMedCrossRef
99.
go back to reference White NJ, van Vugt M, Ezzet F. Clinical pharmacokinetics and pharmacodynamics of artemether-lumefantrine. Clin Pharmacokinet 1999 Aug; 37(2): 105–25PubMedCrossRef White NJ, van Vugt M, Ezzet F. Clinical pharmacokinetics and pharmacodynamics of artemether-lumefantrine. Clin Pharmacokinet 1999 Aug; 37(2): 105–25PubMedCrossRef
100.
go back to reference Lefèvre G, Looareesuwan S, Treeprasertsuk S, et al. A clinical and pharmacokinetic trial of six doses of artemether-lumefantrine for multidrug-resistant Plasmodium falciparum malaria in Thailand. Am J Trop Med Hyg 2001; 64(5): 247–56PubMed Lefèvre G, Looareesuwan S, Treeprasertsuk S, et al. A clinical and pharmacokinetic trial of six doses of artemether-lumefantrine for multidrug-resistant Plasmodium falciparum malaria in Thailand. Am J Trop Med Hyg 2001; 64(5): 247–56PubMed
101.
go back to reference Lefèvre G, Carpenter P, Souppart C, et al. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether-lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br J Clin Pharmacol 2002; 54(5): 485–92PubMedCrossRef Lefèvre G, Carpenter P, Souppart C, et al. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether-lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br J Clin Pharmacol 2002; 54(5): 485–92PubMedCrossRef
102.
go back to reference Lefèvre G, Bindschedler M, Ezzet F, et al. Pharmacokinetic interaction trial between co-artemether and mefloquine. Eur J Pharm Sci 2000; 10: 141–51PubMedCrossRef Lefèvre G, Bindschedler M, Ezzet F, et al. Pharmacokinetic interaction trial between co-artemether and mefloquine. Eur J Pharm Sci 2000; 10: 141–51PubMedCrossRef
103.
go back to reference Karunajeewa H, Lim C, Hung TY, et al. Safety evaluation of fixed combination piperaquine plus dihydroartemisinin (Artekin®) in Cambodian children and adults with malaria. Br J Clin Pharmacol 2004; 57(1): 93–9PubMedCrossRef Karunajeewa H, Lim C, Hung TY, et al. Safety evaluation of fixed combination piperaquine plus dihydroartemisinin (Artekin®) in Cambodian children and adults with malaria. Br J Clin Pharmacol 2004; 57(1): 93–9PubMedCrossRef
104.
go back to reference Mayxay M, Thongpraseuth V, Khanthavong M, et al. An open randomized comparison of arteusnate plus mefloquine vs dihydroartemisinin-piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in the Lao People’s Democratic Republic (Laos). Trop Med Int Health 2006; 11(8): 1157–65PubMedCrossRef Mayxay M, Thongpraseuth V, Khanthavong M, et al. An open randomized comparison of arteusnate plus mefloquine vs dihydroartemisinin-piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in the Lao People’s Democratic Republic (Laos). Trop Med Int Health 2006; 11(8): 1157–65PubMedCrossRef
105.
go back to reference Mutabingwa TK. Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy! Acta Trop 2005; 95_(3): 305–15CrossRef Mutabingwa TK. Artemisinin-based combination therapies (ACTs): best hope for malaria treatment but inaccessible to the needy! Acta Trop 2005; 95_(3): 305–15CrossRef
106.
go back to reference Lindegårdh N, Giorgi F, Galletti B, et al. Identification of an isomer impurity in piperaquine drug substance. J Chromatogr A 2006; 1135(2): 166–9PubMedCrossRef Lindegårdh N, Giorgi F, Galletti B, et al. Identification of an isomer impurity in piperaquine drug substance. J Chromatogr A 2006; 1135(2): 166–9PubMedCrossRef
107.
go back to reference Hung TY, Davis TME, Ilett KF. Measurement of piperaquine in plasma by liquid chromatography with ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 791(1-2): 93–101PubMedCrossRef Hung TY, Davis TME, Ilett KF. Measurement of piperaquine in plasma by liquid chromatography with ultraviolet absorbance detection. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 791(1-2): 93–101PubMedCrossRef
108.
go back to reference Sim IK, Davis TME, Ilett KF. Effects of a high-fat meal on the relative oral bioavailability of piperaquine. Antimicrob Agents Chemother 2005; 49(6): 2407–11PubMedCrossRef Sim IK, Davis TME, Ilett KF. Effects of a high-fat meal on the relative oral bioavailability of piperaquine. Antimicrob Agents Chemother 2005; 49(6): 2407–11PubMedCrossRef
109.
go back to reference Tarning J, Lindegårdh N, Annerberg A, et al. Pitfalls in estimating piperaquine elimination. Antimicrob Agents Chemother 2005; 49(12): 5127–8PubMedCrossRef Tarning J, Lindegårdh N, Annerberg A, et al. Pitfalls in estimating piperaquine elimination. Antimicrob Agents Chemother 2005; 49(12): 5127–8PubMedCrossRef
110.
go back to reference Myint HY, Ashley EA, Day NP, et al. Efficacy and safety of dihydroartemisinin-piperaquine. Trans R Soc Trop Med Hyg; 2007; 101(9): 858–66PubMedCrossRef Myint HY, Ashley EA, Day NP, et al. Efficacy and safety of dihydroartemisinin-piperaquine. Trans R Soc Trop Med Hyg; 2007; 101(9): 858–66PubMedCrossRef
111.
go back to reference Tarning J, Bergqvist Y, Day NP, et al. Characterization of human urinary metabolites of the antimalarial piperaquine. Drug Metab Dispos 2006; 34(12): 2011–9PubMedCrossRef Tarning J, Bergqvist Y, Day NP, et al. Characterization of human urinary metabolites of the antimalarial piperaquine. Drug Metab Dispos 2006; 34(12): 2011–9PubMedCrossRef
Metadata
Title
Clinical Pharmacology of Artemisinin-Based Combination Therapies
Authors
Prof. Francesca T. Aweeka
Polina I. German
Publication date
01-02-2008
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 2/2008
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200847020-00002

Other articles of this Issue 2/2008

Clinical Pharmacokinetics 2/2008 Go to the issue