Skip to main content
Top
Published in: Clinical Pharmacokinetics 8/2007

01-08-2007 | Original Research Article

General Framework for the Quantitative Prediction of CYP3A4-Mediated Oral Drug Interactions Based on the AUC Increase by Coadministration of Standard Drugs

Authors: Yoshiyuki Ohno, Dr Akihiro Hisaka, Hiroshi Suzuki

Published in: Clinical Pharmacokinetics | Issue 8/2007

Login to get access

Abstract

Background

Cytochrome P450 (CYP) 3A4 is the most prevalent metabolising enzyme in the human liver and is also a target for various drug interactions of significant clinical concern. Even though there are numerous reports regarding drug interactions involving CYP3A4, it is far from easy to estimate all potential interactions, since too many drugs are metabolised by CYP3A4. For this reason, a comprehensive framework for the prediction of CYP3A4-mediated drug interactions would be of considerable clinical importance.

Objective

The objective of this study was to provide a robust and practical method for the prediction of drug interactions mediated by CYP3A4 using minimal in vivo information from drug-interaction studies, which are often carried out early in the course of drug development.

Data sources

The analysis was based on 113 drug-interaction studies reported in 78 published articles over the period 1983–2006. The articles were used if they contained sufficient information about drug interactions. Information on drug names, doses and the magnitude of the increase in the area under the concentration-time curve (AUC) were collected.

Methods

The ratio of the contribution of CYP3A4 to oral clearance (CRCYP3A4) was calculated for 14 substrates (midazolam, alprazolam, buspirone, cerivastatin, atorvastatin, ciclosporin, felodipine, lovastatin, nifedipine, nisoldipine, simvastatin, triazolam, zolpidem and telithromycin) based on AUC increases observed in interaction studies with itraconazole or ketoconazole. Similarly, the time-averaged apparent inhibition ratio of CYP3A4 (IRCYP3A4) was calculated for 18 inhibitors (ketoconazole, voriconazole, itraconazole, telithromycin, clarithromycin, saquinavir, nefazodone, erythromycin, diltiazem, fluconazole, verapamil, cimetidine, ranitidine, roxithromycin, fluvoxamine, azithromycin, gatifloxacin and fluoxetine) primarily based on AUC increases observed in drug-interaction studies with midazolam. The increases in the AUC of a substrate associated with coadministration of an inhibitor were estimated using the equation 1/(1 - CRCYP3A4 · IRCYP3A4), based on pharmacokinetic considerations.

Results

The proposed method enabled predictions of the AUC increase by interactions with any combination of these substrates and inhibitors (total 251 matches). In order to validate the reliability of the method, the AUC increases in 60 additional studies were analysed. The method successfully predicted AUC increases within 67–150% of the observed increase for 50 studies (83%) and within 50–200% for 57 studies (95%). Midazolam is the most reliable standard substrate for evaluation of the in vivo inhibition of CYP3A4. The present analysis suggests that simvastatin, lovastatin and buspirone can be used as alternatives. To evaluate the in vivo contribution of CYP3A4, ketoconazole or itraconazole is the selective inhibitor of choice.

Conclusion

This method is applicable to (i) prioritise clinical trials for investigating drug interactions during the course of drug development and (ii) predict the clinical significance of unknown drug interactions. If a drug-interaction study is carefully designed using appropriate standard drugs, significant interactions involving CYP3A4 will not be missed. In addition, the extent of CYP3A4-mediated interactions between many other drugs can be predicted using the current method.
Literature
1.
go back to reference Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997; 29: 413–580PubMedCrossRef Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 1997; 29: 413–580PubMedCrossRef
2.
go back to reference Rogers JF, Nafziger AN, Bertino Jr JS. Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450-metabolized drugs. Am J Med 2002; 113: 746–50PubMedCrossRef Rogers JF, Nafziger AN, Bertino Jr JS. Pharmacogenetics affects dosing, efficacy, and toxicity of cytochrome P450-metabolized drugs. Am J Med 2002; 113: 746–50PubMedCrossRef
3.
go back to reference Furberg CD, Pitt B. Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med 2001; 2: 205–7PubMedCrossRef Furberg CD, Pitt B. Withdrawal of cerivastatin from the world market. Curr Control Trials Cardiovasc Med 2001; 2: 205–7PubMedCrossRef
4.
go back to reference Estelle F, Simons R. H1-receptor antagonists: safety issues. Ann Allergy Asthma Immunol 1999; 83: 481–8PubMedCrossRef Estelle F, Simons R. H1-receptor antagonists: safety issues. Ann Allergy Asthma Immunol 1999; 83: 481–8PubMedCrossRef
5.
go back to reference Diasio R. Sorivudine and 5-fluorouracil; a clinically significant drug-drug interaction due to inhibition of dihydropyrimidine dehydrogenase. Br J Clin Pharmacol 1998; 46: 1–4PubMedCrossRef Diasio R. Sorivudine and 5-fluorouracil; a clinically significant drug-drug interaction due to inhibition of dihydropyrimidine dehydrogenase. Br J Clin Pharmacol 1998; 46: 1–4PubMedCrossRef
6.
go back to reference Kanamitsu S, Ito K, Sugiyama Y. Quantitative prediction of in vivo drug-drug interactions from in vitro data based on physiological pharmacokinetics: use of maximum unbound concentration of inhibitor at the inlet to the liver. Pharm Res 2000; 17: 336–43PubMedCrossRef Kanamitsu S, Ito K, Sugiyama Y. Quantitative prediction of in vivo drug-drug interactions from in vitro data based on physiological pharmacokinetics: use of maximum unbound concentration of inhibitor at the inlet to the liver. Pharm Res 2000; 17: 336–43PubMedCrossRef
7.
go back to reference Kanamitsu S, Ito K, Green CE, et al. Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4. Pharm Res 2000; 17: 419–26PubMedCrossRef Kanamitsu S, Ito K, Green CE, et al. Prediction of in vivo interaction between triazolam and erythromycin based on in vitro studies using human liver microsomes and recombinant human CYP3A4. Pharm Res 2000; 17: 419–26PubMedCrossRef
8.
go back to reference Yamano K, Yamamoto K, Katashima M, et al. Prediction of midazolam-CYP3A inhibitors interaction in the human liver from in vivo/in vitro absorption, distribution, and metabolism data. Drug Metab Dispos 2001; 29: 443–52PubMed Yamano K, Yamamoto K, Katashima M, et al. Prediction of midazolam-CYP3A inhibitors interaction in the human liver from in vivo/in vitro absorption, distribution, and metabolism data. Drug Metab Dispos 2001; 29: 443–52PubMed
9.
go back to reference Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol 2004; 57: 473–86PubMedCrossRef Ito K, Brown HS, Houston JB. Database analyses for the prediction of in vivo drug-drug interactions from in vitro data. Br J Clin Pharmacol 2004; 57: 473–86PubMedCrossRef
10.
go back to reference Galetin A, Ito K, Hallifax D, et al. CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions. J Pharmacol Exp Ther 2005; 314: 180–90PubMedCrossRef Galetin A, Ito K, Hallifax D, et al. CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions. J Pharmacol Exp Ther 2005; 314: 180–90PubMedCrossRef
11.
go back to reference Ito K, Hallifax D, Obach RS, et al. Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug-drug interactions: CYP2D6 paradigm. Drug Metab Dispos 2005; 33: 837–44PubMedCrossRef Ito K, Hallifax D, Obach RS, et al. Impact of parallel pathways of drug elimination and multiple cytochrome P450 involvement on drug-drug interactions: CYP2D6 paradigm. Drug Metab Dispos 2005; 33: 837–44PubMedCrossRef
12.
go back to reference Isoherranen N, Kunze KL, Allen KE, et al. Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab Dispos 2004; 32: 1121–31PubMedCrossRef Isoherranen N, Kunze KL, Allen KE, et al. Role of itraconazole metabolites in CYP3A4 inhibition. Drug Metab Dispos 2004; 32: 1121–31PubMedCrossRef
13.
go back to reference Galetin A, Burt H, Gibbons L, et al. Prediction of time-dependent CYP3A4 drug-drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition. Drug Metab Dispos 2006; 34: 166–75PubMedCrossRef Galetin A, Burt H, Gibbons L, et al. Prediction of time-dependent CYP3A4 drug-drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition. Drug Metab Dispos 2006; 34: 166–75PubMedCrossRef
14.
go back to reference Lennernas H. Human jejunal effective permeability and its correlation with preclinical drug absorption models. J Pharm Pharmacol 1997; 49: 627–38PubMedCrossRef Lennernas H. Human jejunal effective permeability and its correlation with preclinical drug absorption models. J Pharm Pharmacol 1997; 49: 627–38PubMedCrossRef
15.
go back to reference Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997; 283: 1552–62PubMed Paine MF, Khalighi M, Fisher JM, et al. Characterization of interintestinal and intraintestinal variations in human CYP3A-dependent metabolism. J Pharmacol Exp Ther 1997; 283: 1552–62PubMed
16.
go back to reference Thummel KE, O’shea D, Paine MF, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996; 59: 491–502PubMedCrossRef Thummel KE, O’shea D, Paine MF, et al. Oral first-pass elimination of midazolam involves both gastrointestinal and hepatic CYP3A-mediated metabolism. Clin Pharmacol Ther 1996; 59: 491–502PubMedCrossRef
17.
go back to reference Saitoh H, Aungst BJ. Possible involvement of multiple P-glycoprotein-mediated efflux systems in the transport of verapamil and other organic cations across rat intestine. Pharm Res 1995; 12: 1304–10PubMedCrossRef Saitoh H, Aungst BJ. Possible involvement of multiple P-glycoprotein-mediated efflux systems in the transport of verapamil and other organic cations across rat intestine. Pharm Res 1995; 12: 1304–10PubMedCrossRef
18.
go back to reference Wacher VJ, Silverman JA, Zhang Y, et al. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci 1998; 87: 1322–30PubMedCrossRef Wacher VJ, Silverman JA, Zhang Y, et al. Role of P-glycoprotein and cytochrome P450 3A in limiting oral absorption of peptides and peptidomimetics. J Pharm Sci 1998; 87: 1322–30PubMedCrossRef
19.
go back to reference Bnet LZ, Izumi T, Zhang Y, et al. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J Control Release 1999; 62: 25–31CrossRef Bnet LZ, Izumi T, Zhang Y, et al. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. J Control Release 1999; 62: 25–31CrossRef
20.
go back to reference Suzuki H, Sugiyama Y. Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine. Eur J Pharm Sci 2000; 12: 3–12PubMedCrossRef Suzuki H, Sugiyama Y. Role of metabolic enzymes and efflux transporters in the absorption of drugs from the small intestine. Eur J Pharm Sci 2000; 12: 3–12PubMedCrossRef
21.
go back to reference Brady JM, Cherrington NJ, Hartley DP, et al. Tissue distribution and chemical induction of multiple drug resistance genes in rats. Drug Metab Dispos 2002; 30: 838–44PubMedCrossRef Brady JM, Cherrington NJ, Hartley DP, et al. Tissue distribution and chemical induction of multiple drug resistance genes in rats. Drug Metab Dispos 2002; 30: 838–44PubMedCrossRef
22.
go back to reference Korzekwa KR, Krishnamachary NSM, Ogai A, et al. Evaluation of atypical cytochrome P450 kinetics with two-substrates-models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 1998; 37: 4137–47PubMedCrossRef Korzekwa KR, Krishnamachary NSM, Ogai A, et al. Evaluation of atypical cytochrome P450 kinetics with two-substrates-models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 1998; 37: 4137–47PubMedCrossRef
23.
go back to reference Wang RW, Newton DJ, Liu N, et al. Human cytochrome P-450 3A4: in vitro drug-drug interaction patterns are substrate-dependent. Drug Metab Dispos 2000; 28: 360–6PubMed Wang RW, Newton DJ, Liu N, et al. Human cytochrome P-450 3A4: in vitro drug-drug interaction patterns are substrate-dependent. Drug Metab Dispos 2000; 28: 360–6PubMed
24.
go back to reference Mayhew BS, Jones DR, Hall SD. An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation. Drug Metab Dispos 2000; 28: 1031–7PubMed Mayhew BS, Jones DR, Hall SD. An in vitro model for predicting in vivo inhibition of cytochrome P450 3A4 by metabolic intermediate complex formation. Drug Metab Dispos 2000; 28: 1031–7PubMed
25.
go back to reference Wang YH, Jones DR, Jones DR, et al. Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites. Drug Metab Dispos 2004; 32: 259–66PubMedCrossRef Wang YH, Jones DR, Jones DR, et al. Prediction of cytochrome P450 3A inhibition by verapamil enantiomers and their metabolites. Drug Metab Dispos 2004; 32: 259–66PubMedCrossRef
26.
go back to reference Wang YH, Jones DR, Hall SD. Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. Drug Metab Dispos 2005; 33: 664–71PubMedCrossRef Wang YH, Jones DR, Hall SD. Differential mechanism-based inhibition of CYP3A4 and CYP3A5 by verapamil. Drug Metab Dispos 2005; 33: 664–71PubMedCrossRef
27.
go back to reference Amsden GW, Kuye O, Wei GC. A study of the interaction potential of azithromycin and clarithromycin with atorvastatin in healthy volunteers. J Clin Pharmacol 2002; 42: 444–9PubMedCrossRef Amsden GW, Kuye O, Wei GC. A study of the interaction potential of azithromycin and clarithromycin with atorvastatin in healthy volunteers. J Clin Pharmacol 2002; 42: 444–9PubMedCrossRef
28.
go back to reference Backman JT, Olkkola KT, Neuvonen PJ. Zithromycin does not increase plasma concentrations of oral midazolam. Int J Clin Pharmacol Ther 1995; 33: 356–9PubMed Backman JT, Olkkola KT, Neuvonen PJ. Zithromycin does not increase plasma concentrations of oral midazolam. Int J Clin Pharmacol Ther 1995; 33: 356–9PubMed
29.
go back to reference Yeates RA, Laufen H, Zimmermann T. Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther 1996; 34: 400–5PubMed Yeates RA, Laufen H, Zimmermann T. Interaction between midazolam and clarithromycin: comparison with azithromycin. Int J Clin Pharmacol Ther 1996; 34: 400–5PubMed
30.
go back to reference Zimmermann T, Yeates RA, Laufen H, et al. Influence of the antibiotics erythromycin and azithromycin on the pharmacokinetics and pharmacodynamics of midazolam. Arzneimittelforschung 1996; 46: 213–7PubMed Zimmermann T, Yeates RA, Laufen H, et al. Influence of the antibiotics erythromycin and azithromycin on the pharmacokinetics and pharmacodynamics of midazolam. Arzneimittelforschung 1996; 46: 213–7PubMed
31.
go back to reference Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Inhibition of triazolam clearance by macrolide antimicrobial agents: in vitro correlates and dynamic consequences. Clin Pharmacol Ther 1998; 64: 278–85PubMedCrossRef Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Inhibition of triazolam clearance by macrolide antimicrobial agents: in vitro correlates and dynamic consequences. Clin Pharmacol Ther 1998; 64: 278–85PubMedCrossRef
32.
go back to reference Abernethy DR, Greenblatt DJ, Divoll M, et al. Interaction of cimetidine with the triazolobenzodiazepines alprazolam and triazolam. Psychopharmacology 1983; 80: 275–8PubMedCrossRef Abernethy DR, Greenblatt DJ, Divoll M, et al. Interaction of cimetidine with the triazolobenzodiazepines alprazolam and triazolam. Psychopharmacology 1983; 80: 275–8PubMedCrossRef
33.
go back to reference Pourbaix S, Desager JP, Hulhoven R, et al. Pharmacokinetic consequences of long term coadministration of cimetidine and triazolobenzodiazepines, alprazolam and triazolam, in healthy subjects. Int J Clin Pharmacol Ther Toxicol 1985; 23: 447–51PubMed Pourbaix S, Desager JP, Hulhoven R, et al. Pharmacokinetic consequences of long term coadministration of cimetidine and triazolobenzodiazepines, alprazolam and triazolam, in healthy subjects. Int J Clin Pharmacol Ther Toxicol 1985; 23: 447–51PubMed
34.
go back to reference Mück W, Ochmann K, Rohde G, et al. Influence of erythromycin pre- and co-treatment on single-dose pharmacokinetics of the HMG-CoA reductase inhibitor cerivastatin. Eur J Clin Pharmacol 1998; 53: 469–73PubMedCrossRef Mück W, Ochmann K, Rohde G, et al. Influence of erythromycin pre- and co-treatment on single-dose pharmacokinetics of the HMG-CoA reductase inhibitor cerivastatin. Eur J Clin Pharmacol 1998; 53: 469–73PubMedCrossRef
35.
go back to reference Elliott P, Dundee JW, Elwood RJ, et al. The influence of H2 receptor antagonists on the plasma concentrations of midazolam and temazepam. Eur J Anaesthesiol 1984; 1: 245–51PubMed Elliott P, Dundee JW, Elwood RJ, et al. The influence of H2 receptor antagonists on the plasma concentrations of midazolam and temazepam. Eur J Anaesthesiol 1984; 1: 245–51PubMed
36.
go back to reference Fee JP, Collier PS, Howard PJ, et al. Cimetidine and ranitidine increase midazolam bioavailability. Clin Pharmacol Ther 1987; 41: 80–4PubMedCrossRef Fee JP, Collier PS, Howard PJ, et al. Cimetidine and ranitidine increase midazolam bioavailability. Clin Pharmacol Ther 1987; 41: 80–4PubMedCrossRef
37.
go back to reference Khan A, Langley SJ, Mullins FG, et al. The pharmacokinetics and pharmacodynamics of nifedipine at steady state during concomitant administration of cimetidine or high dose ranitidine. Br J Clin Pharmacol 1991; 32: 519–22PubMedCrossRef Khan A, Langley SJ, Mullins FG, et al. The pharmacokinetics and pharmacodynamics of nifedipine at steady state during concomitant administration of cimetidine or high dose ranitidine. Br J Clin Pharmacol 1991; 32: 519–22PubMedCrossRef
38.
go back to reference Kirch W, Rämsch K, Janisch HD, et al. The influence of two histamine H2-receptor antagonists, cimetidine and ranitidine, on the plasma levels and clinical effect of nifedipine and metoprolol. Arch Toxicol Suppl 1984; 7: 256–9PubMedCrossRef Kirch W, Rämsch K, Janisch HD, et al. The influence of two histamine H2-receptor antagonists, cimetidine and ranitidine, on the plasma levels and clinical effect of nifedipine and metoprolol. Arch Toxicol Suppl 1984; 7: 256–9PubMedCrossRef
39.
go back to reference van Harten J, van Brummelen P, Lodewijks MT, et al. Pharmacokinetics and hemodynamic effects of nisoldipine and its interaction with cimetidine. Clin Pharmacol Ther 1988; 43: 332–41PubMedCrossRef van Harten J, van Brummelen P, Lodewijks MT, et al. Pharmacokinetics and hemodynamic effects of nisoldipine and its interaction with cimetidine. Clin Pharmacol Ther 1988; 43: 332–41PubMedCrossRef
40.
go back to reference Cox SR, Kroboth PD, Anderson PH, et al. Mechanism for the interaction between triazolam and cimetidine. Biopharm Drug Dispos 1986; 7: 567–75PubMedCrossRef Cox SR, Kroboth PD, Anderson PH, et al. Mechanism for the interaction between triazolam and cimetidine. Biopharm Drug Dispos 1986; 7: 567–75PubMedCrossRef
41.
go back to reference Friedman H, Greenblatt DJ, Burstein ES, et al. Triazolam kinetics: interaction with cimetidine, propranolol, and the combination. J Clin Pharmacol 1988; 28: 228–33PubMed Friedman H, Greenblatt DJ, Burstein ES, et al. Triazolam kinetics: interaction with cimetidine, propranolol, and the combination. J Clin Pharmacol 1988; 28: 228–33PubMed
42.
go back to reference Hulhoven R, Desager JP, Harvengt C, et al. Lack of interaction between zolpidem and H2 antagonists, cimetidine and ranitidine. Int J Clin Pharmacol Res 1988; 6: 471–76 Hulhoven R, Desager JP, Harvengt C, et al. Lack of interaction between zolpidem and H2 antagonists, cimetidine and ranitidine. Int J Clin Pharmacol Res 1988; 6: 471–76
43.
go back to reference Jacobson TA. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol 2004; 94: 1140–6PubMedCrossRef Jacobson TA. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am J Cardiol 2004; 94: 1140–6PubMedCrossRef
44.
go back to reference Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998; 64: 133–43PubMedCrossRef Gorski JC, Jones DR, Haehner-Daniels BD, et al. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther 1998; 64: 133–43PubMedCrossRef
45.
go back to reference Lamberg TS, Kivistö KT, Neuvonen PJ. Effects of verapamil and diltiazem on the pharmacokinetics and pharmacodynamics of buspirone. Clin Pharmacol Ther 1998; 63: 640–5PubMedCrossRef Lamberg TS, Kivistö KT, Neuvonen PJ. Effects of verapamil and diltiazem on the pharmacokinetics and pharmacodynamics of buspirone. Clin Pharmacol Ther 1998; 63: 640–5PubMedCrossRef
46.
go back to reference Asberg A, Christensen H, Hartmann A, et al. Pharmacokinetic interactions between microemulsion formulated cyclosporine A and diltiazem in renal transplant recipients. Eur J Clin Pharmacol 1999; 55: 383–7PubMedCrossRef Asberg A, Christensen H, Hartmann A, et al. Pharmacokinetic interactions between microemulsion formulated cyclosporine A and diltiazem in renal transplant recipients. Eur J Clin Pharmacol 1999; 55: 383–7PubMedCrossRef
47.
go back to reference Foradori A, Mezzano S, Videla C, et al. Modification of the pharmacokinetics of cyclosporine A and metabolites by the concomitant use of Neoral and diltiazem or ketoconazol in stable adult kidney transplants. Transplant Proc 1998; 30: 1685–7PubMedCrossRef Foradori A, Mezzano S, Videla C, et al. Modification of the pharmacokinetics of cyclosporine A and metabolites by the concomitant use of Neoral and diltiazem or ketoconazol in stable adult kidney transplants. Transplant Proc 1998; 30: 1685–7PubMedCrossRef
48.
go back to reference Azie NE, Brater DC, Becker PA, et al. The interaction of diltiazem with lovastatin and pravastatin. Clin Pharmacol Ther 1998; 64: 369–77PubMedCrossRef Azie NE, Brater DC, Becker PA, et al. The interaction of diltiazem with lovastatin and pravastatin. Clin Pharmacol Ther 1998; 64: 369–77PubMedCrossRef
49.
go back to reference Backman JT, Olkkola KT, Aranko K, et al. Dose of midazolam should be reduced during diltiazem and verapamil treatments. Br J Clin Pharmacol 1994; 37: 221–5PubMedCrossRef Backman JT, Olkkola KT, Aranko K, et al. Dose of midazolam should be reduced during diltiazem and verapamil treatments. Br J Clin Pharmacol 1994; 37: 221–5PubMedCrossRef
50.
go back to reference Tateishi T, Ohashi K, Sudo T, et al. Dose dependent effect of diltiazem on the pharmacokinetics of nifedipine. J Clin Pharmacol 1989; 29: 994–7PubMed Tateishi T, Ohashi K, Sudo T, et al. Dose dependent effect of diltiazem on the pharmacokinetics of nifedipine. J Clin Pharmacol 1989; 29: 994–7PubMed
51.
go back to reference Mousa O, Brater DC, Sunblad KJ, et al. The interaction of diltiazem with simvastatin. Clin Pharmacol Ther 2000; 67: 267–74PubMedCrossRef Mousa O, Brater DC, Sunblad KJ, et al. The interaction of diltiazem with simvastatin. Clin Pharmacol Ther 2000; 67: 267–74PubMedCrossRef
52.
go back to reference Kosuge K, Nishimoto M, Kimura M, et al. Enhanced effect of triazolam with diltiazem. Br J Clin Pharmacol 1997; 43: 367–72PubMedCrossRef Kosuge K, Nishimoto M, Kimura M, et al. Enhanced effect of triazolam with diltiazem. Br J Clin Pharmacol 1997; 43: 367–72PubMedCrossRef
53.
go back to reference Varhe A, Olkkola KT, Neuvonen PJ. Diltiazem enhances the effects of triazolam by inhibiting its metabolism. Clin Pharmacol Ther 1996; 59: 369–75PubMedCrossRef Varhe A, Olkkola KT, Neuvonen PJ. Diltiazem enhances the effects of triazolam by inhibiting its metabolism. Clin Pharmacol Ther 1996; 59: 369–75PubMedCrossRef
54.
go back to reference Yasui N, Otani K, Kaneko S, et al. A kinetic and dynamic study of oral alprazolam with and without erythromycin in humans: in vivo evidence for the involvement of CYP3A4 in alprazolam metabolism. Clin Pharmacol Ther 1996; 59: 514–9PubMedCrossRef Yasui N, Otani K, Kaneko S, et al. A kinetic and dynamic study of oral alprazolam with and without erythromycin in humans: in vivo evidence for the involvement of CYP3A4 in alprazolam metabolism. Clin Pharmacol Ther 1996; 59: 514–9PubMedCrossRef
55.
go back to reference Siedlik PH, Olson SC, Yang BB, et al. Erythromycin coadministration increases plasma atorvastatin concentrations. J Clin Pharmacol 1999; 39: 501–4PubMed Siedlik PH, Olson SC, Yang BB, et al. Erythromycin coadministration increases plasma atorvastatin concentrations. J Clin Pharmacol 1999; 39: 501–4PubMed
56.
go back to reference Kivistö KT, Lamberg TS, Kantola T, et al. Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clin Pharmacol Ther 1997; 62: 348–54PubMedCrossRef Kivistö KT, Lamberg TS, Kantola T, et al. Plasma buspirone concentrations are greatly increased by erythromycin and itraconazole. Clin Pharmacol Ther 1997; 62: 348–54PubMedCrossRef
57.
go back to reference Freeman DJ, Martell R, Carruthers SG, et al. Cyclosporinerythromycin interaction in normal subjects. Br J Clin Pharmacol 1987; 23: 776–8PubMed Freeman DJ, Martell R, Carruthers SG, et al. Cyclosporinerythromycin interaction in normal subjects. Br J Clin Pharmacol 1987; 23: 776–8PubMed
58.
go back to reference Gupta SK, Bakran A, Johnson RW, et al. Cyclosporin-erythromycin interaction in renal transplant patients. Br J Clin Pharmacol 1989; 27: 475–81PubMedCrossRef Gupta SK, Bakran A, Johnson RW, et al. Cyclosporin-erythromycin interaction in renal transplant patients. Br J Clin Pharmacol 1989; 27: 475–81PubMedCrossRef
59.
go back to reference Bailey DG, Bend JR, Arnold JM, et al. Erythromycin-felodipine interaction: magnitude, mechanism, and comparison with grapefruit juice. Clin Pharmacol Ther 1996; 60: 25–33PubMedCrossRef Bailey DG, Bend JR, Arnold JM, et al. Erythromycin-felodipine interaction: magnitude, mechanism, and comparison with grapefruit juice. Clin Pharmacol Ther 1996; 60: 25–33PubMedCrossRef
60.
go back to reference Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993; 53: 298–305PubMedCrossRef Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993; 53: 298–305PubMedCrossRef
61.
go back to reference Kantola T, Kivistö KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64: 177–82PubMedCrossRef Kantola T, Kivistö KT, Neuvonen PJ. Erythromycin and verapamil considerably increase serum simvastatin and simvastatin acid concentrations. Clin Pharmacol Ther 1998; 64: 177–82PubMedCrossRef
62.
go back to reference Phillips JP, Antal EJ, Smith RB. A pharmacokinetic drug interaction between erythromycin and triazolam. J Clin Psychopharmacol 1986; 6: 297–9PubMedCrossRef Phillips JP, Antal EJ, Smith RB. A pharmacokinetic drug interaction between erythromycin and triazolam. J Clin Psychopharmacol 1986; 6: 297–9PubMedCrossRef
63.
go back to reference Canafax DM, Graves NM, Hilligoss DM, et al. Interaction between cyclosporine and fluconazole in renal allograft recipients. Transplantation 1991; 51: 1014–8PubMedCrossRef Canafax DM, Graves NM, Hilligoss DM, et al. Interaction between cyclosporine and fluconazole in renal allograft recipients. Transplantation 1991; 51: 1014–8PubMedCrossRef
64.
go back to reference Olkkola KT, Ahonen J, Neuvonen PJ, et al. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996; 82: 511–6PubMed Olkkola KT, Ahonen J, Neuvonen PJ, et al. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996; 82: 511–6PubMed
65.
go back to reference Varhe A, Olkkola KT, Neuvonen PJ. Effect of fluconazole dose on the extent of fluconazole-triazolam interaction. Br J Clin Pharmacol 1996; 42: 465–70PubMedCrossRef Varhe A, Olkkola KT, Neuvonen PJ. Effect of fluconazole dose on the extent of fluconazole-triazolam interaction. Br J Clin Pharmacol 1996; 42: 465–70PubMedCrossRef
66.
go back to reference Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Kinetic and dynamic interaction study of zolpidem with ketoconazole, itraconazole, and fluconazole. Clin Pharmacol Ther 1998; 64: 661–71PubMedCrossRef Greenblatt DJ, von Moltke LL, Harmatz JS, et al. Kinetic and dynamic interaction study of zolpidem with ketoconazole, itraconazole, and fluconazole. Clin Pharmacol Ther 1998; 64: 661–71PubMedCrossRef
67.
go back to reference Greenblatt DJ, Preskorn SH, Cotreau MM, et al. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clin Pharmacol Ther 1992; 52: 479–86PubMedCrossRef Greenblatt DJ, Preskorn SH, Cotreau MM, et al. Fluoxetine impairs clearance of alprazolam but not of clonazepam. Clin Pharmacol Ther 1992; 52: 479–86PubMedCrossRef
68.
go back to reference Lasher TA, Fleishaker JC, Steenwyk RC, et al. Pharmacokinetic pharmacodynamic evaluation of the combined administration of alprazolam and fluoxetine. Psychopharmacology (Berl) 1991; 104: 323–7CrossRef Lasher TA, Fleishaker JC, Steenwyk RC, et al. Pharmacokinetic pharmacodynamic evaluation of the combined administration of alprazolam and fluoxetine. Psychopharmacology (Berl) 1991; 104: 323–7CrossRef
69.
go back to reference Lam YW, Alfaro CL, Ereshefsky L, et al. Pharmacokinetic and pharmacodynamic interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone. J Clin Pharmacol 2003; 43: 1274–82PubMedCrossRef Lam YW, Alfaro CL, Ereshefsky L, et al. Pharmacokinetic and pharmacodynamic interactions of oral midazolam with ketoconazole, fluoxetine, fluvoxamine, and nefazodone. J Clin Pharmacol 2003; 43: 1274–82PubMedCrossRef
70.
go back to reference Wright CE, Lasher-Sisson TA, Steenwyk RC, et al. A pharmacokinetic evaluation of the combined administration of triazolam and fluoxetine. Pharmacotherapy 1992; 12: 103–6PubMed Wright CE, Lasher-Sisson TA, Steenwyk RC, et al. A pharmacokinetic evaluation of the combined administration of triazolam and fluoxetine. Pharmacotherapy 1992; 12: 103–6PubMed
71.
go back to reference Allard S, Sainati S, Roth-Schechter B, et al. Minimal interaction between fluoxetine and multiple-dose zolpidem in healthy women. Drug Metab Dispos 1998; 26: 617–22PubMed Allard S, Sainati S, Roth-Schechter B, et al. Minimal interaction between fluoxetine and multiple-dose zolpidem in healthy women. Drug Metab Dispos 1998; 26: 617–22PubMed
72.
go back to reference Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Clin Pharmacol 1994; 46: 35–9PubMedCrossRef Fleishaker JC, Hulst LK. A pharmacokinetic and pharmacodynamic evaluation of the combined administration of alprazolam and fluvoxamine. Eur J Clin Pharmacol 1994; 46: 35–9PubMedCrossRef
73.
go back to reference Lamberg TS, Kivistö KT, Laitila J, et al. The effect of fluvoxamine on the pharmacokinetics and pharmacodynamics of buspirone. Eur J Clin Pharmacol 1998; 54: 761–6PubMedCrossRef Lamberg TS, Kivistö KT, Laitila J, et al. The effect of fluvoxamine on the pharmacokinetics and pharmacodynamics of buspirone. Eur J Clin Pharmacol 1998; 54: 761–6PubMedCrossRef
74.
go back to reference Grasela DM, LaCreta FP, Kollia GD, et al. Open-label, non-randomized study of the effects of gatifloxacin on the pharmacokinetics of midazolam in healthy male volunteers. Pharmacotherapy 2000; 20: 330–5PubMedCrossRef Grasela DM, LaCreta FP, Kollia GD, et al. Open-label, non-randomized study of the effects of gatifloxacin on the pharmacokinetics of midazolam in healthy male volunteers. Pharmacotherapy 2000; 20: 330–5PubMedCrossRef
75.
go back to reference Yasui N, Kondo T, Otani K, et al. Effect of itraconazole on the single oral dose pharmacokinetics and pharmacodynamics of alprazolam. Psychopharmacology (Berl) 1998; 139: 269–73CrossRef Yasui N, Kondo T, Otani K, et al. Effect of itraconazole on the single oral dose pharmacokinetics and pharmacodynamics of alprazolam. Psychopharmacology (Berl) 1998; 139: 269–73CrossRef
76.
go back to reference Kantola T, Kivistö KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998; 64: 58–65PubMedCrossRef Kantola T, Kivistö KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998; 64: 58–65PubMedCrossRef
77.
go back to reference Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000; 68: 391–400PubMedCrossRef Mazzu AL, Lasseter KC, Shamblen EC, et al. Itraconazole alters the pharmacokinetics of atorvastatin to a greater extent than either cerivastatin or pravastatin. Clin Pharmacol Ther 2000; 68: 391–400PubMedCrossRef
78.
go back to reference Kivistö KT, Lamberg TS, Neuvonen PJ. Interactions of buspirone with itraconazole and rifampicin: effects on the pharmacokinetics of the active 1-(2-pyrimidinyl)-piperazine metabolite of buspirone. Pharmacol Toxicol 1999; 84: 94–7PubMedCrossRef Kivistö KT, Lamberg TS, Neuvonen PJ. Interactions of buspirone with itraconazole and rifampicin: effects on the pharmacokinetics of the active 1-(2-pyrimidinyl)-piperazine metabolite of buspirone. Pharmacol Toxicol 1999; 84: 94–7PubMedCrossRef
79.
go back to reference Kantola T, Kivistö KT, Neuvonen PJ. Effect of itraconazole on cerivastatin pharmacokinetics. Eur J Clin Pharmacol 1999; 54: 851–5PubMedCrossRef Kantola T, Kivistö KT, Neuvonen PJ. Effect of itraconazole on cerivastatin pharmacokinetics. Eur J Clin Pharmacol 1999; 54: 851–5PubMedCrossRef
80.
go back to reference Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997; 61: 410–5PubMedCrossRef Jalava KM, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997; 61: 410–5PubMedCrossRef
81.
go back to reference Kivistö KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998; 46: 49–53PubMedCrossRef Kivistö KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998; 46: 49–53PubMedCrossRef
82.
go back to reference Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996; 60: 54–61PubMedCrossRef Neuvonen PJ, Jalava KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996; 60: 54–61PubMedCrossRef
83.
go back to reference Ahonen J, Olkkola KT, Neuvonen PJ. Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol 1995; 40: 270–2PubMed Ahonen J, Olkkola KT, Neuvonen PJ. Effect of itraconazole and terbinafine on the pharmacokinetics and pharmacodynamics of midazolam in healthy volunteers. Br J Clin Pharmacol 1995; 40: 270–2PubMed
84.
go back to reference Backman JT, Kivistö KT, Olkkola KT, et al. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998; 54: 53–8PubMedCrossRef Backman JT, Kivistö KT, Olkkola KT, et al. The area under the plasma concentration-time curve for oral midazolam is 400-fold larger during treatment with itraconazole than with rifampicin. Eur J Clin Pharmacol 1998; 54: 53–8PubMedCrossRef
85.
go back to reference Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 55: 481–5PubMedCrossRef Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 55: 481–5PubMedCrossRef
87.
go back to reference Shi J, Montay G, Leroy B, et al. Effects of itraconazole or grapefruit juice on the pharmacokinetics of telithromycin. Pharmacotherapy 2005; 25: 42–51PubMedCrossRef Shi J, Montay G, Leroy B, et al. Effects of itraconazole or grapefruit juice on the pharmacokinetics of telithromycin. Pharmacotherapy 2005; 25: 42–51PubMedCrossRef
88.
go back to reference Varhe A, Olkkola KT, Neuvonen PJ, et al. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 56: 601–7PubMedCrossRef Varhe A, Olkkola KT, Neuvonen PJ, et al. Oral triazolam is potentially hazardous to patients receiving systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 56: 601–7PubMedCrossRef
89.
go back to reference Luurila H, Kivistö KT, Neuvonen PJ, et al. Effect of itraconazole on the pharmacokinetics and pharmacodynamics of zolpidem. Eur J Clin Pharmacol 1998; 54: 163–6PubMedCrossRef Luurila H, Kivistö KT, Neuvonen PJ, et al. Effect of itraconazole on the pharmacokinetics and pharmacodynamics of zolpidem. Eur J Clin Pharmacol 1998; 54: 163–6PubMedCrossRef
90.
go back to reference Greenblatt DJ, Wright CE, von Moltke LL, et al. Ketoconazole inhibition of triazolam and alprazolam clearance: differential kinetic and dynamic consequences. Clin Pharmacol Ther 1998; 64: 237–47PubMedCrossRef Greenblatt DJ, Wright CE, von Moltke LL, et al. Ketoconazole inhibition of triazolam and alprazolam clearance: differential kinetic and dynamic consequences. Clin Pharmacol Ther 1998; 64: 237–47PubMedCrossRef
91.
go back to reference Butman SM, Wild JC, Nolan PE, et al. Prospective study of the safety and financial benefit of ketoconazole as adjunctive therapy to cyclosporine after heart transplantation. J Heart Lung Transplant 1991; 10: 351–8PubMed Butman SM, Wild JC, Nolan PE, et al. Prospective study of the safety and financial benefit of ketoconazole as adjunctive therapy to cyclosporine after heart transplantation. J Heart Lung Transplant 1991; 10: 351–8PubMed
92.
go back to reference Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995; 58: 15–9PubMedCrossRef Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995; 58: 15–9PubMedCrossRef
93.
go back to reference Chung E, Nafziger AN, Kazierad DJ, et al. Comparison of midazolam and simvastatin as cytochrome P450 3A probes. Clin Pharmacol Ther 2006; 79: 350–61PubMedCrossRef Chung E, Nafziger AN, Kazierad DJ, et al. Comparison of midazolam and simvastatin as cytochrome P450 3A probes. Clin Pharmacol Ther 2006; 79: 350–61PubMedCrossRef
94.
go back to reference Tsunoda SM, Velez RL, von Moltke LL, et al. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999; 66: 461–71PubMedCrossRef Tsunoda SM, Velez RL, von Moltke LL, et al. Differentiation of intestinal and hepatic cytochrome P450 3A activity with use of midazolam as an in vivo probe: effect of ketoconazole. Clin Pharmacol Ther 1999; 66: 461–71PubMedCrossRef
95.
go back to reference Heinig R, Adelmann HG, Ahr G. The effect of ketoconazole on the pharmacokinetics, pharmacodynamics and safety of nisoldipine. Eur J Clin Pharmacol 1999; 55: 57–60PubMedCrossRef Heinig R, Adelmann HG, Ahr G. The effect of ketoconazole on the pharmacokinetics, pharmacodynamics and safety of nisoldipine. Eur J Clin Pharmacol 1999; 55: 57–60PubMedCrossRef
96.
go back to reference von Moltke LL, Greenblatt DJ, Harmatz JS, et al. Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 1996; 276: 370–9 von Moltke LL, Greenblatt DJ, Harmatz JS, et al. Triazolam biotransformation by human liver microsomes in vitro: effects of metabolic inhibitors and clinical confirmation of a predicted interaction with ketoconazole. J Pharmacol Exp Ther 1996; 276: 370–9
97.
go back to reference Greene DS, Salazar DE, Dockens RC, et al. Coadministration of nefazodone and benzodiazepines: III. A pharmacokinetic interaction study with alprazolam. J Clin Psychopharmacol 1995; 15: 399–408PubMedCrossRef Greene DS, Salazar DE, Dockens RC, et al. Coadministration of nefazodone and benzodiazepines: III. A pharmacokinetic interaction study with alprazolam. J Clin Psychopharmacol 1995; 15: 399–408PubMedCrossRef
98.
go back to reference Barbhaiya RH, Shukla UA, Kroboth PD, et al. Coadministration of nefazodone and benzodiazepines: II. A pharmacokinetic interaction study with triazolam. J Clin Psychopharmacol 1995; 15: 320–6PubMedCrossRef Barbhaiya RH, Shukla UA, Kroboth PD, et al. Coadministration of nefazodone and benzodiazepines: II. A pharmacokinetic interaction study with triazolam. J Clin Psychopharmacol 1995; 15: 320–6PubMedCrossRef
99.
go back to reference Elwood RJ, Hildebrand PJ, Dundee JW, et al. Ranitidine influences the uptake of oral midazolam. Br J Clin Pharmacol 1983; 15: 743–5PubMedCrossRef Elwood RJ, Hildebrand PJ, Dundee JW, et al. Ranitidine influences the uptake of oral midazolam. Br J Clin Pharmacol 1983; 15: 743–5PubMedCrossRef
100.
go back to reference Bucher M, Mair G, Kees F. Effect of roxithromycin on the pharmacokinetics of lovastatin in volunteers. Eur J Clin Pharmacol 2002; 57: 787–91PubMedCrossRef Bucher M, Mair G, Kees F. Effect of roxithromycin on the pharmacokinetics of lovastatin in volunteers. Eur J Clin Pharmacol 2002; 57: 787–91PubMedCrossRef
101.
go back to reference Backman JT, Aranko K, Himberg JJ, et al. A pharmacokinetic interaction between roxithromycin and midazolam. Eur J Clin Pharmacol 1994; 46: 551–5PubMedCrossRef Backman JT, Aranko K, Himberg JJ, et al. A pharmacokinetic interaction between roxithromycin and midazolam. Eur J Clin Pharmacol 1994; 46: 551–5PubMedCrossRef
102.
go back to reference Palkama VJ, Ahonen J, Neuvonen PJ, et al. Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin Pharmacol Ther 1999; 66: 33–9PubMedCrossRef Palkama VJ, Ahonen J, Neuvonen PJ, et al. Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin Pharmacol Ther 1999; 66: 33–9PubMedCrossRef
103.
go back to reference Romero AJ, Le Pogamp P, Nilsson LG, et al. Effect of voriconazole on the pharmacokinetics of cyclosporine in renal transplant patients. Clin Pharmacol Ther 2002; 71: 226–34PubMedCrossRef Romero AJ, Le Pogamp P, Nilsson LG, et al. Effect of voriconazole on the pharmacokinetics of cyclosporine in renal transplant patients. Clin Pharmacol Ther 2002; 71: 226–34PubMedCrossRef
104.
go back to reference Saari TI, Laine K, Leino K, et al. Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther 2006; 79: 362–70PubMedCrossRef Saari TI, Laine K, Leino K, et al. Effect of voriconazole on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Clin Pharmacol Ther 2006; 79: 362–70PubMedCrossRef
105.
go back to reference Ahmad AB, Bennett PN, Rowland M. Models of hepatic drug clearance: discrimination between the ‘well stirred’ and ‘parallel-tube’ models. J Pharm Pharmacol 1983; 35: 219–24PubMedCrossRef Ahmad AB, Bennett PN, Rowland M. Models of hepatic drug clearance: discrimination between the ‘well stirred’ and ‘parallel-tube’ models. J Pharm Pharmacol 1983; 35: 219–24PubMedCrossRef
106.
go back to reference Brown HS, Galetin A, Hallifax D, et al. Prediction of in vivo drug-drug interactions from in vitro data: factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin Pharmacokinet 2006; 45: 1035–50PubMedCrossRef Brown HS, Galetin A, Hallifax D, et al. Prediction of in vivo drug-drug interactions from in vitro data: factors affecting prototypic drug-drug interactions involving CYP2C9, CYP2D6 and CYP3A4. Clin Pharmacokinet 2006; 45: 1035–50PubMedCrossRef
107.
go back to reference Brown HS, Ito K, Galetin A, et al. Prediction of in vivo drug-drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Br J Clin Pharmacol 2005; 60: 508–18PubMedCrossRef Brown HS, Ito K, Galetin A, et al. Prediction of in vivo drug-drug interactions from in vitro data: impact of incorporating parallel pathways of drug elimination and inhibitor absorption rate constant. Br J Clin Pharmacol 2005; 60: 508–18PubMedCrossRef
108.
go back to reference Bjornsson TD, Callaghan JT, Einolf HJ, et al. The conduct of in vitro and in vivo drug-drug interaction studies: a PhRMA perspective. Drug Metab Dispos 2003; 31: 815–32PubMedCrossRef Bjornsson TD, Callaghan JT, Einolf HJ, et al. The conduct of in vitro and in vivo drug-drug interaction studies: a PhRMA perspective. Drug Metab Dispos 2003; 31: 815–32PubMedCrossRef
109.
go back to reference Williams JA, Hurst SI, Bauman J, et al. Reaction phenotyping in drug discovery: moving forward with confidence? Curr Drug Metab 2003; 4: 527–34PubMedCrossRef Williams JA, Hurst SI, Bauman J, et al. Reaction phenotyping in drug discovery: moving forward with confidence? Curr Drug Metab 2003; 4: 527–34PubMedCrossRef
110.
go back to reference Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54: 1271–94PubMedCrossRef Lamba JK, Lin YS, Schuetz EG, et al. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54: 1271–94PubMedCrossRef
111.
go back to reference Villikka K, Kivisto KT, Backman JT, et al. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997; 61: 8–14PubMedCrossRef Villikka K, Kivisto KT, Backman JT, et al. Triazolam is ineffective in patients taking rifampin. Clin Pharmacol Ther 1997; 61: 8–14PubMedCrossRef
112.
go back to reference Villikka K, Kivisto KT, Maenpaa H, et al. Cytochrome P450-inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clin Pharmacol Ther 1999; 66: 589–93PubMed Villikka K, Kivisto KT, Maenpaa H, et al. Cytochrome P450-inducing antiepileptics increase the clearance of vincristine in patients with brain tumors. Clin Pharmacol Ther 1999; 66: 589–93PubMed
113.
go back to reference Gibson GG, Plant NJ, Swales KE, et al. Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man. Xenobiotica 2002; 32: 165–206PubMedCrossRef Gibson GG, Plant NJ, Swales KE, et al. Receptor-dependent transcriptional activation of cytochrome P4503A genes: induction mechanisms, species differences and interindividual variation in man. Xenobiotica 2002; 32: 165–206PubMedCrossRef
114.
go back to reference Wu CY, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 1995; 58: 492–7PubMedCrossRef Wu CY, Benet LZ, Hebert MF, et al. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporine. Clin Pharmacol Ther 1995; 58: 492–7PubMedCrossRef
115.
go back to reference Lampen A, Zhang Y, Hackbarth I, et al. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther 1998; 285: 1104–12PubMed Lampen A, Zhang Y, Hackbarth I, et al. Metabolism and transport of the macrolide immunosuppressant sirolimus in the small intestine. J Pharmacol Exp Ther 1998; 285: 1104–12PubMed
116.
go back to reference Holtbecker N, Fromm MF, Kroemer HK, et al. The nifedipinerifampin interaction: evidence for induction of gut wall metabolism. Drug Metab Dispos 1996; 24: 1121–3PubMed Holtbecker N, Fromm MF, Kroemer HK, et al. The nifedipinerifampin interaction: evidence for induction of gut wall metabolism. Drug Metab Dispos 1996; 24: 1121–3PubMed
117.
go back to reference Kinirons MT, O’shea D, Kim RB, et al. Failure of erythromycin breath test to correlate with midazolam clearance as a probe of cytochrome P4503A. Clin Pharmacol Ther 1999; 66: 224–31PubMedCrossRef Kinirons MT, O’shea D, Kim RB, et al. Failure of erythromycin breath test to correlate with midazolam clearance as a probe of cytochrome P4503A. Clin Pharmacol Ther 1999; 66: 224–31PubMedCrossRef
118.
go back to reference Tanaka E, Kurata N, Yasuhara H. How useful is the ‘cocktail approach’ for evaluating human hepatic drug metabolizing capacity using cytochrome P450 phenotyping probes in vivo? J Clin Pharm Ther 2003; 28: 157–65PubMedCrossRef Tanaka E, Kurata N, Yasuhara H. How useful is the ‘cocktail approach’ for evaluating human hepatic drug metabolizing capacity using cytochrome P450 phenotyping probes in vivo? J Clin Pharm Ther 2003; 28: 157–65PubMedCrossRef
119.
go back to reference Obach RS, Walsky RL, Venkatakrishnan K. Mechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug-drug interactions. Drug Metab Dispos 2007; 35: 246–55PubMedCrossRef Obach RS, Walsky RL, Venkatakrishnan K. Mechanism-based inactivation of human cytochrome p450 enzymes and the prediction of drug-drug interactions. Drug Metab Dispos 2007; 35: 246–55PubMedCrossRef
120.
go back to reference Ong CE, Coulter S, Birkett DJ, et al. The xenobiotic inhibitor profile of cytochrome P4502C8. Br J Clin Pharmacol 2000; 50: 573–80PubMedCrossRef Ong CE, Coulter S, Birkett DJ, et al. The xenobiotic inhibitor profile of cytochrome P4502C8. Br J Clin Pharmacol 2000; 50: 573–80PubMedCrossRef
121.
go back to reference Park JY, Kim KA, Shin JG, et al. Effect of ketoconazole on the pharmacokinetics of rosiglitazone in healthy subjects. Br J Clin Pharmacol 2004; 58: 397–402PubMedCrossRef Park JY, Kim KA, Shin JG, et al. Effect of ketoconazole on the pharmacokinetics of rosiglitazone in healthy subjects. Br J Clin Pharmacol 2004; 58: 397–402PubMedCrossRef
122.
go back to reference Siegsmund MJ, Cardarelli C, Aksentijevich I, et al. Ketoconazole effectively reverses multidrug resistance in highly resistant KB cells. J Urol 1994; 151: 485–91PubMed Siegsmund MJ, Cardarelli C, Aksentijevich I, et al. Ketoconazole effectively reverses multidrug resistance in highly resistant KB cells. J Urol 1994; 151: 485–91PubMed
124.
go back to reference Chung E, Nafziger AN, Kazierad DJ, et al. Comparison of midazolam and simvastatin as cytochrome P450 3A probes. Clin Pharmacol Ther 2006; 79: 350–61PubMedCrossRef Chung E, Nafziger AN, Kazierad DJ, et al. Comparison of midazolam and simvastatin as cytochrome P450 3A probes. Clin Pharmacol Ther 2006; 79: 350–61PubMedCrossRef
125.
go back to reference Kenworthy KE, Bloomer JC, Clarke SE, et al. CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 1999; 48: 716–27PubMedCrossRef Kenworthy KE, Bloomer JC, Clarke SE, et al. CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 1999; 48: 716–27PubMedCrossRef
126.
go back to reference Obach RS, Walsky RL, Venkatakrishnan K, et al. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions. J Pharmacol Exp Ther 2006; 316: 336–48PubMedCrossRef Obach RS, Walsky RL, Venkatakrishnan K, et al. The utility of in vitro cytochrome P450 inhibition data in the prediction of drug-drug interactions. J Pharmacol Exp Ther 2006; 316: 336–48PubMedCrossRef
Metadata
Title
General Framework for the Quantitative Prediction of CYP3A4-Mediated Oral Drug Interactions Based on the AUC Increase by Coadministration of Standard Drugs
Authors
Yoshiyuki Ohno
Dr Akihiro Hisaka
Hiroshi Suzuki
Publication date
01-08-2007
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 8/2007
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200746080-00005

Other articles of this Issue 8/2007

Clinical Pharmacokinetics 8/2007 Go to the issue