Skip to main content
Top
Published in: Clinical Pharmacokinetics 12/2005

01-12-2005 | Review Article

Comparative Pharmacokinetics of Vitamin K Antagonists

Warfarin, Phenprocoumon and Acenocoumarol

Author: Dr Mike Ufer

Published in: Clinical Pharmacokinetics | Issue 12/2005

Login to get access

Abstract

Vitamin K antagonists belong to the group of most frequently used drugs worldwide. They are used for long-term anticoagulation therapy, and exhibit their anticoagulant effect by inhibition of vitamin K epoxide reductase. Each drug exists in two different enantiomeric forms and is administered orally as a race-mate. The use of vitamin K antagonists is complicated by a narrow therapeutic index and an unpredictable dose-response relationship, giving rise to frequent bleeding complications or insufficient anticoagulation. These large dose response variations are markedly influenced by pharmacokinetic aspects that are determined by genetic, environmental and possibly other yet unknown factors.
Previous knowledge in this regard principally referred to warfarin. Cytochrome P450 (CYP) 2C9 has clearly been established as the predominant catalyst responsible for the metabolism of its more potent S-enantiomer. More recently, CYP2C9 has also been reported to catalyse the hydroxylation of phenprocoumon and acenocoumarol. However, the relative importance of CYP2C9 for the clearance of each anticoagulant substantially differs. Overall, the CYP2C9 isoenzyme appears to be most important for the clearance of warfarin, followed by acenocoumarol and, lastly, phenprocoumon. The less important role of CYP2C9 for the clearance of phenprocoumon is due to the involvement of CYP3A4 as an additional catalyst of phenprocoumon hydroxylation and significant excretion of unchanged drug in bile and urine, while the elimination of warfarin and acenocoumarol is almost completely by metabolism. Consequently, the effects of CYP2C9 polymorphisms on the pharmacokinetics and anticoagulant response are also least pronounced in the case of phenprocoumon; this drug seems preferable for therapeutic anticoagulation in poor metabolisers of CYP2C9.
In addition to these vitamin K antagonists, oral thrombin inhibitors are currently under clinical development for the prevention and treatment of thromboembolism. Of these, ximelagatran has recently gained marketing authorisation in Europe. These novel drugs all feature some major advantages over traditional anticoagulants, including a wide therapeutic interval, the lack of anticoagulant effect monitoring and a low drug-drug interaction potential. However, they are also characterised by some pitfalls. Amendments of traditional anticoagulant therapy, including self-monitoring of international normalised ratio values or prospective genotyping for individual dose-tailoring may contribute to the continuous use of warfarin, phenprocoumon and acenocoumarol in the future.
Literature
2.
go back to reference Hirsh J, Dalen JE, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 1998; 114 (5 Suppl.): 445–469SCrossRef Hirsh J, Dalen JE, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. Chest 1998; 114 (5 Suppl.): 445–469SCrossRef
3.
go back to reference de Boer-van den Berg M, Thijssen HH, Vermeer C. The in vivo effects of acenocoumarol, phenprocoumon and warfarin on vitamin K epoxide reductase and vitamin K-dependent carboxylase in various tissues of the rat. Biochim Biophys Acta 1986; 884(1): 150–7PubMedCrossRef de Boer-van den Berg M, Thijssen HH, Vermeer C. The in vivo effects of acenocoumarol, phenprocoumon and warfarin on vitamin K epoxide reductase and vitamin K-dependent carboxylase in various tissues of the rat. Biochim Biophys Acta 1986; 884(1): 150–7PubMedCrossRef
5.
go back to reference Weitz JI. New anticoagulants for treatment of venous thromboembolism. Circulation 2004; 110 (9 Suppl. 1): 119–26 Weitz JI. New anticoagulants for treatment of venous thromboembolism. Circulation 2004; 110 (9 Suppl. 1): 119–26
6.
go back to reference Levine MN, Raskob G, Landefeld S, et al. Hemorrhagic complications of anticoagulant treatment. Chest 2001; 119(90010): 108–121SCrossRef Levine MN, Raskob G, Landefeld S, et al. Hemorrhagic complications of anticoagulant treatment. Chest 2001; 119(90010): 108–121SCrossRef
7.
go back to reference Aithal GP, Day CP, Kesteven PJ, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353(9154): 717–9PubMedCrossRef Aithal GP, Day CP, Kesteven PJ, et al. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet 1999; 353(9154): 717–9PubMedCrossRef
8.
go back to reference Verstuyft C, Robert A, Morin S, et al. Genetic and environmental risk factors for oral anticoagulant overdose. Eur J Clin Pharmacol 2003; 58(11): 739–45PubMed Verstuyft C, Robert A, Morin S, et al. Genetic and environmental risk factors for oral anticoagulant overdose. Eur J Clin Pharmacol 2003; 58(11): 739–45PubMed
9.
10.
go back to reference Ufer M, Svensson JO, Krausz KW, et al. Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol 2004; 60(3): 173–82PubMedCrossRef Ufer M, Svensson JO, Krausz KW, et al. Identification of cytochromes P450 2C9 and 3A4 as the major catalysts of phenprocoumon hydroxylation in vitro. Eur J Clin Pharmacol 2004; 60(3): 173–82PubMedCrossRef
11.
go back to reference Thijssen HH, Flinois JP, Beaune PH. Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab Dispos 2000; 28(11): 1284–90PubMed Thijssen HH, Flinois JP, Beaune PH. Cytochrome P4502C9 is the principal catalyst of racemic acenocoumarol hydroxylation reactions in human liver microsomes. Drug Metab Dispos 2000; 28(11): 1284–90PubMed
12.
go back to reference Rettie AE, Korzekwa KR, Kunze KL, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 1992; 5(1): 54–9PubMedCrossRef Rettie AE, Korzekwa KR, Kunze KL, et al. Hydroxylation of warfarin by human cDNA-expressed cytochrome P-450: a role for P-4502C9 in the etiology of (S)-warfarin-drug interactions. Chem Res Toxicol 1992; 5(1): 54–9PubMedCrossRef
13.
go back to reference Takahashi H, Wilkinson GR, Padrini R, et al. CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin: similarities yet differences. Clin Pharmacol Ther 2004; 75(5): 376–80PubMedCrossRef Takahashi H, Wilkinson GR, Padrini R, et al. CYP2C9 and oral anticoagulation therapy with acenocoumarol and warfarin: similarities yet differences. Clin Pharmacol Ther 2004; 75(5): 376–80PubMedCrossRef
14.
go back to reference Visser LE, van Schaik RH, van Vliet M, et al. The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thromb Haemost 2004; 92(1): 61–6PubMed Visser LE, van Schaik RH, van Vliet M, et al. The risk of bleeding complications in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Thromb Haemost 2004; 92(1): 61–6PubMed
15.
go back to reference Visser LE, van Vliet M, van Schaik RH, et al. The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 and CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics 2004; 14: 27–33PubMedCrossRef Visser LE, van Vliet M, van Schaik RH, et al. The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 and CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics 2004; 14: 27–33PubMedCrossRef
16.
go back to reference Scordo MG, Pengo V, Spina E, et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002; 72(6): 702–10PubMedCrossRef Scordo MG, Pengo V, Spina E, et al. Influence of CYP2C9 and CYP2C19 genetic polymorphisms on warfarin maintenance dose and metabolic clearance. Clin Pharmacol Ther 2002; 72(6): 702–10PubMedCrossRef
17.
go back to reference Takahashi H, Kashima T, Nomizo Y, et al. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Clin Pharmacol Ther 1998; 63(5): 519–28PubMedCrossRef Takahashi H, Kashima T, Nomizo Y, et al. Metabolism of warfarin enantiomers in Japanese patients with heart disease having different CYP2C9 and CYP2C19 genotypes. Clin Pharmacol Ther 1998; 63(5): 519–28PubMedCrossRef
18.
go back to reference Kirchheiner J, Ufer M, Walter EC, et al. Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phen-procoumon in healthy volunteers. Pharmacogenetics 2004; 14(1): 19–26PubMedCrossRef Kirchheiner J, Ufer M, Walter EC, et al. Effects of CYP2C9 polymorphisms on the pharmacokinetics of R- and S-phen-procoumon in healthy volunteers. Pharmacogenetics 2004; 14(1): 19–26PubMedCrossRef
19.
go back to reference Thijssen HH, Ritzen Acenocoumarol pharmacokinetics in relation to cytochrome P450 2C9 genotype. Clin Pharmacol Ther 2003; 74_(1): 61–8CrossRef Thijssen HH, Ritzen Acenocoumarol pharmacokinetics in relation to cytochrome P450 2C9 genotype. Clin Pharmacol Ther 2003; 74_(1): 61–8CrossRef
20.
go back to reference Breckenridge A, Orme ML. The plasma half lives and the pharmacological effect of the enantiomers of warfarin in rats. Life Sci II 1972; 11(7): 337–45PubMedCrossRef Breckenridge A, Orme ML. The plasma half lives and the pharmacological effect of the enantiomers of warfarin in rats. Life Sci II 1972; 11(7): 337–45PubMedCrossRef
21.
go back to reference Schmidt W, Jahnchen E. Stereoselective drug distribution and anticoagulant potency of the enantiomers of phenprocoumon in rats. J Pharm Pharmacol 1977; 29(5): 266–71PubMedCrossRef Schmidt W, Jahnchen E. Stereoselective drug distribution and anticoagulant potency of the enantiomers of phenprocoumon in rats. J Pharm Pharmacol 1977; 29(5): 266–71PubMedCrossRef
22.
go back to reference Meinertz T, Kasper W, Kahl C, et al. Anticoagulant activity of the enantiomers of acenocoumarol. Br J Clin Pharmacol 1978; 5(2): 187–8PubMedCrossRef Meinertz T, Kasper W, Kahl C, et al. Anticoagulant activity of the enantiomers of acenocoumarol. Br J Clin Pharmacol 1978; 5(2): 187–8PubMedCrossRef
23.
go back to reference Jahnchen E, Meinertz T, Gilfrich HJ, et al. The enantiomers of phenprocoumon: pharmacodynamic and pharmacokinetic studies. Clin Pharmacol Ther 1976; 20(3): 342–9PubMed Jahnchen E, Meinertz T, Gilfrich HJ, et al. The enantiomers of phenprocoumon: pharmacodynamic and pharmacokinetic studies. Clin Pharmacol Ther 1976; 20(3): 342–9PubMed
24.
go back to reference Thijssen HH, Baars LG, Vervoort-Peters HT. Vitamin K 2,3-epoxide reductase: the basis for stereoselectivity of 4-hydrox-ycoumarin anticoagulant activity. Br J Pharmacol 1988; 95(3): 675–82PubMedCrossRef Thijssen HH, Baars LG, Vervoort-Peters HT. Vitamin K 2,3-epoxide reductase: the basis for stereoselectivity of 4-hydrox-ycoumarin anticoagulant activity. Br J Pharmacol 1988; 95(3): 675–82PubMedCrossRef
25.
go back to reference Kollroser M, Schober Determination of coumarin-type anticoagulants in human plasma by HPLC-electrospray ionization tandem mass spectrometry with an ion trap detector. Clin Chem 2002; 48_(1): 84–91 Kollroser M, Schober Determination of coumarin-type anticoagulants in human plasma by HPLC-electrospray ionization tandem mass spectrometry with an ion trap detector. Clin Chem 2002; 48_(1): 84–91
26.
go back to reference Boppana VK, Schaefer WH, Cyronak MJ. High-performance liquid-chromatographic determination of warfarin enantiomers in plasma with automated on-line sample enrichment. J Bi-ochem Biophys Methods 2002; 54(1–3): 315–26CrossRef Boppana VK, Schaefer WH, Cyronak MJ. High-performance liquid-chromatographic determination of warfarin enantiomers in plasma with automated on-line sample enrichment. J Bi-ochem Biophys Methods 2002; 54(1–3): 315–26CrossRef
27.
go back to reference Henne KR, Gaedigk A, Gupta G, et al. Chiral phase analysis of warfarin enantiomers in patient plasma in relation to CYP2C9 genotype. J Chromatogr Biomed Sci Appl 1998; 710(1–2): 143–8CrossRef Henne KR, Gaedigk A, Gupta G, et al. Chiral phase analysis of warfarin enantiomers in patient plasma in relation to CYP2C9 genotype. J Chromatogr Biomed Sci Appl 1998; 710(1–2): 143–8CrossRef
28.
go back to reference Ring PR, Bostick JM. Validation of a method for the determination of (R)-warfarin and (S)-warfarin in human plasma using LC with UV detection. J Pharm Biomed Anal 2000; 22(3): 573–81PubMedCrossRef Ring PR, Bostick JM. Validation of a method for the determination of (R)-warfarin and (S)-warfarin in human plasma using LC with UV detection. J Pharm Biomed Anal 2000; 22(3): 573–81PubMedCrossRef
29.
go back to reference Rentsch KM, Gutteck-Amsler U, Buhrer R, et al. Sensitive stereospecific determination of acenocoumarol and phenprocoumon in plasma by high-performance liquid chromatography. J Chromatogr Biomed Sci Appl 2000; 742(1): 131–42CrossRef Rentsch KM, Gutteck-Amsler U, Buhrer R, et al. Sensitive stereospecific determination of acenocoumarol and phenprocoumon in plasma by high-performance liquid chromatography. J Chromatogr Biomed Sci Appl 2000; 742(1): 131–42CrossRef
30.
go back to reference Naidong W, Ring PR, Midtlien C, et al. Development and validation of a sensitive and robust LC-tandem MS method for the analysis of warfarin enantiomers in human plasma. J Pharm Biomed Anal 2001; 25(2): 219–26PubMedCrossRef Naidong W, Ring PR, Midtlien C, et al. Development and validation of a sensitive and robust LC-tandem MS method for the analysis of warfarin enantiomers in human plasma. J Pharm Biomed Anal 2001; 25(2): 219–26PubMedCrossRef
31.
go back to reference Kammerer Kahlich R, Ufer M, et al. Determination of (R)-and (S)-phenprocoumon in human plasma by enantioselective liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom 2004; 18(4): 458–64CrossRef Kammerer Kahlich R, Ufer M, et al. Determination of (R)-and (S)-phenprocoumon in human plasma by enantioselective liquid chromatography/electrospray ionisation tandem mass spectrometry. Rapid Commun Mass Spectrom 2004; 18(4): 458–64CrossRef
32.
go back to reference Fasco MJ, Piper LJ, Kaminsky LS. Biochemical applications of a quantitative high-pressure liquid chromatographic assay of warfarin and its metabolites. J Chromatogr 1977; 131: 365–73PubMedCrossRef Fasco MJ, Piper LJ, Kaminsky LS. Biochemical applications of a quantitative high-pressure liquid chromatographic assay of warfarin and its metabolites. J Chromatogr 1977; 131: 365–73PubMedCrossRef
33.
go back to reference Banfield C, Rowland M. Stereospecific fluorescence high-performance liquid chromatographic analysis of warfarin and its metabolites in plasma and urine. J Pharm Sci 1984; 73(10): 1392–6PubMedCrossRef Banfield C, Rowland M. Stereospecific fluorescence high-performance liquid chromatographic analysis of warfarin and its metabolites in plasma and urine. J Pharm Sci 1984; 73(10): 1392–6PubMedCrossRef
34.
go back to reference Chan E, McLachlan AJ, Pegg M, et al. Disposition of warfarin enantiomers and metabolites in patients during multiple dosing with rac-warfarin. Br J Clin Pharmacol 1994; 37(6): 563–9PubMedCrossRef Chan E, McLachlan AJ, Pegg M, et al. Disposition of warfarin enantiomers and metabolites in patients during multiple dosing with rac-warfarin. Br J Clin Pharmacol 1994; 37(6): 563–9PubMedCrossRef
35.
go back to reference de Vries JX, Schmitz-Kummer E. Development of a method for the analysis of warfarin and metabolites in plasma and urine. Am Clin Lab 1995; 14(7): 20–1PubMed de Vries JX, Schmitz-Kummer E. Development of a method for the analysis of warfarin and metabolites in plasma and urine. Am Clin Lab 1995; 14(7): 20–1PubMed
36.
go back to reference Takahashi H, Kashima T, Kimura S, et al. Determination of unbound warfarin enantiomers in human plasma and 7-hydroxywarfarin in human urine by chiral stationary-phase liquid chromatography with ultraviolet or fluorescence and online circular dichroism detection. J Chromatogr Biomed Sci Appl 1997; 701(1): 71–80CrossRef Takahashi H, Kashima T, Kimura S, et al. Determination of unbound warfarin enantiomers in human plasma and 7-hydroxywarfarin in human urine by chiral stationary-phase liquid chromatography with ultraviolet or fluorescence and online circular dichroism detection. J Chromatogr Biomed Sci Appl 1997; 701(1): 71–80CrossRef
37.
go back to reference Spink DC, Aldous KM, Kaminsky LS. Analysis of oxidative warfarin metabolites by thermospray high-performance liquid chromatography/mass spectrometry. Anal Biochem 1989; 177(2): 307–13PubMedCrossRef Spink DC, Aldous KM, Kaminsky LS. Analysis of oxidative warfarin metabolites by thermospray high-performance liquid chromatography/mass spectrometry. Anal Biochem 1989; 177(2): 307–13PubMedCrossRef
38.
go back to reference Edelbroek PM, van Kempen GM, Hessing TJ, et al. Analysis of phenprocoumon and its hydroxylated and conjugated metabolites in human urine by high-performance liquid chromatography after solid-phase extraction. J Chromatogr 1990; 530(2): 347–58PubMed Edelbroek PM, van Kempen GM, Hessing TJ, et al. Analysis of phenprocoumon and its hydroxylated and conjugated metabolites in human urine by high-performance liquid chromatography after solid-phase extraction. J Chromatogr 1990; 530(2): 347–58PubMed
39.
go back to reference de Vries JX, Schmitz-Kummer ES. Determination of the coumarin anticoagulant phenprocoumon, and metabolites in human plasma, urine and breast milk by high-performance liquid chromatography after solid-phase extraction. J Chromatogr Biomed Sci Appl 1994; 655: 63–71CrossRef de Vries JX, Schmitz-Kummer ES. Determination of the coumarin anticoagulant phenprocoumon, and metabolites in human plasma, urine and breast milk by high-performance liquid chromatography after solid-phase extraction. J Chromatogr Biomed Sci Appl 1994; 655: 63–71CrossRef
40.
go back to reference de Vries JX, Simon M, Zimmermann R, et al. Identification of phenprocoumon metabolites in human urine by high-performance liquid chromatography and gas chromatography-mass spectrometry. J Chromatogr 1985; 338(2): 325–34PubMed de Vries JX, Simon M, Zimmermann R, et al. Identification of phenprocoumon metabolites in human urine by high-performance liquid chromatography and gas chromatography-mass spectrometry. J Chromatogr 1985; 338(2): 325–34PubMed
41.
go back to reference de Vries JX, Zimmermann R, Harenberg J. Phenprocoumon metabolites in human plasma; characterization by HPLC and GC-MS. Eur J Clin Pharmacol 1986; 29(5): 591–4PubMedCrossRef de Vries JX, Zimmermann R, Harenberg J. Phenprocoumon metabolites in human plasma; characterization by HPLC and GC-MS. Eur J Clin Pharmacol 1986; 29(5): 591–4PubMedCrossRef
42.
go back to reference Heimark LD, Trager WF. A stable isotope assay for phenprocoumon and its metabolites. Biomed Mass Spectrom 1985; 12(2): 67–71PubMedCrossRef Heimark LD, Trager WF. A stable isotope assay for phenprocoumon and its metabolites. Biomed Mass Spectrom 1985; 12(2): 67–71PubMedCrossRef
43.
go back to reference Ufer M, Kammerer Kirchheiner J, et al. Determination of phenprocoumon, warfarin and their monohydroxylated metabolites in human plasma and urine by high-performance liquid chromatography-mass spectrometry after solid-phase extraction. J Chromatogr 2004; 809(2): 217–26CrossRef Ufer M, Kammerer Kirchheiner J, et al. Determination of phenprocoumon, warfarin and their monohydroxylated metabolites in human plasma and urine by high-performance liquid chromatography-mass spectrometry after solid-phase extraction. J Chromatogr 2004; 809(2): 217–26CrossRef
44.
go back to reference Thijssen HH, Baars LG, Reijnders MJ. Analysis of acenocoumarin and its amino and acetamido metabolites in body fluids by high-performance liquid chromatography. J Chromatogr 1983; 274: 231–8PubMedCrossRef Thijssen HH, Baars LG, Reijnders MJ. Analysis of acenocoumarin and its amino and acetamido metabolites in body fluids by high-performance liquid chromatography. J Chromatogr 1983; 274: 231–8PubMedCrossRef
45.
go back to reference Thijssen HH, Janssen GM, Baars LG. Lack of effect of Cimetidine on pharmacodynamics and kinetics of single oral doses of R- and S-acenocoumarol. Eur J Clin Pharmacol 1986; 30(5): 619–23PubMedCrossRef Thijssen HH, Janssen GM, Baars LG. Lack of effect of Cimetidine on pharmacodynamics and kinetics of single oral doses of R- and S-acenocoumarol. Eur J Clin Pharmacol 1986; 30(5): 619–23PubMedCrossRef
46.
go back to reference Thijssen HH, Drittij MJ, Vervoort LM, et al. Altered pharmacokinetics of R- and S-acenocoumarol in a subject heterozygous for CYP2C9*3. Clin Pharmacol Ther 2001; 70(3): 292–8PubMedCrossRef Thijssen HH, Drittij MJ, Vervoort LM, et al. Altered pharmacokinetics of R- and S-acenocoumarol in a subject heterozygous for CYP2C9*3. Clin Pharmacol Ther 2001; 70(3): 292–8PubMedCrossRef
47.
go back to reference Haustein KO, Huiler G. Pharmacokinetics of phenprocoumon. Int J Clin Pharmacol Ther 1994; 32(4): 192–7PubMed Haustein KO, Huiler G. Pharmacokinetics of phenprocoumon. Int J Clin Pharmacol Ther 1994; 32(4): 192–7PubMed
48.
go back to reference O’Reilly RA, Aggeler PM, Leong LS. Studies on the coumarin anticoagulant drugs: the pharmacodynamics of warfarin in man. J Clin Invest 1963; 42: 1542–51PubMedCrossRef O’Reilly RA, Aggeler PM, Leong LS. Studies on the coumarin anticoagulant drugs: the pharmacodynamics of warfarin in man. J Clin Invest 1963; 42: 1542–51PubMedCrossRef
49.
go back to reference Dieterle W, Faigle JW, Montigel C, et al. Biotransformation and pharmacokinetics of acenocoumarol (Sintrom) in man. Eur J Clin Pharmacol 1977; 11(5): 367–75PubMedCrossRef Dieterle W, Faigle JW, Montigel C, et al. Biotransformation and pharmacokinetics of acenocoumarol (Sintrom) in man. Eur J Clin Pharmacol 1977; 11(5): 367–75PubMedCrossRef
50.
go back to reference Hewick DS, McEwen J. Plasma half-lives, plasma metabolites and anticoagulant efficacies of the enantiomers of warfarin in man. J Pharm Pharmacol 1973; 25(6): 458–65PubMedCrossRef Hewick DS, McEwen J. Plasma half-lives, plasma metabolites and anticoagulant efficacies of the enantiomers of warfarin in man. J Pharm Pharmacol 1973; 25(6): 458–65PubMedCrossRef
51.
go back to reference de Vries JX, Volker U. Determination of the plasma protein binding of the coumarin anticoagulants phenprocoumon and its metabolites, warfarin and acenocoumarol, by ultrafiltration and high-performance liquid chromatography. J Chromatogr 1990; 529(2): 479–85PubMed de Vries JX, Volker U. Determination of the plasma protein binding of the coumarin anticoagulants phenprocoumon and its metabolites, warfarin and acenocoumarol, by ultrafiltration and high-performance liquid chromatography. J Chromatogr 1990; 529(2): 479–85PubMed
52.
go back to reference Haustein KO. Pharmacokinetic and pharmacodynamic properties of oral anticoagulants, especially phenprocoumon. Semin Thromb Hemost 1999; 25(1): 5–11PubMedCrossRef Haustein KO. Pharmacokinetic and pharmacodynamic properties of oral anticoagulants, especially phenprocoumon. Semin Thromb Hemost 1999; 25(1): 5–11PubMedCrossRef
53.
go back to reference Thijssen HH, Hamulyak K, Willigers H. 4-Hydroxycoumarin oral anticoagulants: pharmacokinetics-response relationship. Thromb Haemost 1988; 60(1): 35–8PubMed Thijssen HH, Hamulyak K, Willigers H. 4-Hydroxycoumarin oral anticoagulants: pharmacokinetics-response relationship. Thromb Haemost 1988; 60(1): 35–8PubMed
54.
go back to reference Thijssen HH, Verkooijen IW, Frank HL. The possession of the CYP2C9*3 allele is associated with low dose requirement of acenocoumarol. Pharmacogenetics 2000; 10(8): 757–60PubMedCrossRef Thijssen HH, Verkooijen IW, Frank HL. The possession of the CYP2C9*3 allele is associated with low dose requirement of acenocoumarol. Pharmacogenetics 2000; 10(8): 757–60PubMedCrossRef
55.
go back to reference Petersen D, Bartheis M, Schumann G, et al. Concentrations of phenprocoumon in serum and serum water determined by high-performance liquid chromatography in patients on oral anticoagulant therapy. Haemostasis 1993; 23(2): 83–90PubMed Petersen D, Bartheis M, Schumann G, et al. Concentrations of phenprocoumon in serum and serum water determined by high-performance liquid chromatography in patients on oral anticoagulant therapy. Haemostasis 1993; 23(2): 83–90PubMed
56.
go back to reference Russmann S, Gohlke-Barwolf C, Jahnchen E, et al. Age-dependent differences in the anticoagulant effect of phenprocoumon in patients after heart valve surgery. Eur J Clin Pharmacol 1997; 52(1): 31–5PubMedCrossRef Russmann S, Gohlke-Barwolf C, Jahnchen E, et al. Age-dependent differences in the anticoagulant effect of phenprocoumon in patients after heart valve surgery. Eur J Clin Pharmacol 1997; 52(1): 31–5PubMedCrossRef
57.
go back to reference Trenk D, Althen H, Jahnchen E, et al. Factors responsible for interindividual differences in the dose requirement of phenprocoumon. Eur J Clin Pharmacol 1987; 33(1): 49–54PubMedCrossRef Trenk D, Althen H, Jahnchen E, et al. Factors responsible for interindividual differences in the dose requirement of phenprocoumon. Eur J Clin Pharmacol 1987; 33(1): 49–54PubMedCrossRef
58.
go back to reference Barcellona D, Vannini ML, Fenu L, et al. Warfarin or acenocoumarol: which is better in the management of oral anticoagulants?. Thromb Haemost 1998; 80(6): 899–902PubMed Barcellona D, Vannini ML, Fenu L, et al. Warfarin or acenocoumarol: which is better in the management of oral anticoagulants?. Thromb Haemost 1998; 80(6): 899–902PubMed
59.
go back to reference Kelly JG, O’Malley K. Clinical pharmacokinetics of oral anticoagulants. Clin Pharmacokinet 1979; 4(1): 1–15PubMedCrossRef Kelly JG, O’Malley K. Clinical pharmacokinetics of oral anticoagulants. Clin Pharmacokinet 1979; 4(1): 1–15PubMedCrossRef
60.
go back to reference Trager WF, Lewis RJ, Garland WA. Mass spectral analysis in the identification of human metabolites of warfarin. J Med Chem 1970; 13(6): 1196–204PubMedCrossRef Trager WF, Lewis RJ, Garland WA. Mass spectral analysis in the identification of human metabolites of warfarin. J Med Chem 1970; 13(6): 1196–204PubMedCrossRef
61.
go back to reference Barker WM, Hermodson MA, Link KP. The metabolism of 4-C14-warfarin sodium by the rat. J Pharmacol Exp Ther 1970; 171(2): 307–13PubMed Barker WM, Hermodson MA, Link KP. The metabolism of 4-C14-warfarin sodium by the rat. J Pharmacol Exp Ther 1970; 171(2): 307–13PubMed
62.
go back to reference Lewis RJ, Trager WF. Warfarin metabolism in man: identification of metabolites in urine. J Clin Invest 1970; 49(5): 907–13PubMedCrossRef Lewis RJ, Trager WF. Warfarin metabolism in man: identification of metabolites in urine. J Clin Invest 1970; 49(5): 907–13PubMedCrossRef
63.
go back to reference Lewis RJ, Trager WF. The metabolic fate of warfarin: studies on the metabolites in plasma. Ann N Y Acad Sci 1971; 179: 205–12PubMedCrossRef Lewis RJ, Trager WF. The metabolic fate of warfarin: studies on the metabolites in plasma. Ann N Y Acad Sci 1971; 179: 205–12PubMedCrossRef
64.
go back to reference Pohl LR, Nelson SD, Garland WA, et al. The rapid identification of a new metabolite of warfarin via a chemical ionization mass spectrometry ion doublet technique. Biomed Mass Spec-trom 1975; 2(1): 23–30CrossRef Pohl LR, Nelson SD, Garland WA, et al. The rapid identification of a new metabolite of warfarin via a chemical ionization mass spectrometry ion doublet technique. Biomed Mass Spec-trom 1975; 2(1): 23–30CrossRef
65.
go back to reference Fasco MJ, Dymerski PP, Wos JD, et al. A new warfarin metabolite: structure and function. J Med Chem 1978; 21(10): 1054–9PubMedCrossRef Fasco MJ, Dymerski PP, Wos JD, et al. A new warfarin metabolite: structure and function. J Med Chem 1978; 21(10): 1054–9PubMedCrossRef
66.
go back to reference Kaminsky LS, Dunbar DA, Wang PP, et al. Human hepatic cytochrome P-450 composition as probed by in vitro microsomal metabolism of warfarin. Drug Metab Dispos 1984; 12(4): 470–7PubMed Kaminsky LS, Dunbar DA, Wang PP, et al. Human hepatic cytochrome P-450 composition as probed by in vitro microsomal metabolism of warfarin. Drug Metab Dispos 1984; 12(4): 470–7PubMed
67.
go back to reference Kaminsky LS. Warfarin as a probe of cytochromes P-450 function. Drug Metab Rev 1989; 20(2-4): 479–87PubMedCrossRef Kaminsky LS. Warfarin as a probe of cytochromes P-450 function. Drug Metab Rev 1989; 20(2-4): 479–87PubMedCrossRef
68.
go back to reference Moreland TA, Hewick DS. Studies on a ketone reductase in human and rat liver and kidney soluble fraction using warfarin as a substrate. Biochem Pharmacol 1975; 24(21): 1953–7PubMedCrossRef Moreland TA, Hewick DS. Studies on a ketone reductase in human and rat liver and kidney soluble fraction using warfarin as a substrate. Biochem Pharmacol 1975; 24(21): 1953–7PubMedCrossRef
69.
go back to reference Hermans JJ, Thijssen HH. The in vitro ketone reduction of warfarin and analogues: substrate stereoselectivity, product stereoselectivity and species differences. Biochem Pharmacol 1989; 38(19): 3365–70PubMedCrossRef Hermans JJ, Thijssen HH. The in vitro ketone reduction of warfarin and analogues: substrate stereoselectivity, product stereoselectivity and species differences. Biochem Pharmacol 1989; 38(19): 3365–70PubMedCrossRef
70.
go back to reference Rettie AE, Eddy AC, Heimark LD, et al. Characteristics of warfarin hydroxylation catalyzed by human liver microsomes. Drug Metab Dispos 1989; 17(3): 265–70PubMed Rettie AE, Eddy AC, Heimark LD, et al. Characteristics of warfarin hydroxylation catalyzed by human liver microsomes. Drug Metab Dispos 1989; 17(3): 265–70PubMed
71.
go back to reference Jansing RL, Chao ES, Kaminsky LS. Phase II metabolism of warfarin in primary culture of adult rat hepatocytes. Mol Pharmacol 1992; 41(1): 209–15PubMed Jansing RL, Chao ES, Kaminsky LS. Phase II metabolism of warfarin in primary culture of adult rat hepatocytes. Mol Pharmacol 1992; 41(1): 209–15PubMed
72.
go back to reference Lewis RJ, Trager WF, Chan KK, et al. Warfarin: stereochemical aspects of its metabolism and the interaction with phenylbutazone. J Clin Invest 1974; 53(6): 1607–17PubMedCrossRef Lewis RJ, Trager WF, Chan KK, et al. Warfarin: stereochemical aspects of its metabolism and the interaction with phenylbutazone. J Clin Invest 1974; 53(6): 1607–17PubMedCrossRef
73.
go back to reference Toon S, Low LK, Gibaldi M, et al. The warfarin-sulfinpyrazone interaction: stereochemical considerations. Clin Pharmacol Ther 1986; 39(1): 15–24PubMedCrossRef Toon S, Low LK, Gibaldi M, et al. The warfarin-sulfinpyrazone interaction: stereochemical considerations. Clin Pharmacol Ther 1986; 39(1): 15–24PubMedCrossRef
74.
go back to reference Banfield O’Reilly R, Chan E, et al. Phenylbutazone-warfarin interaction in man: further stereochemical and metabolic considerations. Br J Clin Pharmacol 1983; 16(6): 669–75CrossRef Banfield O’Reilly R, Chan E, et al. Phenylbutazone-warfarin interaction in man: further stereochemical and metabolic considerations. Br J Clin Pharmacol 1983; 16(6): 669–75CrossRef
75.
go back to reference Fasco MJ, Vatsis KP, Kaminsky LS, et al. Regioselective and stereoselective hydroxylation of R and S warfarin by different forms of purified cytochrome P-450 from rabbit liver. J Biol Chem 1978; 253(21): 7813–20PubMed Fasco MJ, Vatsis KP, Kaminsky LS, et al. Regioselective and stereoselective hydroxylation of R and S warfarin by different forms of purified cytochrome P-450 from rabbit liver. J Biol Chem 1978; 253(21): 7813–20PubMed
76.
go back to reference Fasco MJ, Piper LJ, Kaminsky LS. Binding of R and S warfarin to hepatic microsomal cytochrome P-450. Arch Biochem Bi-ophys 1977; 182(2): 379–89CrossRef Fasco MJ, Piper LJ, Kaminsky LS. Binding of R and S warfarin to hepatic microsomal cytochrome P-450. Arch Biochem Bi-ophys 1977; 182(2): 379–89CrossRef
77.
go back to reference Kaminsky LS, Fasco MJ, Guengerich FP. Comparison of different forms of purified cytochrome P-450 from rat liver by immunological inhibition of regio- and stereoselective metabolism of warfarin. J Biol Chem 1980; 255(1): 85–91PubMed Kaminsky LS, Fasco MJ, Guengerich FP. Comparison of different forms of purified cytochrome P-450 from rat liver by immunological inhibition of regio- and stereoselective metabolism of warfarin. J Biol Chem 1980; 255(1): 85–91PubMed
78.
go back to reference Kaminsky LS, Guengerich FP, Dannan GA, et al. Comparisons of warfarin metabolism by liver microsomes of rats treated with a series of polybrominated biphenyl congeners and by the component-purified cytochrome P-450 isozymes. Arch Biochem Biophys 1983; 225(1): 398–404PubMedCrossRef Kaminsky LS, Guengerich FP, Dannan GA, et al. Comparisons of warfarin metabolism by liver microsomes of rats treated with a series of polybrominated biphenyl congeners and by the component-purified cytochrome P-450 isozymes. Arch Biochem Biophys 1983; 225(1): 398–404PubMedCrossRef
79.
go back to reference Porter WR, Wheeler C, Trager WF. Changes in the metabolic profiles of R- and S-warfarin and R- and S-phenprocoumon as a probe to categorize the effect of inducing agents on microsomal hydroxylases. Biochem Pharmacol 1981; 30(22): 3099–104PubMedCrossRef Porter WR, Wheeler C, Trager WF. Changes in the metabolic profiles of R- and S-warfarin and R- and S-phenprocoumon as a probe to categorize the effect of inducing agents on microsomal hydroxylases. Biochem Pharmacol 1981; 30(22): 3099–104PubMedCrossRef
80.
go back to reference Newton DJ, Wang RW, Lu AY. Cytochrome P450 inhibitors: evaluation of specificities in the in-vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab Dispos 1995; 23(1): 154–8PubMed Newton DJ, Wang RW, Lu AY. Cytochrome P450 inhibitors: evaluation of specificities in the in-vitro metabolism of therapeutic agents by human liver microsomes. Drug Metab Dispos 1995; 23(1): 154–8PubMed
81.
go back to reference Mancy A, Dijols S, Poli S, et al. Interaction of sulfaphenazole derivatives with human liver cytochromes P450 2C: molecular origin of the specific inhibitory effects of sulfaphenazole on CYP 2C9 and consequences for the substrate binding site topology of CYP 2C9. Biochemistry 1996; 35(50): 16205–12PubMedCrossRef Mancy A, Dijols S, Poli S, et al. Interaction of sulfaphenazole derivatives with human liver cytochromes P450 2C: molecular origin of the specific inhibitory effects of sulfaphenazole on CYP 2C9 and consequences for the substrate binding site topology of CYP 2C9. Biochemistry 1996; 35(50): 16205–12PubMedCrossRef
82.
go back to reference Kaminsky LS, de Morais SM, Faletto MB, et al. Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe. Mol Pharmacol 1993; 43(2): 234–9PubMed Kaminsky LS, de Morais SM, Faletto MB, et al. Correlation of human cytochrome P4502C substrate specificities with primary structure: warfarin as a probe. Mol Pharmacol 1993; 43(2): 234–9PubMed
83.
go back to reference Zhang Z, Fasco MJ, Huang Z, et al. Human cytochromes P4501A1 and P4501A2: R-warfarin metabolism as a probe. Drug Metab Dispos 1995; 23(12): 1339–46PubMed Zhang Z, Fasco MJ, Huang Z, et al. Human cytochromes P4501A1 and P4501A2: R-warfarin metabolism as a probe. Drug Metab Dispos 1995; 23(12): 1339–46PubMed
84.
go back to reference Yamazaki H, Shimada T. Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R- and S-warfarin enantiomers. Biochem Pharmacol 1997; 54(11): 1195–203PubMedCrossRef Yamazaki H, Shimada T. Human liver cytochrome P450 enzymes involved in the 7-hydroxylation of R- and S-warfarin enantiomers. Biochem Pharmacol 1997; 54(11): 1195–203PubMedCrossRef
85.
go back to reference Wienkers LC, Wurden CJ, Storch E, et al. Formation of (R)-8-hydroxywarfarin in human liver microsomes: a new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab Dispos 1996; 24(5): 610–4PubMed Wienkers LC, Wurden CJ, Storch E, et al. Formation of (R)-8-hydroxywarfarin in human liver microsomes: a new metabolic marker for the (S)-mephenytoin hydroxylase, P4502C19. Drug Metab Dispos 1996; 24(5): 610–4PubMed
86.
go back to reference Toon S, Heimark LD, Trager WF, et al. Metabolic fate of phenprocoumon in humans. J Pharm Sci 1985; 74(10): 1037–40PubMedCrossRef Toon S, Heimark LD, Trager WF, et al. Metabolic fate of phenprocoumon in humans. J Pharm Sci 1985; 74(10): 1037–40PubMedCrossRef
87.
go back to reference He M, Korzekwa KR, Jones JP, et al. Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch Biochem Biophys 1999; 372(1): 16–28PubMedCrossRef He M, Korzekwa KR, Jones JP, et al. Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch Biochem Biophys 1999; 372(1): 16–28PubMedCrossRef
88.
go back to reference Heni N, Glogner P. Pharmacokinetics of phenprocoumon in man investigated using a gas chromatographic method of drug analysis. Naunyn Schmiedebergs Arch Pharmacol 1976; 293(2): 183–6PubMedCrossRef Heni N, Glogner P. Pharmacokinetics of phenprocoumon in man investigated using a gas chromatographic method of drug analysis. Naunyn Schmiedebergs Arch Pharmacol 1976; 293(2): 183–6PubMedCrossRef
89.
go back to reference de Vries JX, Raedsch R, Volker U, et al. Biliary excretion of phenprocoumon and metabolites. Eur J Clin Pharmacol 1988; 35(4): 433–6PubMedCrossRef de Vries JX, Raedsch R, Volker U, et al. Biliary excretion of phenprocoumon and metabolites. Eur J Clin Pharmacol 1988; 35(4): 433–6PubMedCrossRef
90.
go back to reference Heimark LD, Toon S, Gibaldi M, et al. The effect of sulfinpyrazone on the disposition of pseudoracemic phenprocoumon in humans. Clin Pharmacol Ther 1987; 42(3): 312–9PubMedCrossRef Heimark LD, Toon S, Gibaldi M, et al. The effect of sulfinpyrazone on the disposition of pseudoracemic phenprocoumon in humans. Clin Pharmacol Ther 1987; 42(3): 312–9PubMedCrossRef
91.
go back to reference Pohl LR, Haddock RE, Trager WF. Biotransformation of phenprocoumon in the rat. J Med Chem 1975; 18(5): 519–23PubMedCrossRef Pohl LR, Haddock RE, Trager WF. Biotransformation of phenprocoumon in the rat. J Med Chem 1975; 18(5): 519–23PubMedCrossRef
92.
go back to reference Hermans JJ, Thijssen HH. Comparison of the rat liver microsomal metabolism of the enantiomers of warfarin and 4′-nitrowarfarin (acenocoumarol). Xenobiotica 1991; 21(3): 295–307PubMedCrossRef Hermans JJ, Thijssen HH. Comparison of the rat liver microsomal metabolism of the enantiomers of warfarin and 4′-nitrowarfarin (acenocoumarol). Xenobiotica 1991; 21(3): 295–307PubMedCrossRef
93.
go back to reference Hermans JJ, Thijssen HH. Human liver microsomal metabolism of the enantiomers of warfarin and acenocoumarol: P450 isozyme diversity determines the differences in their pharmacokinetics. Br J Pharmacol 1993; 110(1): 482–90PubMedCrossRef Hermans JJ, Thijssen HH. Human liver microsomal metabolism of the enantiomers of warfarin and acenocoumarol: P450 isozyme diversity determines the differences in their pharmacokinetics. Br J Pharmacol 1993; 110(1): 482–90PubMedCrossRef
94.
go back to reference Thijssen HH, Baars LG, Hazen MJ, et al. The role of the intestinal microflora in the reductive metabolism of acenocoumarol in man. Br J Clin Pharmacol 1984; 18(2): 247–9PubMedCrossRef Thijssen HH, Baars LG, Hazen MJ, et al. The role of the intestinal microflora in the reductive metabolism of acenocoumarol in man. Br J Clin Pharmacol 1984; 18(2): 247–9PubMedCrossRef
95.
go back to reference Thijssen HH, Baars LG. The biliary excretion of acenocoumarol in the rat: stereochemical aspects. J Pharm Pharmacol 1987; 39(8): 655–7PubMedCrossRef Thijssen HH, Baars LG. The biliary excretion of acenocoumarol in the rat: stereochemical aspects. J Pharm Pharmacol 1987; 39(8): 655–7PubMedCrossRef
96.
go back to reference Blatrix C, Charonnat S, Tillement JP, et al. Metabolism of a derivative of 4-hydroxy-coumarin: 3 (alfa-acetonyl-p-nitrobenzyl)4-hydroxy-coumarin (Sintrom) in man [in French]. Rev Fr Etud Clin Biol 1968; 13(10): 984–95PubMed Blatrix C, Charonnat S, Tillement JP, et al. Metabolism of a derivative of 4-hydroxy-coumarin: 3 (alfa-acetonyl-p-nitrobenzyl)4-hydroxy-coumarin (Sintrom) in man [in French]. Rev Fr Etud Clin Biol 1968; 13(10): 984–95PubMed
97.
go back to reference Thijssen HH, Baars LG, Reijnders MJ. Acenocoumarol and its amino and acetamido metabolites: comparative pharmacokinetics and pharmacodynamics in the rat. J Pharm Pharmacol 1983; 35(12): 793–8PubMedCrossRef Thijssen HH, Baars LG, Reijnders MJ. Acenocoumarol and its amino and acetamido metabolites: comparative pharmacokinetics and pharmacodynamics in the rat. J Pharm Pharmacol 1983; 35(12): 793–8PubMedCrossRef
98.
go back to reference Thijssen HH, Baars LG. Active metabolites of acenocoumarol: do they contribute to the therapeutic effect?. Br J Clin Pharmacol 1983; 16(5): 491–6PubMedCrossRef Thijssen HH, Baars LG. Active metabolites of acenocoumarol: do they contribute to the therapeutic effect?. Br J Clin Pharmacol 1983; 16(5): 491–6PubMedCrossRef
99.
go back to reference Godbillon J, Richard J, Gerardin A, et al. Pharmacokinetics of the enantiomers of acenocoumarol in man. Br J Clin Pharmacol 1981; 12(5): 621–9PubMedCrossRef Godbillon J, Richard J, Gerardin A, et al. Pharmacokinetics of the enantiomers of acenocoumarol in man. Br J Clin Pharmacol 1981; 12(5): 621–9PubMedCrossRef
100.
101.
go back to reference Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 2001; 40(8): 587–603PubMedCrossRef Takahashi H, Echizen H. Pharmacogenetics of warfarin elimination and its clinical implications. Clin Pharmacokinet 2001; 40(8): 587–603PubMedCrossRef
102.
go back to reference Rettie AE, Wienkers LC, Gonzalez FJ, et al. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994; 4(1): 39–42PubMedCrossRef Rettie AE, Wienkers LC, Gonzalez FJ, et al. Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 1994; 4(1): 39–42PubMedCrossRef
103.
go back to reference Haining RL, Hunter AP, Veronese ME, et al. Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 1996; 333(2): 447–58PubMedCrossRef Haining RL, Hunter AP, Veronese ME, et al. Allelic variants of human cytochrome P450 2C9: baculovirus-mediated expression, purification, structural characterization, substrate stereoselectivity, and prochiral selectivity of the wild-type and I359L mutant forms. Arch Biochem Biophys 1996; 333(2): 447–58PubMedCrossRef
104.
go back to reference Yasar U, Eliasson E, Dahl ML, et al. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999; 254(3): 628–31PubMedCrossRef Yasar U, Eliasson E, Dahl ML, et al. Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 1999; 254(3): 628–31PubMedCrossRef
105.
go back to reference Stubbins MJ, Harries LW, Smith G, et al. Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 1996; 6(5): 429–39PubMedCrossRef Stubbins MJ, Harries LW, Smith G, et al. Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 1996; 6(5): 429–39PubMedCrossRef
106.
go back to reference Furuya H, Fernandez-Salguero P, Gregory W, et al. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 1995; 5(6): 389–92PubMedCrossRef Furuya H, Fernandez-Salguero P, Gregory W, et al. Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 1995; 5(6): 389–92PubMedCrossRef
107.
go back to reference Steward DJ, Haining RL, Henne KR, et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997; 7(5): 361–7PubMedCrossRef Steward DJ, Haining RL, Henne KR, et al. Genetic association between sensitivity to warfarin and expression of CYP2C9*3. Pharmacogenetics 1997; 7(5): 361–7PubMedCrossRef
108.
go back to reference Takahashi H, Kashima T, Nomoto S, et al. Comparisons between in-vitro and in-vivo metabolism of (S)-warfarin: catalytic activities of cDNA-expressed CYP2C9, its Leu359 variant and their mixture versus unbound clearance in patients with the corresponding CYP2C9 genotypes. Pharmacogenetics 1998; 8(5): 365–73PubMedCrossRef Takahashi H, Kashima T, Nomoto S, et al. Comparisons between in-vitro and in-vivo metabolism of (S)-warfarin: catalytic activities of cDNA-expressed CYP2C9, its Leu359 variant and their mixture versus unbound clearance in patients with the corresponding CYP2C9 genotypes. Pharmacogenetics 1998; 8(5): 365–73PubMedCrossRef
109.
go back to reference Taube J, Halsall D, Baglin T. Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 2000; 96(5): 1816–9PubMed Taube J, Halsall D, Baglin T. Influence of cytochrome P-450 CYP2C9 polymorphisms on warfarin sensitivity and risk of over-anticoagulation in patients on long-term treatment. Blood 2000; 96(5): 1816–9PubMed
110.
go back to reference Hermida J, Zarza J, Alberca I, et al. Differential effects of 2C9*3 and 2C9*2 variants of cytochrome P-450 CYP2C9 on sensitivity to acenocoumarol. Blood 2002; 99(11): 4237–9PubMedCrossRef Hermida J, Zarza J, Alberca I, et al. Differential effects of 2C9*3 and 2C9*2 variants of cytochrome P-450 CYP2C9 on sensitivity to acenocoumarol. Blood 2002; 99(11): 4237–9PubMedCrossRef
111.
go back to reference Tassies D, Freire C, Pijoan J, et al. Pharmacogenetics of acenocoumarol: cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. Haematologica 2002; 87(11): 1185–91PubMed Tassies D, Freire C, Pijoan J, et al. Pharmacogenetics of acenocoumarol: cytochrome P450 CYP2C9 polymorphisms influence dose requirements and stability of anticoagulation. Haematologica 2002; 87(11): 1185–91PubMed
112.
go back to reference Spreafico M, Peyvandi F, Pizzotti D, et al. Warfarin and acenocoumarol dose requirements according to CYP2C9 genotyping in North-Italian patients. J Thromb Haemost 2003; 1(10): 2252–3PubMedCrossRef Spreafico M, Peyvandi F, Pizzotti D, et al. Warfarin and acenocoumarol dose requirements according to CYP2C9 genotyping in North-Italian patients. J Thromb Haemost 2003; 1(10): 2252–3PubMedCrossRef
113.
go back to reference Morin S, Bodin L, Loriot MA, et al. Pharmacogenetics of acenocoumarol pharmacodynamics. Clin Pharmacol Ther 2004; 75(5): 403–14PubMedCrossRef Morin S, Bodin L, Loriot MA, et al. Pharmacogenetics of acenocoumarol pharmacodynamics. Clin Pharmacol Ther 2004; 75(5): 403–14PubMedCrossRef
114.
go back to reference Schalekamp T, van Geest-Daalderop JH, de Vries-Goldschmeding H, et al. Acenocoumarol stabilization is delayed in CYP2C93 carriers. Clin Pharmacol Ther 2004; 75(5): 394–402PubMedCrossRef Schalekamp T, van Geest-Daalderop JH, de Vries-Goldschmeding H, et al. Acenocoumarol stabilization is delayed in CYP2C93 carriers. Clin Pharmacol Ther 2004; 75(5): 394–402PubMedCrossRef
115.
go back to reference Verstuyft C, Morin S, Robert A, et al. Early acenocoumarol overanticoagulation among cytochrome P450 2C9 poor metabolizers. Pharmacogenetics 2001; 11(8): 735–7PubMedCrossRef Verstuyft C, Morin S, Robert A, et al. Early acenocoumarol overanticoagulation among cytochrome P450 2C9 poor metabolizers. Pharmacogenetics 2001; 11(8): 735–7PubMedCrossRef
116.
go back to reference Andre-Kerneis E, Leroy-Matheron C, Gouault-Heilmann M. Early overanticoagulation with acenocoumarol due to a genetic polymorphism of cytochrome P450 CYP2C9. Blood Coagul Fibrinolysis 2003; 14(8): 761–4PubMedCrossRef Andre-Kerneis E, Leroy-Matheron C, Gouault-Heilmann M. Early overanticoagulation with acenocoumarol due to a genetic polymorphism of cytochrome P450 CYP2C9. Blood Coagul Fibrinolysis 2003; 14(8): 761–4PubMedCrossRef
117.
go back to reference Zarza J. Major bleeding during combined treatment with indomethacin and low doses of acenocoumarol in a homozygous patient for 2C9*3 variant of cytochrome P-450 CYP2C9. Thromb Haemost 2003; 90(1): 161–2PubMed Zarza J. Major bleeding during combined treatment with indomethacin and low doses of acenocoumarol in a homozygous patient for 2C9*3 variant of cytochrome P-450 CYP2C9. Thromb Haemost 2003; 90(1): 161–2PubMed
119.
go back to reference Pattacini C, Manotti C, Pini M, et al. A comparative study on the quality of oral anticoagulant therapy (warfarin versus acenocoumarol). Thromb Haemost 1994; 71(2): 188–91PubMed Pattacini C, Manotti C, Pini M, et al. A comparative study on the quality of oral anticoagulant therapy (warfarin versus acenocoumarol). Thromb Haemost 1994; 71(2): 188–91PubMed
120.
go back to reference Fihn SD, Gadisseur AA, Pasterkamp E, et al. Comparison of control and stability of oral anticoagulant therapy using acenocoumarol versus phenprocoumon. Thromb Haemost 2003; 90(2): 260–6PubMed Fihn SD, Gadisseur AA, Pasterkamp E, et al. Comparison of control and stability of oral anticoagulant therapy using acenocoumarol versus phenprocoumon. Thromb Haemost 2003; 90(2): 260–6PubMed
121.
go back to reference Gadisseur AP, van der Meer FJ, Adriaansen HJ, et al. Therapeutic quality control of oral anticoagulant therapy comparing the short-acting acenocoumarol and the long-acting phenprocoumon. Br J Haematol 2002; 117(4): 940–6PubMedCrossRef Gadisseur AP, van der Meer FJ, Adriaansen HJ, et al. Therapeutic quality control of oral anticoagulant therapy comparing the short-acting acenocoumarol and the long-acting phenprocoumon. Br J Haematol 2002; 117(4): 940–6PubMedCrossRef
122.
go back to reference Penning-van Beest FJ, Rosendaal FR, Grobbee DE, et al. Course of the international normalized ratio in response to oral vitamin K1 in patients overanticoagulated with phenprocoumon. Br J Haematol 1999; 104(2): 241–5PubMedCrossRef Penning-van Beest FJ, Rosendaal FR, Grobbee DE, et al. Course of the international normalized ratio in response to oral vitamin K1 in patients overanticoagulated with phenprocoumon. Br J Haematol 1999; 104(2): 241–5PubMedCrossRef
123.
go back to reference Ufer M, Kammerer Kahlich R, et al. Genetic polymorphisms of cytochrome P450 2C9 causing reduced phenprocoumon (S)-7-hydroxylation in vitro and in vivo. Xenobiotica 2004; 34(9): 847–59PubMedCrossRef Ufer M, Kammerer Kahlich R, et al. Genetic polymorphisms of cytochrome P450 2C9 causing reduced phenprocoumon (S)-7-hydroxylation in vitro and in vivo. Xenobiotica 2004; 34(9): 847–59PubMedCrossRef
124.
go back to reference Hummers-Pradier E, Hess S, Adham IM, et al. Determination of bleeding risk using genetic markers in patients taking phenprocoumon. Eur J Clin Pharmacol 2003; 59(3): 213–9PubMedCrossRef Hummers-Pradier E, Hess S, Adham IM, et al. Determination of bleeding risk using genetic markers in patients taking phenprocoumon. Eur J Clin Pharmacol 2003; 59(3): 213–9PubMedCrossRef
125.
go back to reference Schalekamp T, Oosterhof M, van Meegen E, et al. Effects of cytochrome P450 2C9 polymorphisms on phenprocoumon anticoagulation status. Clin Pharmacol Ther 2004; 76(5): 409–17PubMedCrossRef Schalekamp T, Oosterhof M, van Meegen E, et al. Effects of cytochrome P450 2C9 polymorphisms on phenprocoumon anticoagulation status. Clin Pharmacol Ther 2004; 76(5): 409–17PubMedCrossRef
126.
go back to reference Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002; 287(13): 1690–8PubMedCrossRef Higashi MK, Veenstra DL, Kondo LM, et al. Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 2002; 287(13): 1690–8PubMedCrossRef
127.
go back to reference Harder S, Thurmann P. Clinically important drug interactions with anticoagulants: an update. Clin Pharmacokinet 1996; 30(6): 416–44PubMedCrossRef Harder S, Thurmann P. Clinically important drug interactions with anticoagulants: an update. Clin Pharmacokinet 1996; 30(6): 416–44PubMedCrossRef
128.
go back to reference Freedman MD, Olatidoye AG. Clinically significant drag interactions with the oral anticoagulants. Drag Saf 1994; 10(5): 381–94CrossRef Freedman MD, Olatidoye AG. Clinically significant drag interactions with the oral anticoagulants. Drag Saf 1994; 10(5): 381–94CrossRef
129.
go back to reference Wells PS, Holbrook AM, Crowther NR, et al. Interactions of warfarin with drags and food. Ann Intern Med 1994; 121(9): 676–83PubMed Wells PS, Holbrook AM, Crowther NR, et al. Interactions of warfarin with drags and food. Ann Intern Med 1994; 121(9): 676–83PubMed
130.
go back to reference O’Reilly RA. The binding of sodium warfarin to plasma albumin and its displacement by phenylbutazone. Ann N Y Acad Sci 1973; 226: 293–308PubMedCrossRef O’Reilly RA. The binding of sodium warfarin to plasma albumin and its displacement by phenylbutazone. Ann N Y Acad Sci 1973; 226: 293–308PubMedCrossRef
131.
go back to reference Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45(6): 525–38PubMedCrossRef Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45(6): 525–38PubMedCrossRef
132.
go back to reference Thijssen HH, Baars LG, Janssen GM. Phenylbutazone-hydrox-ycoumarol interactions: effects on steady state disposition, hepatocellular distribution, and biliary excretion of (S)-ace-nocoumarol in rats. Drag Metab Dispos 1988; 16(5): 744–8 Thijssen HH, Baars LG, Janssen GM. Phenylbutazone-hydrox-ycoumarol interactions: effects on steady state disposition, hepatocellular distribution, and biliary excretion of (S)-ace-nocoumarol in rats. Drag Metab Dispos 1988; 16(5): 744–8
133.
go back to reference O’Reilly RA. Phenylbutazone and sulfinpyrazone interaction with oral anticoagulant phenprocoumon. Arch Intern Med 1982; 142(9): 1634–7PubMedCrossRef O’Reilly RA. Phenylbutazone and sulfinpyrazone interaction with oral anticoagulant phenprocoumon. Arch Intern Med 1982; 142(9): 1634–7PubMedCrossRef
134.
go back to reference Schmidt W, Jahnchen E. Interaction of phenylbutazone with racemic phenprocoumon and its enantiomers in rats. J Pharmacokinet Biopharm 1979; 7(6): 643–63PubMed Schmidt W, Jahnchen E. Interaction of phenylbutazone with racemic phenprocoumon and its enantiomers in rats. J Pharmacokinet Biopharm 1979; 7(6): 643–63PubMed
135.
go back to reference Serlin MJ, Challiner M, Park BK, et al. Cimetidine potentiates the anticoagulant effect of warfarin by inhibition of drag metabolism. Biochem Pharmacol 1980; 29(13): 1971–2PubMedCrossRef Serlin MJ, Challiner M, Park BK, et al. Cimetidine potentiates the anticoagulant effect of warfarin by inhibition of drag metabolism. Biochem Pharmacol 1980; 29(13): 1971–2PubMedCrossRef
136.
go back to reference Serlin MJ, Sibeon RG, Mossman S, et al. Cimetidine: interaction with oral anticoagulants in man. Lancet 1979; II(8138): 317–9CrossRef Serlin MJ, Sibeon RG, Mossman S, et al. Cimetidine: interaction with oral anticoagulants in man. Lancet 1979; II(8138): 317–9CrossRef
137.
go back to reference Gill TS, Hopkins KJ, Bottomley J, et al. Cimetidine-nicoumalone interaction in man: stereochemical considerations. Br J Clin Pharmacol 1989; 27(4): 469–74PubMedCrossRef Gill TS, Hopkins KJ, Bottomley J, et al. Cimetidine-nicoumalone interaction in man: stereochemical considerations. Br J Clin Pharmacol 1989; 27(4): 469–74PubMedCrossRef
138.
go back to reference Kroon de Boer A, Hoogkamer JF, et al. Detection of drug interactions with single dose acenocoumarol: new screening method?. Int J Clin Pharmacol Ther Toxicol 1990; 28(8): 355–60 Kroon de Boer A, Hoogkamer JF, et al. Detection of drug interactions with single dose acenocoumarol: new screening method?. Int J Clin Pharmacol Ther Toxicol 1990; 28(8): 355–60
139.
go back to reference Niopas I, Toon S, Aarons L, et al. The effect of Cimetidine on the steady-state pharmacokinetics and pharmacodynamics of warfarin in humans. Eur J Clin Pharmacol 1999; 55(5): 399–404PubMedCrossRef Niopas I, Toon S, Aarons L, et al. The effect of Cimetidine on the steady-state pharmacokinetics and pharmacodynamics of warfarin in humans. Eur J Clin Pharmacol 1999; 55(5): 399–404PubMedCrossRef
140.
go back to reference Harenberg J, Staiger C, de Vries JX, et al. Cimetidine does not increase the anticoagulant effect of phenprocoumon. Br J Clin Pharmacol 1982; 14(2): 292–3PubMedCrossRef Harenberg J, Staiger C, de Vries JX, et al. Cimetidine does not increase the anticoagulant effect of phenprocoumon. Br J Clin Pharmacol 1982; 14(2): 292–3PubMedCrossRef
141.
go back to reference Harenberg J, Zimmermann R, Staiger C, et al. Lack of effect of Cimetidine on action of phenprocoumon. Eur J Clin Pharmacol 1982; 23(4): 365–7PubMedCrossRef Harenberg J, Zimmermann R, Staiger C, et al. Lack of effect of Cimetidine on action of phenprocoumon. Eur J Clin Pharmacol 1982; 23(4): 365–7PubMedCrossRef
142.
go back to reference He M, Kunze KL, Trager WF. Inhibition of (S)-warfarin metabolism by sulfinpyrazone and its metabolites. Drug Metab Dispos 1995; 23(6): 659–63PubMed He M, Kunze KL, Trager WF. Inhibition of (S)-warfarin metabolism by sulfinpyrazone and its metabolites. Drug Metab Dispos 1995; 23(6): 659–63PubMed
143.
go back to reference Eriksson UG, Mandema JW, Karlsson MO, et al. Pharmacokinetics of melagatran and the effect on ex vivo coagulation time in orthopaedic surgery patients receiving subcutaneous melagatran and oral ximelagatran: a population model analysis. Clin Pharmacokinet 2003; 42(7): 687–701PubMedCrossRef Eriksson UG, Mandema JW, Karlsson MO, et al. Pharmacokinetics of melagatran and the effect on ex vivo coagulation time in orthopaedic surgery patients receiving subcutaneous melagatran and oral ximelagatran: a population model analysis. Clin Pharmacokinet 2003; 42(7): 687–701PubMedCrossRef
144.
go back to reference Eriksson UG, Bredberg U, Hoffmann KJ, et al. Absorption, distribution, metabolism, and excretion of ximelagatran, an oral direct thrombin inhibitor, in rats, dogs, and humans. Drug Metab Dispos 2003; 31(3): 294–305PubMedCrossRef Eriksson UG, Bredberg U, Hoffmann KJ, et al. Absorption, distribution, metabolism, and excretion of ximelagatran, an oral direct thrombin inhibitor, in rats, dogs, and humans. Drug Metab Dispos 2003; 31(3): 294–305PubMedCrossRef
145.
go back to reference Eriksson UG, Bredberg U, Gislen K, et al. Pharmacokinetics and pharmacodynamics of ximelagatran, a novel oral direct thrombin inhibitor, in young healthy male subjects. Eur J Clin Pharmacol 2003; 59(1): 35–43PubMed Eriksson UG, Bredberg U, Gislen K, et al. Pharmacokinetics and pharmacodynamics of ximelagatran, a novel oral direct thrombin inhibitor, in young healthy male subjects. Eur J Clin Pharmacol 2003; 59(1): 35–43PubMed
146.
go back to reference Sarich Teng R, Peters GR, et al. No influence of obesity on the pharmacokinetics and pharmacodynamics of melagatran, the active form of the oral direct thrombin inhibitor ximelagatran. Clin Pharmacokinet 2003; 42(5): 485–92CrossRef Sarich Teng R, Peters GR, et al. No influence of obesity on the pharmacokinetics and pharmacodynamics of melagatran, the active form of the oral direct thrombin inhibitor ximelagatran. Clin Pharmacokinet 2003; 42(5): 485–92CrossRef
147.
go back to reference Schutzer KM, Wall U, Lonnerstedt C, et al. Bioequivalence of ximelagatran, an oral direct thrombin inhibitor, as whole or crashed tablets or dissolved formulation. Curr Med Res Opin 2004; 20(3): 325–31PubMedCrossRef Schutzer KM, Wall U, Lonnerstedt C, et al. Bioequivalence of ximelagatran, an oral direct thrombin inhibitor, as whole or crashed tablets or dissolved formulation. Curr Med Res Opin 2004; 20(3): 325–31PubMedCrossRef
148.
go back to reference Gustafsson D, Elg M. The pharmacodynamics and pharmacokinetics of the oral direct thrombin inhibitor ximelagatran and its active metabolite melagatran: a mini-review. Thromb Res 2003; 109(1): S9–15PubMedCrossRef Gustafsson D, Elg M. The pharmacodynamics and pharmacokinetics of the oral direct thrombin inhibitor ximelagatran and its active metabolite melagatran: a mini-review. Thromb Res 2003; 109(1): S9–15PubMedCrossRef
149.
go back to reference Schutzer KM, Wall U, Lonnerstedt C, et al. Bioequivalence of ximelagatran, an oral direct thrombin inhibitor, as whole or crashed tablets or dissolved formulation. Curr Med Res Opin 2004; 20(3): 325–31PubMedCrossRef Schutzer KM, Wall U, Lonnerstedt C, et al. Bioequivalence of ximelagatran, an oral direct thrombin inhibitor, as whole or crashed tablets or dissolved formulation. Curr Med Res Opin 2004; 20(3): 325–31PubMedCrossRef
150.
go back to reference Bredberg E, Andersson Frison L, et al. Ximelagatran, an oral direct thrombin inhibitor, has a low potential for cytochrome P450-mediated drug-drug interactions. Clin Pharmacokinet 2003; 42(8): 765–77PubMedCrossRef Bredberg E, Andersson Frison L, et al. Ximelagatran, an oral direct thrombin inhibitor, has a low potential for cytochrome P450-mediated drug-drug interactions. Clin Pharmacokinet 2003; 42(8): 765–77PubMedCrossRef
151.
go back to reference Johansson LC, Andersson M, Fager G, et al. No influence of ethnic origin on the pharmacokinetics and pharmacodynamics of melagatran following oral administration of ximelagatran, a novel oral direct thrombin inhibitor, to healthy male volunteers. Clin Pharmacokinet 2003; 42(5): 475–84PubMedCrossRef Johansson LC, Andersson M, Fager G, et al. No influence of ethnic origin on the pharmacokinetics and pharmacodynamics of melagatran following oral administration of ximelagatran, a novel oral direct thrombin inhibitor, to healthy male volunteers. Clin Pharmacokinet 2003; 42(5): 475–84PubMedCrossRef
152.
go back to reference Wahlander Eriksson-Lepkowska M, Frison L, et al. No influence of mild-to-moderate hepatic impairment on the pharmacokinetics and pharmacodynamics of ximelagatran, an oral direct thrombin inhibitor. Clin Pharmacokinet 2003; 42(8): 755–64CrossRef Wahlander Eriksson-Lepkowska M, Frison L, et al. No influence of mild-to-moderate hepatic impairment on the pharmacokinetics and pharmacodynamics of ximelagatran, an oral direct thrombin inhibitor. Clin Pharmacokinet 2003; 42(8): 755–64CrossRef
153.
go back to reference Sarich TC, Schutzer KM, Wollbratt M, et al. No pharmacokinetic or pharmacodynamic interaction between digoxin and the oral direct thrombin inhibitor ximelagatran in healthy volunteers. J Clin Pharmacol 2004; 44(8): 935–41PubMedCrossRef Sarich TC, Schutzer KM, Wollbratt M, et al. No pharmacokinetic or pharmacodynamic interaction between digoxin and the oral direct thrombin inhibitor ximelagatran in healthy volunteers. J Clin Pharmacol 2004; 44(8): 935–41PubMedCrossRef
154.
go back to reference Fager G, Cullberg M, Eriksson-Lepkowska M, et al. Pharmacokinetics and pharmacodynamics of melagatran, the active form of the oral direct thrombin inhibitor ximelagatran, are not influenced by acetylsalicylic acid. Eur J Clin Pharmacol 2003; 59(4): 283–9PubMedCrossRef Fager G, Cullberg M, Eriksson-Lepkowska M, et al. Pharmacokinetics and pharmacodynamics of melagatran, the active form of the oral direct thrombin inhibitor ximelagatran, are not influenced by acetylsalicylic acid. Eur J Clin Pharmacol 2003; 59(4): 283–9PubMedCrossRef
155.
go back to reference Sarich TC, Schutzer KM, Dorani H, et al. No pharmacokinetic or pharmacodynamic interaction between atorvastatin and the oral direct thrombin inhibitor ximelagatran. J Clin Pharmacol 2004; 44(8): 928–34PubMedCrossRef Sarich TC, Schutzer KM, Dorani H, et al. No pharmacokinetic or pharmacodynamic interaction between atorvastatin and the oral direct thrombin inhibitor ximelagatran. J Clin Pharmacol 2004; 44(8): 928–34PubMedCrossRef
156.
go back to reference Sarich TC, Johansson S, Schutzer KM, et al. The pharmacokinetics and pharmacodynamics of ximelagatran, an oral direct thrombin inhibitor, are unaffected by a single dose of alcohol. J Clin Pharmacol 2004; 44(4): 388–93PubMedCrossRef Sarich TC, Johansson S, Schutzer KM, et al. The pharmacokinetics and pharmacodynamics of ximelagatran, an oral direct thrombin inhibitor, are unaffected by a single dose of alcohol. J Clin Pharmacol 2004; 44(4): 388–93PubMedCrossRef
157.
go back to reference Teng R, Sarich TC, Eriksson UG, et al. A pharmacokinetic study of the combined administration of amiodarone and ximelagatran, an oral direct thrombin inhibitor. J Clin Pharmacol 2004; 44(9): 1063–71PubMedCrossRef Teng R, Sarich TC, Eriksson UG, et al. A pharmacokinetic study of the combined administration of amiodarone and ximelagatran, an oral direct thrombin inhibitor. J Clin Pharmacol 2004; 44(9): 1063–71PubMedCrossRef
158.
go back to reference Johansson LC, Frison L, Logren U, et al. Influence of age on the pharmacokinetics and pharmacodynamics of ximelagatran, an oral direct thrombin inhibitor. Clin Pharmacokinet 2003; 42(4): 381–92PubMedCrossRef Johansson LC, Frison L, Logren U, et al. Influence of age on the pharmacokinetics and pharmacodynamics of ximelagatran, an oral direct thrombin inhibitor. Clin Pharmacokinet 2003; 42(4): 381–92PubMedCrossRef
159.
go back to reference Eriksson UG, Johansson S, Attman PO, et al. Influence of severe renal impairment on the pharmacokinetics and pharmacodynamics of oral ximelagatran and subcutaneous melagatran. Clin Pharmacokinet 2003; 42(8): 743–53PubMedCrossRef Eriksson UG, Johansson S, Attman PO, et al. Influence of severe renal impairment on the pharmacokinetics and pharmacodynamics of oral ximelagatran and subcutaneous melagatran. Clin Pharmacokinet 2003; 42(8): 743–53PubMedCrossRef
160.
go back to reference Francis CW, Davidson BL, Berkowitz SD, et al. Ximelagatran versus warfarin for the prevention of venous thromboembolism after total knee arthroplasty: a randomized, double-blind trial. Ann Intern Med 2002; 137(8): 648–55PubMed Francis CW, Davidson BL, Berkowitz SD, et al. Ximelagatran versus warfarin for the prevention of venous thromboembolism after total knee arthroplasty: a randomized, double-blind trial. Ann Intern Med 2002; 137(8): 648–55PubMed
161.
go back to reference Francis CW, Berkowitz SD, Comp PC, et al. Comparison of ximelagatran with warfarin for the prevention of venous thromboembolism after total knee replacement. N Engl J Med 2003; 349(18): 1703–12PubMedCrossRef Francis CW, Berkowitz SD, Comp PC, et al. Comparison of ximelagatran with warfarin for the prevention of venous thromboembolism after total knee replacement. N Engl J Med 2003; 349(18): 1703–12PubMedCrossRef
162.
go back to reference Olsson SB, Executive Steering Committee on behalf of the SIIII. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial. Lancet 2003; 362(9397): 1691–8PubMedCrossRef Olsson SB, Executive Steering Committee on behalf of the SIIII. Stroke prevention with the oral direct thrombin inhibitor ximelagatran compared with warfarin in patients with non-valvular atrial fibrillation (SPORTIF III): randomised controlled trial. Lancet 2003; 362(9397): 1691–8PubMedCrossRef
163.
go back to reference Petersen P, Grind M, Adler J, et al. Ximelagatran versus warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: SPORTIF II. A dose-guiding, tolerability, and safety study. J Am Coll Cardiol 2003; 41(9): 1445–51PubMedCrossRef Petersen P, Grind M, Adler J, et al. Ximelagatran versus warfarin for stroke prevention in patients with nonvalvular atrial fibrillation: SPORTIF II. A dose-guiding, tolerability, and safety study. J Am Coll Cardiol 2003; 41(9): 1445–51PubMedCrossRef
164.
go back to reference MacAllister R, Hingorani AD, Casas JP. Ximelagatran or warfarin in atrial fibrillation?. Lancet 2004; 363(9410): 735–6PubMedCrossRef MacAllister R, Hingorani AD, Casas JP. Ximelagatran or warfarin in atrial fibrillation?. Lancet 2004; 363(9410): 735–6PubMedCrossRef
165.
go back to reference Stollberger C, Finsterer J. Ximelagatran or warfarin in atrial fibrillation?. Lancet 2004; 363(9410): 734–5PubMedCrossRef Stollberger C, Finsterer J. Ximelagatran or warfarin in atrial fibrillation?. Lancet 2004; 363(9410): 734–5PubMedCrossRef
166.
go back to reference Eikelboom J, Hankey G. Ximelagatran or warfarin in atrial fibrillation [letter]?. Lancet 2004; 363(9410): 734PubMedCrossRef Eikelboom J, Hankey G. Ximelagatran or warfarin in atrial fibrillation [letter]?. Lancet 2004; 363(9410): 734PubMedCrossRef
167.
go back to reference Eikelboom JW, Hankey GJ. The beginning of the end of warfarin?. Med J Aust 2004; 180(11): 549–51PubMed Eikelboom JW, Hankey GJ. The beginning of the end of warfarin?. Med J Aust 2004; 180(11): 549–51PubMed
168.
go back to reference Cromheecke ME, Levi M, Colly LP, et al. Oral anticoagulation self-management and management by a specialist anticoagulation clinic: a randomised cross-over comparison. Lancet 2000; 356(9224): 97–102PubMedCrossRef Cromheecke ME, Levi M, Colly LP, et al. Oral anticoagulation self-management and management by a specialist anticoagulation clinic: a randomised cross-over comparison. Lancet 2000; 356(9224): 97–102PubMedCrossRef
169.
go back to reference Bastholm Rahmner P, Andersen-Karlsson E, Arnhjort T, et al. Physicians’ perceptions of possibilities and obstacles prior to implementing a computerised drug prescribing support system. Int J Health Care Qual Assur Inc Leadersh Health Serv 2004; 17(4-5): 173–9PubMed Bastholm Rahmner P, Andersen-Karlsson E, Arnhjort T, et al. Physicians’ perceptions of possibilities and obstacles prior to implementing a computerised drug prescribing support system. Int J Health Care Qual Assur Inc Leadersh Health Serv 2004; 17(4-5): 173–9PubMed
170.
go back to reference Ito RK, Demers LM. Pharmacogenomics and pharmacogenetics: future role of molecular diagnostics in the clinical diagnostic laboratory. Clin Chem 2004; 50(9): 1526–7PubMedCrossRef Ito RK, Demers LM. Pharmacogenomics and pharmacogenetics: future role of molecular diagnostics in the clinical diagnostic laboratory. Clin Chem 2004; 50(9): 1526–7PubMedCrossRef
Metadata
Title
Comparative Pharmacokinetics of Vitamin K Antagonists
Warfarin, Phenprocoumon and Acenocoumarol
Author
Dr Mike Ufer
Publication date
01-12-2005
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 12/2005
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200544120-00003

Other articles of this Issue 12/2005

Clinical Pharmacokinetics 12/2005 Go to the issue

Acknowledgments

Acknowledgement