Skip to main content
Top
Published in: Clinical Pharmacokinetics 8/2007

01-08-2007 | Review Article

Clinical Pharmacokinetics and Pharmacodynamics of Allopurinol and Oxypurinol

Authors: Prof. Richard O. Day, Garry G. Graham, Mark Hicks, Andrew J. McLachlan, Sophie L. Stocker, Kenneth M. Williams

Published in: Clinical Pharmacokinetics | Issue 8/2007

Login to get access

Abstract

Allopurinol is the drug most widely used to lower the blood concentrations of urate and, therefore, to decrease the number of repeated attacks of gout. Allopurinol is rapidly and extensively metabolised to oxypurinol (oxipurinol), and the hypouricaemic efficacy of allopurinol is due very largely to this metabolite.
The pharmacokinetic parameters of allopurinol after oral dosage include oral bioavailability of 79 ± 20% (mean ± SD), an elimination half-life (t1/2) of 1.2 ± 0.3 hours, apparent oral clearance (CL/F) of 15.8 ± 5.2 mL/min/kg and an apparent volume of distribution after oral administration (Vd/F) of 1.31 ± 0.41 L/kg. Assuming that 90mg of oxypurinol is formed from every 100mg of allopurinol, the pharmacokinetic parameters of oxypurinol in subjects with normal renal function are a t1/2 of 23.3 ± 6.0 hours, CL/F of 0.31 ± 0.07 mL/min/kg, Vd/F of 0.59 ± 0.16 L/kg, and renal clearance (CLR) relative to creatinine clearance of 0.19 ±0.06. Oxypurinol is cleared almost entirely by urinary excretion and, for many years, it has been recommended that the dosage of allopurinol should be reduced in renal impairment. A reduced initial target dosage in renal impairment is still reasonable, but recent data on the toxicity of allopurinol indicate that the dosage may be increased above the present guidelines if the reduction in plasma urate concentrations is inadequate. Measurement of plasma concentrations of oxypurinol in selected patients, particularly those with renal impairment, may help to decrease the risk of toxicity and improve the hypouricaemic response. Monitoring of plasma concentrations of oxypurinol should also help to identify patients with poor adherence. Uricosuric drugs, such as probenecid, have potentially opposing effects on the hypouricaemic efficacy of allopurinol. Their uricosuric effect lowers the plasma concentrations of urate; however, they increase the CLR of oxypurinol, thus potentially decreasing the influence of allopurinol. The net effect is an increased degree of hypouricaemia, but the interaction is probably limited to patients with normal renal function or only moderate impairment.
Literature
1.
go back to reference Rundles RW. The development of allopurinol. Arch Intern Med 1982; 145: 89–94 Rundles RW. The development of allopurinol. Arch Intern Med 1982; 145: 89–94
3.
go back to reference van Waeg G, Loof L, Groth T, et al. Allopurinol kinetics in humans as a means to assess liver function: evaluation of an allopurinol loading test. Scand J Clin Lab Med 1988; 48: 45–57 van Waeg G, Loof L, Groth T, et al. Allopurinol kinetics in humans as a means to assess liver function: evaluation of an allopurinol loading test. Scand J Clin Lab Med 1988; 48: 45–57
4.
go back to reference Murrell GAC, Rapeport WG. Clinical pharmacokinetics of allopurinol. Clin Pharmacokinet 1986; 11: 343–53PubMedCrossRef Murrell GAC, Rapeport WG. Clinical pharmacokinetics of allopurinol. Clin Pharmacokinet 1986; 11: 343–53PubMedCrossRef
5.
go back to reference Fujimoto Y, Sakuma S, Tagami T, et al. N-ethylmaleimide inhibits xanthine oxidase activity with no detectable change in xanthine dehydrogenase activity in rabbit liver. Life Sci 2000; 68: 517–24PubMedCrossRef Fujimoto Y, Sakuma S, Tagami T, et al. N-ethylmaleimide inhibits xanthine oxidase activity with no detectable change in xanthine dehydrogenase activity in rabbit liver. Life Sci 2000; 68: 517–24PubMedCrossRef
6.
go back to reference Massey V, Komai H, Palmer G, et al. On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J Biol Chem 1970; 245: 2837–44PubMed Massey V, Komai H, Palmer G, et al. On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J Biol Chem 1970; 245: 2837–44PubMed
8.
go back to reference Campion EW, Glynn RJ, DeLabry LO. Asymptomatic hyperuricemia: risks and consequences in the normative aging study. Am J Med 1987; 82: 421–6PubMedCrossRef Campion EW, Glynn RJ, DeLabry LO. Asymptomatic hyperuricemia: risks and consequences in the normative aging study. Am J Med 1987; 82: 421–6PubMedCrossRef
9.
go back to reference Drayton CJ. Comprehensive medicinal chemistry. Vol. 6. Oxford: Pergamon Press, 1990 Drayton CJ. Comprehensive medicinal chemistry. Vol. 6. Oxford: Pergamon Press, 1990
10.
go back to reference Breithaupt H, Tittel M. Kinetics of allopurinol after single intravenous and oral doses. Eur J Clin Pharmacol 1982; 22: 77–84PubMedCrossRef Breithaupt H, Tittel M. Kinetics of allopurinol after single intravenous and oral doses. Eur J Clin Pharmacol 1982; 22: 77–84PubMedCrossRef
11.
go back to reference Colin JN, Farinotti R, Fredj G, et al. Kinetics of allopurinol and oxipurinol after chronic oral administration: interaction with benzbromarone. Eur J Clin Pharmacol 1986; 31: 53–8PubMedCrossRef Colin JN, Farinotti R, Fredj G, et al. Kinetics of allopurinol and oxipurinol after chronic oral administration: interaction with benzbromarone. Eur J Clin Pharmacol 1986; 31: 53–8PubMedCrossRef
12.
go back to reference Berlinger WG, Park GD, Spector R. The effect of dietary protein on the clearance of allopurinol and oxypurinol. New Engl J Med 1985; 313: 771–6PubMedCrossRef Berlinger WG, Park GD, Spector R. The effect of dietary protein on the clearance of allopurinol and oxypurinol. New Engl J Med 1985; 313: 771–6PubMedCrossRef
13.
go back to reference de Vries JX, Voss A, Ittensohn A, et al. Interaction of allopurinol and hydrochlorothiazide during prolonged oral administration of both drugs in normal subjects: II. Kinetics of allopurinol, oxipurinol, and hydrochlorothiazide. Clin Invest 1994; 72: 1076–81CrossRef de Vries JX, Voss A, Ittensohn A, et al. Interaction of allopurinol and hydrochlorothiazide during prolonged oral administration of both drugs in normal subjects: II. Kinetics of allopurinol, oxipurinol, and hydrochlorothiazide. Clin Invest 1994; 72: 1076–81CrossRef
14.
go back to reference Walter-Sack I, de Vries JX, Kreiner C, et al. Bioequivalence of allopurinol preparations: to be assessed by the parent drug or the active metabolite? Clin Invest 1993; 71: 240–6CrossRef Walter-Sack I, de Vries JX, Kreiner C, et al. Bioequivalence of allopurinol preparations: to be assessed by the parent drug or the active metabolite? Clin Invest 1993; 71: 240–6CrossRef
15.
go back to reference Simmonds HA. Urinary excretion of purines, pyrimidines and pyrazolopyrimidines in patients treated with allopurinol or oxipurinol. Clin Chim Acta 1969; 23: 353–64PubMedCrossRef Simmonds HA. Urinary excretion of purines, pyrimidines and pyrazolopyrimidines in patients treated with allopurinol or oxipurinol. Clin Chim Acta 1969; 23: 353–64PubMedCrossRef
16.
go back to reference Reiter S, Loffler W, Grobner W, et al. Urinary oxypurinol-1-riboside and allopurinol-induced oroticaciduria. Adv Exp Med Biol 1986; 195 Pt A: 453–60PubMedCrossRef Reiter S, Loffler W, Grobner W, et al. Urinary oxypurinol-1-riboside and allopurinol-induced oroticaciduria. Adv Exp Med Biol 1986; 195 Pt A: 453–60PubMedCrossRef
17.
go back to reference Robson RA, Begg EJ, Saunders DA. Allopurinol autoinhibition. Clin Exp Pharmacol Physiol 1993; Suppl. 1: 62 Robson RA, Begg EJ, Saunders DA. Allopurinol autoinhibition. Clin Exp Pharmacol Physiol 1993; Suppl. 1: 62
18.
go back to reference Nelson DJ, Elion GB. Metabolic studies of high doses of allopurinol in humans. Adv Exp Med Biol 1984; 165A: 167–70CrossRef Nelson DJ, Elion GB. Metabolic studies of high doses of allopurinol in humans. Adv Exp Med Biol 1984; 165A: 167–70CrossRef
19.
go back to reference Graham S, Day RO, Wong H, et al. Pharmacodynamics of oxypurinol after administration of allopurinol to healthy subjects. Br J Clin Pharmacol 1996; 41: 299–304PubMedCrossRef Graham S, Day RO, Wong H, et al. Pharmacodynamics of oxypurinol after administration of allopurinol to healthy subjects. Br J Clin Pharmacol 1996; 41: 299–304PubMedCrossRef
20.
go back to reference Shibutani Y, Ueo T, Yamamoto T, et al. A case of classical xanthinuria (type 1) with diabetes mellitus and Hashimoto’s thyroiditis. Clin Chim Acta 1999; 285: 183–9PubMedCrossRef Shibutani Y, Ueo T, Yamamoto T, et al. A case of classical xanthinuria (type 1) with diabetes mellitus and Hashimoto’s thyroiditis. Clin Chim Acta 1999; 285: 183–9PubMedCrossRef
21.
go back to reference Reiter S, Simmonds HA, Zöllner N, et al. Demonstration of a combined deficiency of xanthine oxidase and aldehyde oxidase in xanthinuric patients not forming oxipurinol. Clin Chim Acta 1990; 187: 221–34PubMedCrossRef Reiter S, Simmonds HA, Zöllner N, et al. Demonstration of a combined deficiency of xanthine oxidase and aldehyde oxidase in xanthinuric patients not forming oxipurinol. Clin Chim Acta 1990; 187: 221–34PubMedCrossRef
22.
go back to reference Auscher C, Pasquier C, Mercier N, et al. Urinary excretion of a 6 hydroxylated metabolite and oxypurines in a xanthinuric man given allopurinol or thiopurinol. Adv Exp Med Biol 1973; 41: 663–7 Auscher C, Pasquier C, Mercier N, et al. Urinary excretion of a 6 hydroxylated metabolite and oxypurines in a xanthinuric man given allopurinol or thiopurinol. Adv Exp Med Biol 1973; 41: 663–7
23.
24.
go back to reference Johns DG. Human liver aldehyde oxidase: differential inhibition of oxidation of charged and uncharged substrates. J Clin Invest 1967; 46: 1492–505PubMedCrossRef Johns DG. Human liver aldehyde oxidase: differential inhibition of oxidation of charged and uncharged substrates. J Clin Invest 1967; 46: 1492–505PubMedCrossRef
25.
go back to reference Choi HK, Mount DB, Reginato AM. Pathogenesis of gout. Ann Int Med 2005; 143: 499–516PubMed Choi HK, Mount DB, Reginato AM. Pathogenesis of gout. Ann Int Med 2005; 143: 499–516PubMed
26.
go back to reference Walter-Sack I, de Vries JX, Ernst B, et al. Uric acid lowering effect of oxipurinol sodium in hyperuricemic patients - therapeutic equivalence to allopurinol. J Rheumatol 1996; 23: 498–501PubMed Walter-Sack I, de Vries JX, Ernst B, et al. Uric acid lowering effect of oxipurinol sodium in hyperuricemic patients - therapeutic equivalence to allopurinol. J Rheumatol 1996; 23: 498–501PubMed
27.
go back to reference Bührens K, Berndt P, Hilgenstock CM, et al. Bioequivalence of two allopurinol preparations. Arzneim-Forsch 1991; 41: 250–3 Bührens K, Berndt P, Hilgenstock CM, et al. Bioequivalence of two allopurinol preparations. Arzneim-Forsch 1991; 41: 250–3
28.
go back to reference Schuster O, Haertel M, Hugemann B, et al. Studies on the clinical pharmacokinetics of allopurinol. Arzneim-Forsch 1985; 35: 760–5 Schuster O, Haertel M, Hugemann B, et al. Studies on the clinical pharmacokinetics of allopurinol. Arzneim-Forsch 1985; 35: 760–5
29.
go back to reference Metzner JE, Buchberger D, Läuter J, et al. Investigation into the bioequivalence of a new allopurinol tablet formulation compared with a standard preparation. Arzneim-Forsch 1997; 47: 1236–41 Metzner JE, Buchberger D, Läuter J, et al. Investigation into the bioequivalence of a new allopurinol tablet formulation compared with a standard preparation. Arzneim-Forsch 1997; 47: 1236–41
30.
go back to reference Fenner H, Schiemann O, Gikalov I. The clinical pharmacokinetics of allopurinol. 2. Allopurinol/oxypurinol pharmacokinetics following allopurinol in single doses and multiple application. Arzneim-Forsch 1985; 35: 1093–6 Fenner H, Schiemann O, Gikalov I. The clinical pharmacokinetics of allopurinol. 2. Allopurinol/oxypurinol pharmacokinetics following allopurinol in single doses and multiple application. Arzneim-Forsch 1985; 35: 1093–6
31.
go back to reference Purves RD. Anomalous parameter estimates in the one-compartment model with first-order absorption. J Pharm Pharmacol 1993; 45: 934–6PubMedCrossRef Purves RD. Anomalous parameter estimates in the one-compartment model with first-order absorption. J Pharm Pharmacol 1993; 45: 934–6PubMedCrossRef
32.
go back to reference Turnheim K, Krivanek P, Oberbauer R. Pharmacokinetics and pharmacodynamics of allopurinol in elderly and young subjects. Br J Clin Pharmacol 1999; 48: 501–9PubMedCrossRef Turnheim K, Krivanek P, Oberbauer R. Pharmacokinetics and pharmacodynamics of allopurinol in elderly and young subjects. Br J Clin Pharmacol 1999; 48: 501–9PubMedCrossRef
33.
go back to reference Sheiner LB, Benet LZ, Pagliaro LA. A standard approach to compiling clinical pharmacokinetic data. J Pharmacokinet Biopharm 1981; 9: 59–127PubMed Sheiner LB, Benet LZ, Pagliaro LA. A standard approach to compiling clinical pharmacokinetic data. J Pharmacokinet Biopharm 1981; 9: 59–127PubMed
34.
go back to reference Saji M. A study of the serum oxypurinol concentration and renal function in patients administered allopurinol. Jap J Nephrol 1996; 38: 640–50 Saji M. A study of the serum oxypurinol concentration and renal function in patients administered allopurinol. Jap J Nephrol 1996; 38: 640–50
35.
go back to reference Appelbaum SJ, Mayersohn M, Dorr RT, et al. Allopurinol kinetics and bioavailability: intravenous, oral and rectal administration. Cancer Chemother Pharmacol 1982; 8: 93–8PubMedCrossRef Appelbaum SJ, Mayersohn M, Dorr RT, et al. Allopurinol kinetics and bioavailability: intravenous, oral and rectal administration. Cancer Chemother Pharmacol 1982; 8: 93–8PubMedCrossRef
36.
go back to reference Marcus M, Tse FL, Kleinberg SI. The bioavailability of two commercial preparations of allopurinol tablets. Int J Clin Pharmacol Ther Toxicol 1982; 20: 302–5PubMed Marcus M, Tse FL, Kleinberg SI. The bioavailability of two commercial preparations of allopurinol tablets. Int J Clin Pharmacol Ther Toxicol 1982; 20: 302–5PubMed
37.
go back to reference Guerra P, Frias J, Ruiz B, et al. Bioequivalence of allopurinol and its metabolite in two tablet formulations. J Clin Pharm Ther 2001; 26: 113–9PubMedCrossRef Guerra P, Frias J, Ruiz B, et al. Bioequivalence of allopurinol and its metabolite in two tablet formulations. J Clin Pharm Ther 2001; 26: 113–9PubMedCrossRef
38.
go back to reference Hande K, Reed E, Chabner B. Allopurinol kinetics. Clin Pharmacol Ther 1978; 23: 598–605PubMed Hande K, Reed E, Chabner B. Allopurinol kinetics. Clin Pharmacol Ther 1978; 23: 598–605PubMed
39.
go back to reference Lartigue-Mattei C, Chabard JL, Ristori JM. Kinetics of allopurinol and its metabolite oxypurinol after oral administration of allopurinol alone or associated with benzbromarone in man: simultaneous assay of hypoxanthine and xanthine by gas chromatography-mass spectrometry. Fundam Clin Pharmacol 1991; 5: 621–33PubMedCrossRef Lartigue-Mattei C, Chabard JL, Ristori JM. Kinetics of allopurinol and its metabolite oxypurinol after oral administration of allopurinol alone or associated with benzbromarone in man: simultaneous assay of hypoxanthine and xanthine by gas chromatography-mass spectrometry. Fundam Clin Pharmacol 1991; 5: 621–33PubMedCrossRef
40.
go back to reference Kitt TM, Park GD, Spector R, et al. Reduced renal clearance of oxypurinol during a 400 calorie protein-free diet. J Clin Pharmacol 1989; 29: 65–71PubMed Kitt TM, Park GD, Spector R, et al. Reduced renal clearance of oxypurinol during a 400 calorie protein-free diet. J Clin Pharmacol 1989; 29: 65–71PubMed
41.
go back to reference Elion GB, Yü T, Gutman AB, et al. Renal clearance of oxipurinol, the chief metabolite of allopurinol. Am J Med 1968; 45: 69–77PubMedCrossRef Elion GB, Yü T, Gutman AB, et al. Renal clearance of oxipurinol, the chief metabolite of allopurinol. Am J Med 1968; 45: 69–77PubMedCrossRef
42.
go back to reference Hande KR, Noone RM, Stone WJ. Severe allopurinol toxicity: description and guidelines for prevention in patients with renal insufficiency. Am J Med 1984; 76: 47–56PubMedCrossRef Hande KR, Noone RM, Stone WJ. Severe allopurinol toxicity: description and guidelines for prevention in patients with renal insufficiency. Am J Med 1984; 76: 47–56PubMedCrossRef
43.
go back to reference Moriwaki Y, Yamamoto T, Tsutsumi Z, et al. Effects of angiotensin II infusion on renal excretion of purine bases and oxypurinol. Metabolism 2002; 51: 893–5PubMedCrossRef Moriwaki Y, Yamamoto T, Tsutsumi Z, et al. Effects of angiotensin II infusion on renal excretion of purine bases and oxypurinol. Metabolism 2002; 51: 893–5PubMedCrossRef
44.
go back to reference Yamamoto T, Moriwaki Y, Takahashi S, et al. Effects of pyrazinamide, probenecid, and benzbromarone on renal excretion of oxypurinol. Ann Rheum Dis 1991; 50: 631–3PubMedCrossRef Yamamoto T, Moriwaki Y, Takahashi S, et al. Effects of pyrazinamide, probenecid, and benzbromarone on renal excretion of oxypurinol. Ann Rheum Dis 1991; 50: 631–3PubMedCrossRef
45.
go back to reference Yamamoto T, Moriwaki Y, Takahashi S, et al. Effect of losartan potassium, an angiotensin antagonist, on renal excretion of oxypurinol and purine bases. J Rheumatol 2000; 27: 2232–6PubMed Yamamoto T, Moriwaki Y, Takahashi S, et al. Effect of losartan potassium, an angiotensin antagonist, on renal excretion of oxypurinol and purine bases. J Rheumatol 2000; 27: 2232–6PubMed
46.
go back to reference Yamamoto T, Moriwaki Y, Takahashi S, et al. Effect of fenofibrate on plasma concentration and urinary excretion of purine bases and oxypurinol. J Rheumatol 2001; 28: 2294–7PubMed Yamamoto T, Moriwaki Y, Takahashi S, et al. Effect of fenofibrate on plasma concentration and urinary excretion of purine bases and oxypurinol. J Rheumatol 2001; 28: 2294–7PubMed
47.
go back to reference Yamamoto T, Moriwaki Y, Takahashi S, et al. Effect of frusemide on renal excretion of oxypurinol and purine bases. Metabolism 2001; 50: 241–5PubMedCrossRef Yamamoto T, Moriwaki Y, Takahashi S, et al. Effect of frusemide on renal excretion of oxypurinol and purine bases. Metabolism 2001; 50: 241–5PubMedCrossRef
48.
go back to reference Yamamoto T, Moriwaki Y, Takahashi S, et al. Effect of norepinephrine on the urinary excretion of purine bases and oxypurinol. Metabolism 2001; 50: 1230–3PubMedCrossRef Yamamoto T, Moriwaki Y, Takahashi S, et al. Effect of norepinephrine on the urinary excretion of purine bases and oxypurinol. Metabolism 2001; 50: 1230–3PubMedCrossRef
49.
go back to reference Emmerson BT, Gordon RB, Cross M, et al. Plasma oxipurinol concentrations during allopurinol therapy. Br J Rheumatol 1987; 26: 445–9PubMedCrossRef Emmerson BT, Gordon RB, Cross M, et al. Plasma oxipurinol concentrations during allopurinol therapy. Br J Rheumatol 1987; 26: 445–9PubMedCrossRef
50.
go back to reference Peterson GM, Boyle RR, Francis, et al. Dosage prescribing and plasma oxipurinol levels in patients receiving allopurinol therapy. Eur J Clin Pharmacol 1990; 26: 419–21CrossRef Peterson GM, Boyle RR, Francis, et al. Dosage prescribing and plasma oxipurinol levels in patients receiving allopurinol therapy. Eur J Clin Pharmacol 1990; 26: 419–21CrossRef
51.
go back to reference Day RO, Miners JO, Birkett DJ, et al. Allopurinol dosage selection: relationships between dose and plasma oxypurinol and urate concentrations and urinary urate excretion. Br J Clin Pharmacol 1988; 26: 423–8PubMedCrossRef Day RO, Miners JO, Birkett DJ, et al. Allopurinol dosage selection: relationships between dose and plasma oxypurinol and urate concentrations and urinary urate excretion. Br J Clin Pharmacol 1988; 26: 423–8PubMedCrossRef
52.
go back to reference Ichida K, Hosoyamada M, Hisatome I, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan: influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 2004; 15: 164–73PubMedCrossRef Ichida K, Hosoyamada M, Hisatome I, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan: influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol 2004; 15: 164–73PubMedCrossRef
53.
go back to reference Iwanaga T, Kobayashi D, Hirayama M, et al. Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone. Drug Metab Disp 2005; 33: 1791–5 Iwanaga T, Kobayashi D, Hirayama M, et al. Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone. Drug Metab Disp 2005; 33: 1791–5
54.
go back to reference Williams KM, Stocker SL, McLachlan AJ, et al. Investigating pharmacokinetic and pharmacodynamic interaction between allopurinol and probenecid in healthy subjects [abstract]. Intern Med J 2006; 36: A39CrossRef Williams KM, Stocker SL, McLachlan AJ, et al. Investigating pharmacokinetic and pharmacodynamic interaction between allopurinol and probenecid in healthy subjects [abstract]. Intern Med J 2006; 36: A39CrossRef
55.
go back to reference Reinders MK, van Roon EN, Houtman PM, et al. Biochemical effectiveness of allopurinol and allopurinol-probenecid in previously benzbromarone-treated gout patients. Clin Rheumatol. Epub 2007 Feb 17 Reinders MK, van Roon EN, Houtman PM, et al. Biochemical effectiveness of allopurinol and allopurinol-probenecid in previously benzbromarone-treated gout patients. Clin Rheumatol. Epub 2007 Feb 17
56.
go back to reference Yü T, Gutman AB. Effect of allopurinol (4-hydroxypyrazolo(3,4-d)pyrimidine) on serum and urinary uric acid in primary and secondary gout. Am J Med 1964; 37: 885–98CrossRef Yü T, Gutman AB. Effect of allopurinol (4-hydroxypyrazolo(3,4-d)pyrimidine) on serum and urinary uric acid in primary and secondary gout. Am J Med 1964; 37: 885–98CrossRef
57.
go back to reference Garyfallos A, Magoula I, Tsapas G. Evaluation of the renal mechanisms for urate homeostasis in uremic patients by probenecid and pyrazinamide test. Nephron 1987; 46: 273–80PubMedCrossRef Garyfallos A, Magoula I, Tsapas G. Evaluation of the renal mechanisms for urate homeostasis in uremic patients by probenecid and pyrazinamide test. Nephron 1987; 46: 273–80PubMedCrossRef
58.
go back to reference Ruffer C, Zorn G, Henkel E, et al. Influence of benzbromarone on the pharmacokinetics and pharmacodynamics of oxipurinol. Arzneim Forsch 1982; 32: 1149–52 Ruffer C, Zorn G, Henkel E, et al. Influence of benzbromarone on the pharmacokinetics and pharmacodynamics of oxipurinol. Arzneim Forsch 1982; 32: 1149–52
59.
go back to reference Müller FO, Schall R, Groenewoud G, et al. The effect of benzbromarone on allopurinol/oxypurinol kinetics in patients with gout. Eur J Clin Pharmacol 1993; 44: 69–72PubMedCrossRef Müller FO, Schall R, Groenewoud G, et al. The effect of benzbromarone on allopurinol/oxypurinol kinetics in patients with gout. Eur J Clin Pharmacol 1993; 44: 69–72PubMedCrossRef
60.
go back to reference Mertz DP, Eichhorn R. Does benzbromarone in therapeutic doses raise renal excretion of oxipurinol? Klin Wochenschr 1984; 62: 1170–2PubMedCrossRef Mertz DP, Eichhorn R. Does benzbromarone in therapeutic doses raise renal excretion of oxipurinol? Klin Wochenschr 1984; 62: 1170–2PubMedCrossRef
61.
go back to reference Walter-Sack I, de Vries JX, von Bubnoff A, et al. Biotransformation and uric acid lowering effect of benzbromarone in patients with liver cirrhosis - evidence for active benzbromarone metabolites? Eur J Med Res 1995; 1: 16–20PubMed Walter-Sack I, de Vries JX, von Bubnoff A, et al. Biotransformation and uric acid lowering effect of benzbromarone in patients with liver cirrhosis - evidence for active benzbromarone metabolites? Eur J Med Res 1995; 1: 16–20PubMed
62.
go back to reference Takahashi S, Moriwaki Y, Yamamoto T, et al. Effects of combination treatment using anti-hyperuricaemic agents with fenofibrate and/or losartan on uric acid metabolism. Ann Rheum Dis 2003; 62: 572–5PubMedCrossRef Takahashi S, Moriwaki Y, Yamamoto T, et al. Effects of combination treatment using anti-hyperuricaemic agents with fenofibrate and/or losartan on uric acid metabolism. Ann Rheum Dis 2003; 62: 572–5PubMedCrossRef
63.
go back to reference Sica DA, Gehr TWB, Ghosh S. Clinical pharmacokinetics of losartan. Clin Pharmacokinet 2005; 44: 797–814PubMedCrossRef Sica DA, Gehr TWB, Ghosh S. Clinical pharmacokinetics of losartan. Clin Pharmacokinet 2005; 44: 797–814PubMedCrossRef
64.
go back to reference Feher MD, Hepburn AL, Hogarth MB, Ball SG, Kaye SA. Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and gout. Rheumatology 2003, 42, 321–5PubMedCrossRef Feher MD, Hepburn AL, Hogarth MB, Ball SG, Kaye SA. Fenofibrate enhances urate reduction in men treated with allopurinol for hyperuricaemia and gout. Rheumatology 2003, 42, 321–5PubMedCrossRef
65.
go back to reference Jones MR, Baker BA, Matthew P. The effect of colesevelam HCl on single dose fenofibrate kinetics. Clin Pharmacokinet 2004; 43: 943–50PubMedCrossRef Jones MR, Baker BA, Matthew P. The effect of colesevelam HCl on single dose fenofibrate kinetics. Clin Pharmacokinet 2004; 43: 943–50PubMedCrossRef
66.
go back to reference Leary WP, Reyes AJ, Wynne RD, et al. Renal excretory actions of frusemide, of hydrochlorothiazide and of the vasodilator flosequinan in healthy subjects. J Int Med Res 1990; 18: 120–41PubMed Leary WP, Reyes AJ, Wynne RD, et al. Renal excretory actions of frusemide, of hydrochlorothiazide and of the vasodilator flosequinan in healthy subjects. J Int Med Res 1990; 18: 120–41PubMed
67.
go back to reference Yamamoto T, Moriwaki Y, Takahashi S. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid). Clin Chim Acta 2005; 356: 35–57PubMedCrossRef Yamamoto T, Moriwaki Y, Takahashi S. Effect of ethanol on metabolism of purine bases (hypoxanthine, xanthine, and uric acid). Clin Chim Acta 2005; 356: 35–57PubMedCrossRef
68.
go back to reference Choi HK, Atkinson K, Karlson EW, et al. Alcohol intake and risk of incident gout in men: a prospective study. Lancet 2004; 363: 1277–81PubMedCrossRef Choi HK, Atkinson K, Karlson EW, et al. Alcohol intake and risk of incident gout in men: a prospective study. Lancet 2004; 363: 1277–81PubMedCrossRef
69.
go back to reference Gibson T, Rodgers AV, Simmonds HA, et al. Beer drinking and its effect on uric acid. Br J Rheumatol 1984; 23: 203–9PubMedCrossRef Gibson T, Rodgers AV, Simmonds HA, et al. Beer drinking and its effect on uric acid. Br J Rheumatol 1984; 23: 203–9PubMedCrossRef
70.
go back to reference Yamamoto T, Moriwaki Y, Takahashi S, et al. Ethanol as a xanthine dehydrogenase inhibitor. Metabolism 1995; 44: 779–85PubMedCrossRef Yamamoto T, Moriwaki Y, Takahashi S, et al. Ethanol as a xanthine dehydrogenase inhibitor. Metabolism 1995; 44: 779–85PubMedCrossRef
71.
go back to reference Kaneko K, Fujimori S, Ishizuka I, et al. Effect of ethanol on the metabolism of the hyperuricemic agents allopurinol and benzbromarone. Clin Chim Acta 1990; 193: 181–6PubMedCrossRef Kaneko K, Fujimori S, Ishizuka I, et al. Effect of ethanol on the metabolism of the hyperuricemic agents allopurinol and benzbromarone. Clin Chim Acta 1990; 193: 181–6PubMedCrossRef
72.
go back to reference Ralston SH, Capell HA, Sturrock RD. Alcohol and response to treatment of gout. BMJ 1988; 296: 1641–2PubMedCrossRef Ralston SH, Capell HA, Sturrock RD. Alcohol and response to treatment of gout. BMJ 1988; 296: 1641–2PubMedCrossRef
73.
go back to reference Bianchi R, Vitali C, Clerico A, et al. Uric acid metabolism in normal subjects and in gouty patients by chromatographic measurement of 14C-uric acid in plasma and urine. Metabolism 1979; 28: 1105–13PubMedCrossRef Bianchi R, Vitali C, Clerico A, et al. Uric acid metabolism in normal subjects and in gouty patients by chromatographic measurement of 14C-uric acid in plasma and urine. Metabolism 1979; 28: 1105–13PubMedCrossRef
74.
go back to reference Berg H. Examination of the effectiveness and tolerance of long term urate lowering treatment. Z Gesamte Inn Med 1990; 45: 719–20PubMed Berg H. Examination of the effectiveness and tolerance of long term urate lowering treatment. Z Gesamte Inn Med 1990; 45: 719–20PubMed
75.
go back to reference Kelley EE, Trostchansky A, Rubbo H, et al. Binding of xanthine oxidase to glycoaminoglycans limits inhibition by oxypurinol. J Biol Chem 2004; 279: 37231–4PubMedCrossRef Kelley EE, Trostchansky A, Rubbo H, et al. Binding of xanthine oxidase to glycoaminoglycans limits inhibition by oxypurinol. J Biol Chem 2004; 279: 37231–4PubMedCrossRef
76.
go back to reference Day RO, Miners J, Birkett DJ, et al. Relationship between plasma oxipurinol concentrations and xanthine oxidase activity in volunteers dosed with allopurinol. Br J Clin Pharmacol 1988; 26: 429–34PubMedCrossRef Day RO, Miners J, Birkett DJ, et al. Relationship between plasma oxipurinol concentrations and xanthine oxidase activity in volunteers dosed with allopurinol. Br J Clin Pharmacol 1988; 26: 429–34PubMedCrossRef
77.
go back to reference Birkett DJ, Miners J, Day RO. 1-Methylxanthine derived from theophylline as an in vivo biochemical probe of allopurinol effect. Br J Clin Pharmacol 1991; 32: 238–41PubMedCrossRef Birkett DJ, Miners J, Day RO. 1-Methylxanthine derived from theophylline as an in vivo biochemical probe of allopurinol effect. Br J Clin Pharmacol 1991; 32: 238–41PubMedCrossRef
78.
go back to reference Birkett DJ, Miners JO, Valente L, et al. 1-methylxanthine derived from caffeine as a pharmacodynamic probe of oxypurinol effect. Br J Clin Pharmacol 1997; 43: 197–200PubMedCrossRef Birkett DJ, Miners JO, Valente L, et al. 1-methylxanthine derived from caffeine as a pharmacodynamic probe of oxypurinol effect. Br J Clin Pharmacol 1997; 43: 197–200PubMedCrossRef
79.
go back to reference Fuchs P, Haefeli WE, Ledermann HR, et al. Xanthine oxidase inhibition by allopurinol affects the reliability of urinary caffeine metabolic ratios as markers for N-acetyltransferase 2 and CYP1A2 activities. Eur J Clin Pharmacol 1999; 54: 869–76PubMedCrossRef Fuchs P, Haefeli WE, Ledermann HR, et al. Xanthine oxidase inhibition by allopurinol affects the reliability of urinary caffeine metabolic ratios as markers for N-acetyltransferase 2 and CYP1A2 activities. Eur J Clin Pharmacol 1999; 54: 869–76PubMedCrossRef
80.
go back to reference Hamanaka H, Mizutani H, Nouchi N, et al. Allopurinol hyper-sensitivity syndrome: hypersensitivity to oxypurinol but not allopurinol. Clin Exp Dermatol 1998; 23: 32–4PubMedCrossRef Hamanaka H, Mizutani H, Nouchi N, et al. Allopurinol hyper-sensitivity syndrome: hypersensitivity to oxypurinol but not allopurinol. Clin Exp Dermatol 1998; 23: 32–4PubMedCrossRef
81.
go back to reference Braden GL, Warzynski MJ, Golightly M, et al. Cell-mediated immunity in allopurinol-induced hypersensitivity. Clin Immunol Immunopathol 1994; 70: 145–51PubMedCrossRef Braden GL, Warzynski MJ, Golightly M, et al. Cell-mediated immunity in allopurinol-induced hypersensitivity. Clin Immunol Immunopathol 1994; 70: 145–51PubMedCrossRef
82.
go back to reference Emmerson BT, Hazelton RA, Frazer IH. Some adverse reactions to allopurinol may be mediated by lymphocyte reactivity to oxypurinol. Arthritis Rheum 1988; 31: 436–40PubMedCrossRef Emmerson BT, Hazelton RA, Frazer IH. Some adverse reactions to allopurinol may be mediated by lymphocyte reactivity to oxypurinol. Arthritis Rheum 1988; 31: 436–40PubMedCrossRef
83.
go back to reference Pichler WJ, Tilch J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 2004; 59: 809–20PubMedCrossRef Pichler WJ, Tilch J. The lymphocyte transformation test in the diagnosis of drug hypersensitivity. Allergy 2004; 59: 809–20PubMedCrossRef
84.
go back to reference Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41PubMedCrossRef Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41PubMedCrossRef
85.
go back to reference Hung S, Chung WH, Liou LB, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Nat Acad Sci 2005; 102: 4134–9PubMedCrossRef Hung S, Chung WH, Liou LB, et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Nat Acad Sci 2005; 102: 4134–9PubMedCrossRef
86.
go back to reference Vazquez-Mellado J, Morales EM, Pacheco-Tena C, et al. Relation between adverse events associated with allopurinol and renal function in patients with gout. Ann Rheum Dis 2001; 60: 981–3PubMedCrossRef Vazquez-Mellado J, Morales EM, Pacheco-Tena C, et al. Relation between adverse events associated with allopurinol and renal function in patients with gout. Ann Rheum Dis 2001; 60: 981–3PubMedCrossRef
87.
go back to reference Becker MA, Schumacher HR, Wortmann RL, et al. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. New Engl J Med 2005; 353: 2450–61PubMedCrossRef Becker MA, Schumacher HR, Wortmann RL, et al. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. New Engl J Med 2005; 353: 2450–61PubMedCrossRef
88.
go back to reference Dalbeth N, Kumar S, Stamp L, et al. Dose adjustment of allopurinol according to creatinine clearance does not provide adequate control of hyperuricaemia in patients with gout. J Rheumatol 2006; 33: 1646–50PubMed Dalbeth N, Kumar S, Stamp L, et al. Dose adjustment of allopurinol according to creatinine clearance does not provide adequate control of hyperuricaemia in patients with gout. J Rheumatol 2006; 33: 1646–50PubMed
89.
go back to reference Dalbeth N, Stamp L. Allopurinol dosing in renal impairment: walking the tightrope between adequate urate lowering and adverse events. Semin Dial. Epub 2007 Apr 17 Dalbeth N, Stamp L. Allopurinol dosing in renal impairment: walking the tightrope between adequate urate lowering and adverse events. Semin Dial. Epub 2007 Apr 17
90.
go back to reference Zhang W, Doherty M, Bardin T, et al. EULAR evidence based recommendations for gout. Part II: management. Report of a task force of the EULAR Standing Committee For International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 2006; 65: 1312–24PubMedCrossRef Zhang W, Doherty M, Bardin T, et al. EULAR evidence based recommendations for gout. Part II: management. Report of a task force of the EULAR Standing Committee For International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis 2006; 65: 1312–24PubMedCrossRef
91.
go back to reference Elion GB, Benezra FM, Beardmore TD, et al. Studies with allopurinol in patients with impaired renal function. Adv Exp Med Biol 1980; 122A: 263–7PubMedCrossRef Elion GB, Benezra FM, Beardmore TD, et al. Studies with allopurinol in patients with impaired renal function. Adv Exp Med Biol 1980; 122A: 263–7PubMedCrossRef
92.
go back to reference Sarawate CA, Brewer KK, Yang W, et al. Gout medication treatment patterns and adherence to standards of care from a managed care perspective. Mayo Clin Proc 2006; 81: 925–34PubMedCrossRef Sarawate CA, Brewer KK, Yang W, et al. Gout medication treatment patterns and adherence to standards of care from a managed care perspective. Mayo Clin Proc 2006; 81: 925–34PubMedCrossRef
93.
go back to reference Thompson GR, Duff IF, Robinson WD, et al. Long term uricosuric therapy in gout. Arthritis Rheum 1962; 5: 384–96PubMedCrossRef Thompson GR, Duff IF, Robinson WD, et al. Long term uricosuric therapy in gout. Arthritis Rheum 1962; 5: 384–96PubMedCrossRef
94.
go back to reference Emmerson BT. The use of the xanthine oxidase inhibitor, allopurinol, in the control of hyperuricaemia, gout and uric acid calculi. Aust Ann Med 1967; 16: 205–14PubMed Emmerson BT. The use of the xanthine oxidase inhibitor, allopurinol, in the control of hyperuricaemia, gout and uric acid calculi. Aust Ann Med 1967; 16: 205–14PubMed
Metadata
Title
Clinical Pharmacokinetics and Pharmacodynamics of Allopurinol and Oxypurinol
Authors
Prof. Richard O. Day
Garry G. Graham
Mark Hicks
Andrew J. McLachlan
Sophie L. Stocker
Kenneth M. Williams
Publication date
01-08-2007
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 8/2007
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200746080-00001

Other articles of this Issue 8/2007

Clinical Pharmacokinetics 8/2007 Go to the issue