Skip to main content
Top
Published in: Clinical Pharmacokinetics 14/2002

01-12-2002 | Review Articles

Interactions Between Antiretroviral Drugs and Drugs Used for the Therapy of the Metabolic Complications Encountered During HIV Infection

Authors: Carl J. Fichtenbaum, Dr John G. Gerber

Published in: Clinical Pharmacokinetics | Issue 14/2002

Login to get access

Abstract

Treatment of HIV infection with potent combination antiretroviral therapy has resulted in major improvement in overall survival, immune function and the incidence of opportunistic infections. However, HIV infection and treatment has been associated with the development of metabolic complications, including hyperlipidaemia, diabetes mellitus, hypertension, lipodystrophy and osteopenia. Safe pharmacological treatment of these complications requires an understanding of the drug-drug interactions between antiretroviral drugs and the drugs used in the treatment of metabolic complications. Since formal studies of most of these interactions have not been performed, predictions must be based on our understanding of the metabolism of these agents.
All HIV protease inhibitors are metabolised by and inhibit cytochrome P450 (CYP) 3A4. Ritonavir is the most potent inhibitor of CYP3A4. Ritonavir and nelfinavir also induce a host of CYP isoforms as well as some conjugating enzymes. The non-nucleoside reverse transcriptase inhibitor delavirdine potently inhibits CYP3A4, whereas nevirapine and efavirenz are inducers of CYP3A4.
Drug interaction studies have been performed with HIV protease inhibitors and HMG-CoA reductase inhibitors. Coadministration of ritonavir plus saquinavir to HIV-seronegative volunteers resulted in increased exposure to simvastatin acid by 3059%. Atorvastatin exposure increased by 347%, but exposure to active atorvastatin increased by only 79%. Conversely, pravastatin exposure decreased by 50%. Similar results have been obtained with combinations of simvastatin and atorvastatin with other HIV protease inhibitors. Thus, the lactone prodrugs simvastatin and lovastatin should not be used with HIV protease inhibitors. Atorvastatin may be used with caution.
Although there are no formal studies available, calcium channel antagonists and repaglinide may have significant interactions and toxicity when used with HIV protease inhibitors because of their metabolism by CYP3A4. Sulfonylurea drugs utilise mainly CYP2C9 for metabolism, and this isoenzyme may be induced by ritonavir and nelfinavir with a resulting decrease in efficacy of the sulfonyl-urea. Losartan may have increased effect when coadministered with ritonavir and nelfinavir because of the induction of CYP2C9 and the expected increase in formation of the active metabolite, E-3174.
Overall, well-designed drug-drug interaction studies at steady state are needed to determine whether antiretroviral drugs may be safely coadministered with many of the drugs used in the treatment of the metabolic complications of HIV infection.
Literature
1.
go back to reference Palella FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 1998; 338: 853–60PubMed Palella FJ, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. N Engl J Med 1998; 338: 853–60PubMed
2.
go back to reference Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS 1998; 12: F51–8PubMed Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS 1998; 12: F51–8PubMed
3.
go back to reference Carr A, Samaras K, Chisholm DJ, et al. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet 1998; 352: 1881–3 Carr A, Samaras K, Chisholm DJ, et al. Pathogenesis of HIV-1-protease inhibitor-associated peripheral lipodystrophy, hyperlipidaemia, and insulin resistance. Lancet 1998; 352: 1881–3
4.
go back to reference Viraben R, Aquilina C. Indinavir-associated lipodystrophy. AIDS 1998; 12: F37–9PubMed Viraben R, Aquilina C. Indinavir-associated lipodystrophy. AIDS 1998; 12: F37–9PubMed
5.
go back to reference Miller KD, Jones E, Yanovski JA, et al. Visceral abdominal-fat accumulation associated with use of indinavir. Lancet 1998; 351: 871–5PubMed Miller KD, Jones E, Yanovski JA, et al. Visceral abdominal-fat accumulation associated with use of indinavir. Lancet 1998; 351: 871–5PubMed
6.
go back to reference Lo JC, Mulligan K, Tai VW, et al. Buffalo hump in men with HIV-1 infection. Lancet 1998; 351: 867–70PubMed Lo JC, Mulligan K, Tai VW, et al. Buffalo hump in men with HIV-1 infection. Lancet 1998; 351: 867–70PubMed
7.
go back to reference Walli R, Herfort O, Michl GM, et al. Treatment with protease inhibitors associated with peripheral insulin resistance and impaired oral glucose tolerance in HIV-1 infected patients. AIDS 1998; 12: F167–73PubMed Walli R, Herfort O, Michl GM, et al. Treatment with protease inhibitors associated with peripheral insulin resistance and impaired oral glucose tolerance in HIV-1 infected patients. AIDS 1998; 12: F167–73PubMed
8.
go back to reference Yarasheski KE, Tebas P, Sigmund C, et al. Insulin resistance in HIV protease inhibitor-associated diabetes. J Acquir Immune Defic Syndr 1999; 21: 209–16PubMed Yarasheski KE, Tebas P, Sigmund C, et al. Insulin resistance in HIV protease inhibitor-associated diabetes. J Acquir Immune Defic Syndr 1999; 21: 209–16PubMed
9.
go back to reference Carr A, Samaras K, Thorisdottir A, et al. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet 1999; 353: 2093–9PubMed Carr A, Samaras K, Thorisdottir A, et al. Diagnosis, prediction, and natural course of HIV-1 protease-inhibitor-associated lipodystrophy, hyperlipidaemia, and diabetes mellitus: a cohort study. Lancet 1999; 353: 2093–9PubMed
10.
go back to reference Segerer S, Bogner JR, Walli R, et al. Hyperlipidemia under treatment with proteinase inhibitors. Infection 1999; 2: 77–81 Segerer S, Bogner JR, Walli R, et al. Hyperlipidemia under treatment with proteinase inhibitors. Infection 1999; 2: 77–81
11.
go back to reference Danner SA, Carr A, Leonard JM, et al. A short-term study of the safety, pharmacokinetics and efficacy of ritonavir, an inhibitor of HIV-1 protease. N Engl J Med 1995; 333: 1528–33PubMed Danner SA, Carr A, Leonard JM, et al. A short-term study of the safety, pharmacokinetics and efficacy of ritonavir, an inhibitor of HIV-1 protease. N Engl J Med 1995; 333: 1528–33PubMed
12.
go back to reference Behrens G, Dejam A, Schmidt H, et al. Impaired glucose tolerance, beta cell function and lipid metabolism in HIV patients under treatment with protease inhibitors. AIDS 1999; 13: F63–70PubMed Behrens G, Dejam A, Schmidt H, et al. Impaired glucose tolerance, beta cell function and lipid metabolism in HIV patients under treatment with protease inhibitors. AIDS 1999; 13: F63–70PubMed
13.
go back to reference Periard D, Telenti A, Sudre P, et al. Atherogenic dyslipidemia in HIV-infected individuals treated with protease inhibitors. Circulation 1999; 100: 700–5PubMed Periard D, Telenti A, Sudre P, et al. Atherogenic dyslipidemia in HIV-infected individuals treated with protease inhibitors. Circulation 1999; 100: 700–5PubMed
14.
go back to reference Hewitt RG, Thompson IV WM, Chu A, et al. Indinavir, not nelfinavir, is associated with systemic hypertension when compared to no protease inhibitor therapy [abstract 658]. In: Program and Abstracts of the 8th Conference on Retroviruses and Opportunistic Infections; 2001 Feb 4–8; Chicago (IL) Hewitt RG, Thompson IV WM, Chu A, et al. Indinavir, not nelfinavir, is associated with systemic hypertension when compared to no protease inhibitor therapy [abstract 658]. In: Program and Abstracts of the 8th Conference on Retroviruses and Opportunistic Infections; 2001 Feb 4–8; Chicago (IL)
15.
go back to reference Cattelan AM, Trevenzoli M, Sasset L, et al. Indinavir and systemic hypertension. AIDS 2001; 15: 805–7PubMed Cattelan AM, Trevenzoli M, Sasset L, et al. Indinavir and systemic hypertension. AIDS 2001; 15: 805–7PubMed
16.
go back to reference Tebas P, Powderly WG, Claxton S, et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS 2000; 14: F63–7PubMed Tebas P, Powderly WG, Claxton S, et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS 2000; 14: F63–7PubMed
17.
go back to reference Scribner AN, Troia-Cancio PV, Cox BA, et al. Osteonecrosis in HIV: a case-control study. J Acquir Immune Defic Syndr 2000; 25: 19–25PubMed Scribner AN, Troia-Cancio PV, Cox BA, et al. Osteonecrosis in HIV: a case-control study. J Acquir Immune Defic Syndr 2000; 25: 19–25PubMed
18.
go back to reference Panel on Clinical Practices for Treatment of HIV Infection, Department of Health and Human Services and the Henry J Kaiser Family Foundation. Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents; 2002 Feb 4 [online]. Available from URL: http://www.hivatis.org. [Accessed 2002 Sep 16] Panel on Clinical Practices for Treatment of HIV Infection, Department of Health and Human Services and the Henry J Kaiser Family Foundation. Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents; 2002 Feb 4 [online]. Available from URL: http://​www.​hivatis.​org.​ [Accessed 2002 Sep 16]
19.
go back to reference Henry K, Melroe H, Huebusch J, et al. Severe premature coronary artery disease with protease inhibitors [abstract]. Lancet 1998; 351: 1328PubMed Henry K, Melroe H, Huebusch J, et al. Severe premature coronary artery disease with protease inhibitors [abstract]. Lancet 1998; 351: 1328PubMed
20.
go back to reference Flynn TE, Bricker LA. Myocardial infarction in HIV-1 infected men receiving protease inhibitors [letter]. Ann Intern Med 1999; 131: 548PubMed Flynn TE, Bricker LA. Myocardial infarction in HIV-1 infected men receiving protease inhibitors [letter]. Ann Intern Med 1999; 131: 548PubMed
21.
go back to reference Sullivan AK, Nelson MR, Moyle GJ, et al. Coronary artery disease occurring with protease inhibitor therapy. Int J STD AIDS 1998; 11: 711–2 Sullivan AK, Nelson MR, Moyle GJ, et al. Coronary artery disease occurring with protease inhibitor therapy. Int J STD AIDS 1998; 11: 711–2
22.
go back to reference David MH, Hornung R, Fichtenbaum CJ. A case-control study of ischemic cardiovascular disease risk factors in persons with HIV infection and proven coronary artery disease. Clin Infect Dis 2002; 34: 98–102PubMed David MH, Hornung R, Fichtenbaum CJ. A case-control study of ischemic cardiovascular disease risk factors in persons with HIV infection and proven coronary artery disease. Clin Infect Dis 2002; 34: 98–102PubMed
23.
go back to reference Flexner C. HIV protease inhibitors. N Engl J Med 1998; 338: 1281–92PubMed Flexner C. HIV protease inhibitors. N Engl J Med 1998; 338: 1281–92PubMed
24.
go back to reference Erickson DA, Mather G, Trager WF, et al. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos 1999; 27: 1488–95PubMed Erickson DA, Mather G, Trager WF, et al. Characterization of the in vitro biotransformation of the HIV-1 reverse transcriptase inhibitor nevirapine by human hepatic cytochromes P-450. Drug Metab Dispos 1999; 27: 1488–95PubMed
25.
go back to reference Smith PF, DiCenzo R, Morse GD. Clinical pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Clin Pharmacokinet 2001; 40: 893–905PubMed Smith PF, DiCenzo R, Morse GD. Clinical pharmacokinetics of non-nucleoside reverse transcriptase inhibitors. Clin Pharmacokinet 2001; 40: 893–905PubMed
26.
go back to reference Guengerich FP, Gillam EMJ, Martin MV, et al. The importance of cytochrome P450 3A enzymes in drug metabolism. In: Schering Foundation Workshop. Assessment of the use of single cytochrome P450 enzymes in drug research. Berlin: Springer-Verlag, 1994: 161–86 Guengerich FP, Gillam EMJ, Martin MV, et al. The importance of cytochrome P450 3A enzymes in drug metabolism. In: Schering Foundation Workshop. Assessment of the use of single cytochrome P450 enzymes in drug research. Berlin: Springer-Verlag, 1994: 161–86
27.
28.
go back to reference Decker CJ, Laitinen LM, Bridson GW, et al. Metabolism of amprenavir in liver microsomes: role of CYP3A4 inhibition for drug interactions. J Pharm Sci 1998; 87: 803–7PubMed Decker CJ, Laitinen LM, Bridson GW, et al. Metabolism of amprenavir in liver microsomes: role of CYP3A4 inhibition for drug interactions. J Pharm Sci 1998; 87: 803–7PubMed
29.
go back to reference Palkama VJ, Ahonen J, Neuvonen PJ, et al. Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin Pharmacol Ther 1999; 66: 33–9PubMed Palkama VJ, Ahonen J, Neuvonen PJ, et al. Effect of saquinavir on the pharmacokinetics and pharmacodynamics of oral and intravenous midazolam. Clin Pharmacol Ther 1999; 66: 33–9PubMed
30.
go back to reference Hsu A, Granneman GR, Bertz RJ. Ritonavir: clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 1998; 35: 275–91PubMed Hsu A, Granneman GR, Bertz RJ. Ritonavir: clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 1998; 35: 275–91PubMed
31.
go back to reference Frye RF, Bertz RJ, Granneman GR, et al. Effect of ritonavir on CYP1A2, 2C19, and 2E1 activities in vivo [abstract]. Clin Pharmacol Ther 1998; 63: 148 Frye RF, Bertz RJ, Granneman GR, et al. Effect of ritonavir on CYP1A2, 2C19, and 2E1 activities in vivo [abstract]. Clin Pharmacol Ther 1998; 63: 148
32.
go back to reference Bertz RJ, Cao G, Cavanaugh JH, et al. Effect of ritonavir on the pharmacokinetics of desipramine [abstract Mo.B.1201]. XI International Conference on AIDS; 1996 Jul 7–12; Vancouver (BC). Bertz RJ, Cao G, Cavanaugh JH, et al. Effect of ritonavir on the pharmacokinetics of desipramine [abstract Mo.B.1201]. XI International Conference on AIDS; 1996 Jul 7–12; Vancouver (BC).
33.
go back to reference von Moltke LL, Greenblatt DJ, Granda BW, et al. Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors. J Clin Pharmacol 2001; 41: 85–91 von Moltke LL, Greenblatt DJ, Granda BW, et al. Inhibition of human cytochrome P450 isoforms by nonnucleoside reverse transcriptase inhibitors. J Clin Pharmacol 2001; 41: 85–91
34.
go back to reference Fiske WD, Benedek IH, White SJ, et al. Pharmacokinetic interaction between efavirenz and nelfinavir mesylate in healthy volunteers [abstract 349]. Program and Abstracts of the 5th Conference on Retroviruses and Opportunistic Infections; 1998 February 1–5; Chicago (IL) Fiske WD, Benedek IH, White SJ, et al. Pharmacokinetic interaction between efavirenz and nelfinavir mesylate in healthy volunteers [abstract 349]. Program and Abstracts of the 5th Conference on Retroviruses and Opportunistic Infections; 1998 February 1–5; Chicago (IL)
35.
go back to reference Voorman RL, Payne NA, Wienkers LC, et al. Interaction of delavirdine with human liver microsomal cytochrome P450: inhibition of CYP2C9, CYP2C19, and CYP2D6. Drug Metab Dispos 2001; 29: 41–7PubMed Voorman RL, Payne NA, Wienkers LC, et al. Interaction of delavirdine with human liver microsomal cytochrome P450: inhibition of CYP2C9, CYP2C19, and CYP2D6. Drug Metab Dispos 2001; 29: 41–7PubMed
36.
go back to reference Voorman RL, Maio SM, Payne NA, et al. Microsomal metabolism of delavirdine: evidence for mechanism-based inactivation of human cytochrome P450 3A. J Pharmacol Exp Ther 1998; 287: 381–8PubMed Voorman RL, Maio SM, Payne NA, et al. Microsomal metabolism of delavirdine: evidence for mechanism-based inactivation of human cytochrome P450 3A. J Pharmacol Exp Ther 1998; 287: 381–8PubMed
37.
go back to reference Lehmann JM, McKee DD, Watson MA, et al. The human orphan nuclear receptor PXR is activated by compound that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998; 102: 1016–23PubMed Lehmann JM, McKee DD, Watson MA, et al. The human orphan nuclear receptor PXR is activated by compound that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998; 102: 1016–23PubMed
38.
go back to reference Dussault I, Lin M, Hollister K, et al. Peptide mimetic HIV protease inhibitors are ligands for the orphan receptor SXR. J Biol Chem 2001; 36: 33309–12 Dussault I, Lin M, Hollister K, et al. Peptide mimetic HIV protease inhibitors are ligands for the orphan receptor SXR. J Biol Chem 2001; 36: 33309–12
39.
go back to reference Drocourt L, Pascussi JM, Assenat E, et al. Calcium channel modulators of the dihydropyridine family are human pregnane X receptor activators and inducers of CYP3A, CYP2B, and CYP2C in human hepatocytes. Drug Metab Dispos 2001; 29: 1325–31PubMed Drocourt L, Pascussi JM, Assenat E, et al. Calcium channel modulators of the dihydropyridine family are human pregnane X receptor activators and inducers of CYP3A, CYP2B, and CYP2C in human hepatocytes. Drug Metab Dispos 2001; 29: 1325–31PubMed
40.
go back to reference Shibata N, Gao W, Okamoto H, et al. In-vitro and in-vivo pharmacokinetic interactions of amprenavir, an HIV protease inhibitor, with other current HIV protease inhibitors in rats. J Pharm Pharmacol 2002; 54: 221–9PubMed Shibata N, Gao W, Okamoto H, et al. In-vitro and in-vivo pharmacokinetic interactions of amprenavir, an HIV protease inhibitor, with other current HIV protease inhibitors in rats. J Pharm Pharmacol 2002; 54: 221–9PubMed
41.
go back to reference Weaver RJ. Assessment of drug-drug interactions: concepts and approaches. Xenobiotica 2001; 31: 499–538PubMed Weaver RJ. Assessment of drug-drug interactions: concepts and approaches. Xenobiotica 2001; 31: 499–538PubMed
42.
go back to reference von Moltke LL, Greenblatt DJ, Schmider J, et al. In vitro approaches to predicting drug interactions in vivo. Biochem Pharmacol 1998; 55: 113–22 von Moltke LL, Greenblatt DJ, Schmider J, et al. In vitro approaches to predicting drug interactions in vivo. Biochem Pharmacol 1998; 55: 113–22
43.
go back to reference Knopp RH. Drug treatment of lipid disorders. N Engl J Med 1999; 341: 498–511PubMed Knopp RH. Drug treatment of lipid disorders. N Engl J Med 1999; 341: 498–511PubMed
44.
go back to reference Lennernas H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Clin Pharmacokinet 1997; 32: 403–25PubMed Lennernas H, Fager G. Pharmacodynamics and pharmacokinetics of the HMG-CoA reductase inhibitors. Clin Pharmacokinet 1997; 32: 403–25PubMed
45.
go back to reference Everett DW, Chando TJ, Didonato GC, et al. Biotransformation of pravastatin sodium in humans. Drug Metab Dispos 1991; 19: 740–8PubMed Everett DW, Chando TJ, Didonato GC, et al. Biotransformation of pravastatin sodium in humans. Drug Metab Dispos 1991; 19: 740–8PubMed
46.
go back to reference Transon C, Leemann T, Vogt N, et al. In vivo inhibition profile of cytochrome p450tb (CYP2C9) by (±)-fluvastatin. Clin Pharmacol Ther 1995; 58: 412–7PubMed Transon C, Leemann T, Vogt N, et al. In vivo inhibition profile of cytochrome p450tb (CYP2C9) by (±)-fluvastatin. Clin Pharmacol Ther 1995; 58: 412–7PubMed
47.
go back to reference Jacobsen W, Kuhn B, Solder A, et al. Factorization is the critical first step in the disposition of the 3-hydroxy-3methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 2000; 28: 1369–78PubMed Jacobsen W, Kuhn B, Solder A, et al. Factorization is the critical first step in the disposition of the 3-hydroxy-3methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos 2000; 28: 1369–78PubMed
48.
go back to reference Vyas KP, Kari PH, Pitzenberger SM, et al. Biotransformation of lovastatin I: structure elucidation of in vitro and in vivo metabolites in the rat and mouse. Drug Metab Dispos 1990; 18: 203–11PubMed Vyas KP, Kari PH, Pitzenberger SM, et al. Biotransformation of lovastatin I: structure elucidation of in vitro and in vivo metabolites in the rat and mouse. Drug Metab Dispos 1990; 18: 203–11PubMed
49.
go back to reference Jacobsen W, Kirchner G, Hallensleben K, et al. Small intestinal metabolism of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor lovastatin in comparison with pravastatin. J Pharmacol Exp Ther 1999; 291: 131–9PubMed Jacobsen W, Kirchner G, Hallensleben K, et al. Small intestinal metabolism of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor lovastatin in comparison with pravastatin. J Pharmacol Exp Ther 1999; 291: 131–9PubMed
50.
go back to reference Trenton C, Lee Mann T, Dater P. In vitro comparative inhibition profiles of major human drug metabolizing cytochrome P450 isozymes (CYP2C9, CYP2D6, and CYP3A4) by HMG-CoA reductase inhibitors. Eur J Clin Pharm 1996; 50: 209–15 Trenton C, Lee Mann T, Dater P. In vitro comparative inhibition profiles of major human drug metabolizing cytochrome P450 isozymes (CYP2C9, CYP2D6, and CYP3A4) by HMG-CoA reductase inhibitors. Eur J Clin Pharm 1996; 50: 209–15
51.
go back to reference Neuvonen PJ, Saliva KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996; 60: 54–61PubMed Neuvonen PJ, Saliva KM. Itraconazole drastically increases plasma concentrations of lovastatin and lovastatin acid. Clin Pharmacol Ther 1996; 60: 54–61PubMed
52.
go back to reference Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998; 63: 332–41PubMed Neuvonen PJ, Kantola T, Kivisto KT. Simvastatin but not pravastatin is very susceptible to interaction with the CYP3A4 inhibitor itraconazole. Clin Pharmacol Ther 1998; 63: 332–41PubMed
53.
go back to reference Prueksaritanon T, Gorham LM, Ma B, et al. In vitro metabolism of simvastatin in humans: identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 1997; 25: 1191–9 Prueksaritanon T, Gorham LM, Ma B, et al. In vitro metabolism of simvastatin in humans: identification of metabolizing enzymes and effect of the drug on hepatic P450s. Drug Metab Dispos 1997; 25: 1191–9
54.
go back to reference Arnadottir M, Eriksson LO, Thysell H, et al. Plasma concentration profiles of simvastatin 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor activity in kidney transplant recipients with and without ciclosporin. Nephron 1993; 65: 410–3PubMed Arnadottir M, Eriksson LO, Thysell H, et al. Plasma concentration profiles of simvastatin 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase inhibitor activity in kidney transplant recipients with and without ciclosporin. Nephron 1993; 65: 410–3PubMed
55.
go back to reference Kantola T, Kivisto KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998; 64: 58–65PubMed Kantola T, Kivisto KT, Neuvonen PJ. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin Pharmacol Ther 1998; 64: 58–65PubMed
56.
go back to reference Fichtenbaum CJ, Gerber JG, Rosenkranz S, et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG study A5047. AIDS 2002; 16: 569–77PubMed Fichtenbaum CJ, Gerber JG, Rosenkranz S, et al. Pharmacokinetic interactions between protease inhibitors and statins in HIV seronegative volunteers: ACTG study A5047. AIDS 2002; 16: 569–77PubMed
57.
go back to reference Hsyu PH, Schultz-Smith MD, Lillibridge JH, et al. Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother 2001; 45: 3445–50PubMed Hsyu PH, Schultz-Smith MD, Lillibridge JH, et al. Pharmacokinetic interactions between nelfinavir and 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors atorvastatin and simvastatin. Antimicrob Agents Chemother 2001; 45: 3445–50PubMed
58.
go back to reference Carr RA, Andre AK, Bertz RJ, et al. Concomitant administration of ABT-378/ritonavir (ABT-378/r) results in a clinically important pharmacokinetics (PK) interaction with atorvastatin (ATO) but not pravastatin (PRA) [abstract 1644]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto, Canada Carr RA, Andre AK, Bertz RJ, et al. Concomitant administration of ABT-378/ritonavir (ABT-378/r) results in a clinically important pharmacokinetics (PK) interaction with atorvastatin (ATO) but not pravastatin (PRA) [abstract 1644]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto, Canada
59.
go back to reference Martin CM, Hoffman V, Berggren RE. Rhabdomyolysis in a patient receiving simvastatin concurrently with highly active antiretroviral therapy [abstract 1297]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto, Canada Martin CM, Hoffman V, Berggren RE. Rhabdomyolysis in a patient receiving simvastatin concurrently with highly active antiretroviral therapy [abstract 1297]. 40th Interscience Conference on Antimicrobial Agents and Chemotherapy; 2000 Sep 17–20; Toronto, Canada
60.
go back to reference Wong PW, Dillard TA, Kroenke K. Multiple organ toxicity from addition of erythromycin to long-term lovastatin therapy. South Med J 1998; 91: 202–5PubMed Wong PW, Dillard TA, Kroenke K. Multiple organ toxicity from addition of erythromycin to long-term lovastatin therapy. South Med J 1998; 91: 202–5PubMed
61.
go back to reference Schmassmann-Suhijar D, Bullingham R, Gasser R, et al. Rhabdomyolysis due to interaction of simvastatin with mibefradil. Lancet 1998; 351: 1929–30PubMed Schmassmann-Suhijar D, Bullingham R, Gasser R, et al. Rhabdomyolysis due to interaction of simvastatin with mibefradil. Lancet 1998; 351: 1929–30PubMed
62.
go back to reference Jacobson RH, Wang P, Glueck CJ. Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone [letter]. JAMA 1997; 277: 296PubMed Jacobson RH, Wang P, Glueck CJ. Myositis and rhabdomyolysis associated with concurrent use of simvastatin and nefazodone [letter]. JAMA 1997; 277: 296PubMed
63.
go back to reference Horn M. Coadministration of itraconazole with hypolipidemic agents may induce rhabdomyolysis in healthy individuals [letter]. Arch Dermatol 1996; 132: 1254PubMed Horn M. Coadministration of itraconazole with hypolipidemic agents may induce rhabdomyolysis in healthy individuals [letter]. Arch Dermatol 1996; 132: 1254PubMed
64.
go back to reference Lees RS, Lees AM. Rhabdomyolysis from the coadministration of lovastatin and the antifungal agent itraconazole. N Engl J Med 1995; 333: 664–5PubMed Lees RS, Lees AM. Rhabdomyolysis from the coadministration of lovastatin and the antifungal agent itraconazole. N Engl J Med 1995; 333: 664–5PubMed
65.
go back to reference Kivisto KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998; 46: 49–53PubMed Kivisto KT, Kantola T, Neuvonen PJ. Different effects of itraconazole on the pharmacokinetics of fluvastatin and lovastatin. Br J Clin Pharmacol 1998; 46: 49–53PubMed
66.
go back to reference Kantola T, Backman JT, Niemi M, et al. Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. Eur J Clin Pharmacol 2000; 56: 225–9PubMed Kantola T, Backman JT, Niemi M, et al. Effect of fluconazole on plasma fluvastatin and pravastatin concentrations. Eur J Clin Pharmacol 2000; 56: 225–9PubMed
67.
go back to reference Fruchart JC, Brewer HB, Leitersdorf E. Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Am J Cardiol 1998; 81: 912–7PubMed Fruchart JC, Brewer HB, Leitersdorf E. Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease. Fibrate Consensus Group. Am J Cardiol 1998; 81: 912–7PubMed
68.
go back to reference Minnich A, Tian N, Byan L, et al. A potent PPARα agonist stimulates mitochondrial fatty acid β-oxidation in liver and skeletal muscle. Am J Physiol Endocrinol Metab 2001; 280: E270–9PubMed Minnich A, Tian N, Byan L, et al. A potent PPARα agonist stimulates mitochondrial fatty acid β-oxidation in liver and skeletal muscle. Am J Physiol Endocrinol Metab 2001; 280: E270–9PubMed
69.
go back to reference Guay DRP. Micronized fenofibrate: a new fibric acid hypolipidemic agent. Ann Pharmacother 1999; 33: 1083–103PubMed Guay DRP. Micronized fenofibrate: a new fibric acid hypolipidemic agent. Ann Pharmacother 1999; 33: 1083–103PubMed
70.
go back to reference Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45: 525–38PubMed Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998; 45: 525–38PubMed
71.
go back to reference Relling MV, Aoyama T, Gonzales FJ, et al. Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther 1990; 252: 442–7PubMed Relling MV, Aoyama T, Gonzales FJ, et al. Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther 1990; 252: 442–7PubMed
72.
go back to reference Niemi M, Backman JT, Neuvonen M, et al. Effect of fluconazole and fluvoxamine on the pharmacokinetics and pharmacodynamics of glimepiride. Clin Pharmacol Ther 2001; 69: 194–200PubMed Niemi M, Backman JT, Neuvonen M, et al. Effect of fluconazole and fluvoxamine on the pharmacokinetics and pharmacodynamics of glimepiride. Clin Pharmacol Ther 2001; 69: 194–200PubMed
73.
go back to reference Stockley IH. Drug interactions. 5th ed. London: Pharmaceutical Press, 1999: 519 Stockley IH. Drug interactions. 5th ed. London: Pharmaceutical Press, 1999: 519
74.
go back to reference Johnson JF, Dobmeier ME. Symptomatic hypoglycemia secondary to a glipizide-trimethoprim/sulfamethoxazole drug interaction. DCIP 1990; 24: 250–1 Johnson JF, Dobmeier ME. Symptomatic hypoglycemia secondary to a glipizide-trimethoprim/sulfamethoxazole drug interaction. DCIP 1990; 24: 250–1
75.
go back to reference Wing LM, Miners JO. Clotrimoxazole as an inhibitor of oxidative drug metabolism: effect of trimethoprim and sulphamethoxazole separately and combined on tolbutamide disposition. Br J Clin Pharmacol 1985; 20: 482–5PubMed Wing LM, Miners JO. Clotrimoxazole as an inhibitor of oxidative drug metabolism: effect of trimethoprim and sulphamethoxazole separately and combined on tolbutamide disposition. Br J Clin Pharmacol 1985; 20: 482–5PubMed
76.
go back to reference Knoell KR, Young TM, Cousins ES. Potential interaction involving warfarin and ritonavir. Ann Pharmacother 1998; 32: 1299–302PubMed Knoell KR, Young TM, Cousins ES. Potential interaction involving warfarin and ritonavir. Ann Pharmacother 1998; 32: 1299–302PubMed
77.
go back to reference Kunze KL, Wienkers LC, Thummel KE, et al. Warfarinfluconazole: I. inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos 1996; 24: 414–21PubMed Kunze KL, Wienkers LC, Thummel KE, et al. Warfarinfluconazole: I. inhibition of the human cytochrome P450-dependent metabolism of warfarin by fluconazole: in vitro studies. Drug Metab Dispos 1996; 24: 414–21PubMed
78.
go back to reference Guay DRP. Repaglinide, a novel, short-acting hypoglycemic agent for type 2 diabetes mellitus. Pharmacotherapy 1998; 18: 1195–204PubMed Guay DRP. Repaglinide, a novel, short-acting hypoglycemic agent for type 2 diabetes mellitus. Pharmacotherapy 1998; 18: 1195–204PubMed
79.
go back to reference Cully CR, Jarvis B. Repaglinide: a review of its therapeutic use in type 2 diabetes mellitus. Drugs 2001; 61: 1625–60 Cully CR, Jarvis B. Repaglinide: a review of its therapeutic use in type 2 diabetes mellitus. Drugs 2001; 61: 1625–60
80.
go back to reference Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 1996; 30: 359–71PubMed Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet 1996; 30: 359–71PubMed
81.
go back to reference Olefsky JM, Saltiel AR. PPAR gamma and the treatment of insulin resistance. Trends Endocrine Metab 2000; 11: 362–8 Olefsky JM, Saltiel AR. PPAR gamma and the treatment of insulin resistance. Trends Endocrine Metab 2000; 11: 362–8
82.
go back to reference Watkins PB, Whitcomb RW. Hepatic dysfunction associated with troglitazone. N Engl J Med 1998; 338: 916–7PubMed Watkins PB, Whitcomb RW. Hepatic dysfunction associated with troglitazone. N Engl J Med 1998; 338: 916–7PubMed
83.
go back to reference Loi CM, Young M, Randinitis E, et al. Clinical pharmacokinetics of troglitazone. Clin Pharmacokinet 1999; 37: 91–104PubMed Loi CM, Young M, Randinitis E, et al. Clinical pharmacokinetics of troglitazone. Clin Pharmacokinet 1999; 37: 91–104PubMed
84.
go back to reference Sahi J, Hamilton G, Sinz M, et al. Effect of troglitazone on cytochrome P450 enzymes in primary cultures of human and rat hepatocytes. Xenobiotica 2000; 30: 273–84PubMed Sahi J, Hamilton G, Sinz M, et al. Effect of troglitazone on cytochrome P450 enzymes in primary cultures of human and rat hepatocytes. Xenobiotica 2000; 30: 273–84PubMed
85.
go back to reference Ramachandran V, Kostrubsky VE, Komoroski BJ, et al. Troglitazone increases cytochrome P-450 3A protein and activity in primary cultures of human hepatocytes. Drug Metab Dispos 1999; 27: 1194–9PubMed Ramachandran V, Kostrubsky VE, Komoroski BJ, et al. Troglitazone increases cytochrome P-450 3A protein and activity in primary cultures of human hepatocytes. Drug Metab Dispos 1999; 27: 1194–9PubMed
86.
87.
go back to reference Baldwin SJ, Clarke SE, Chenery RJ. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone. Br J Clin Pharmacol 1999; 48: 424–32PubMed Baldwin SJ, Clarke SE, Chenery RJ. Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone. Br J Clin Pharmacol 1999; 48: 424–32PubMed
88.
go back to reference Pioglitazone product information. Physicians Desk Reference 55th Edition. Lincolnshire (IL): Takeda Pharmaceuticals, 2001: 3171–5 Pioglitazone product information. Physicians Desk Reference 55th Edition. Lincolnshire (IL): Takeda Pharmaceuticals, 2001: 3171–5
89.
go back to reference Johnson DL, Qian D, Briggs W, et al. Hypertension (HTN) in HIV patients with metabolic dysregulation [abstract 35]. 7th Conference on Retroviruses and Opportunistic Infections; 2000, San Francisco (CA). Johnson DL, Qian D, Briggs W, et al. Hypertension (HTN) in HIV patients with metabolic dysregulation [abstract 35]. 7th Conference on Retroviruses and Opportunistic Infections; 2000, San Francisco (CA).
90.
go back to reference Prichard BN, Graham BR, Cruickshank JM. New approaches to the uses of beta blocking drugs in hypertension. J Hum Hypertens 2000; 14 Suppl. 1: S63–8PubMed Prichard BN, Graham BR, Cruickshank JM. New approaches to the uses of beta blocking drugs in hypertension. J Hum Hypertens 2000; 14 Suppl. 1: S63–8PubMed
91.
go back to reference McDevitt DG. Comparison of pharmacokinetic properties of beta-adrenoceptor blocking drugs. Eur Heart J 1987; 8 Suppl. M: 9–14PubMed McDevitt DG. Comparison of pharmacokinetic properties of beta-adrenoceptor blocking drugs. Eur Heart J 1987; 8 Suppl. M: 9–14PubMed
92.
go back to reference Sklar J, Johnston GD, Overlie P, et al. The effects of a cardioselective (metoprolol) and a nonselective (propranolol) beta-adrenergic blocker on the response to dynamic exercise in normal men. Circulation 1982; 65: 894–9PubMed Sklar J, Johnston GD, Overlie P, et al. The effects of a cardioselective (metoprolol) and a nonselective (propranolol) beta-adrenergic blocker on the response to dynamic exercise in normal men. Circulation 1982; 65: 894–9PubMed
93.
go back to reference Otton SV, Crewe HK, Lennard MS, et al. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther 1988; 247: 242–7PubMed Otton SV, Crewe HK, Lennard MS, et al. Use of quinidine inhibition to define the role of the sparteine/debrisoquine cytochrome P450 in metoprolol oxidation by human liver microsomes. J Pharmacol Exp Ther 1988; 247: 242–7PubMed
94.
go back to reference Edeki TI, He H, Wood AJ. Pharmacogenetic explanation for excessive beta-blockade following timolol eye drops: potential for oral-ophthalmic drug interaction. JAMA 1995; 274: 1611–3PubMed Edeki TI, He H, Wood AJ. Pharmacogenetic explanation for excessive beta-blockade following timolol eye drops: potential for oral-ophthalmic drug interaction. JAMA 1995; 274: 1611–3PubMed
95.
go back to reference Ward SA, Walle T, Walle UK, et al. Propranolol’s metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin Pharmacol Ther 1989; 45: 72–9PubMed Ward SA, Walle T, Walle UK, et al. Propranolol’s metabolism is determined by both mephenytoin and debrisoquin hydroxylase activities. Clin Pharmacol Ther 1989; 45: 72–9PubMed
96.
go back to reference Masubuchi Y, Hosokawa S, Horie T, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes: the role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos 1994; 22: 909–15PubMed Masubuchi Y, Hosokawa S, Horie T, et al. Cytochrome P450 isozymes involved in propranolol metabolism in human liver microsomes: the role of CYP2D6 as ring-hydroxylase and CYP1A2 as N-desisopropylase. Drug Metab Dispos 1994; 22: 909–15PubMed
97.
go back to reference Song JC, White CM. Pharmacologic, pharmacokinetic, and therapeutic differences among angiotensin II receptor antagonists. Pharmacother 2000; 20: 130–9 Song JC, White CM. Pharmacologic, pharmacokinetic, and therapeutic differences among angiotensin II receptor antagonists. Pharmacother 2000; 20: 130–9
98.
go back to reference Timmermans PB. Angiotensin II receptor antagonists: an emerging new class of cardiovascular therapeutics. Hypertens Res 1999; 22: 147–53PubMed Timmermans PB. Angiotensin II receptor antagonists: an emerging new class of cardiovascular therapeutics. Hypertens Res 1999; 22: 147–53PubMed
99.
go back to reference Shusterman NH. Safety and efficacy of eprosartan, a new angiotensin II receptor blocker. Am Heart J 1999; 138: 238–45PubMed Shusterman NH. Safety and efficacy of eprosartan, a new angiotensin II receptor blocker. Am Heart J 1999; 138: 238–45PubMed
100.
go back to reference Israili ZH. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens 2000; 14 Suppl. 1: S73–86PubMed Israili ZH. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens 2000; 14 Suppl. 1: S73–86PubMed
101.
go back to reference Yasar U, Tybring G, Hidestrand M, et al. Role of CYP2C9 polymorphism in losartan oxidation. Drug Metab Dispos 2001; 29: 1051–6PubMed Yasar U, Tybring G, Hidestrand M, et al. Role of CYP2C9 polymorphism in losartan oxidation. Drug Metab Dispos 2001; 29: 1051–6PubMed
102.
go back to reference Goa KL, Wagstaff AJ. Losartan potassium: a review of its pharmacology, clinical efficacy and tolerability in the management of hypertension. Drugs 1996; 51: 820–45PubMed Goa KL, Wagstaff AJ. Losartan potassium: a review of its pharmacology, clinical efficacy and tolerability in the management of hypertension. Drugs 1996; 51: 820–45PubMed
103.
go back to reference Kazierad DJ, Martin DE, Blum RA, et al. Effect of fluconazole on the pharmacokinetics of eprosartan and losartan in healthy male volunteers. Clin Pharmacol Ther 1997; 62: 417–25PubMed Kazierad DJ, Martin DE, Blum RA, et al. Effect of fluconazole on the pharmacokinetics of eprosartan and losartan in healthy male volunteers. Clin Pharmacol Ther 1997; 62: 417–25PubMed
104.
go back to reference Kaukonen KM, Olkkola KT, Neuvonen PJ. Fluconazole but not itraconazole decreases the metabolism of losartan to E-3174. Eur J Clin Pharmacol 1998; 53: 445–9PubMed Kaukonen KM, Olkkola KT, Neuvonen PJ. Fluconazole but not itraconazole decreases the metabolism of losartan to E-3174. Eur J Clin Pharmacol 1998; 53: 445–9PubMed
105.
go back to reference McCrea JB, Cribb A, Rushmore T, et al. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin Pharmacol Ther 1999; 65: 348–52PubMed McCrea JB, Cribb A, Rushmore T, et al. Phenotypic and genotypic investigations of a healthy volunteer deficient in the conversion of losartan to its active metabolite E-3174. Clin Pharmacol Ther 1999; 65: 348–52PubMed
106.
go back to reference Spielberg S, McCrea J, Cribb A, et al. A mutation in CYP2C9 is responsible for decreased metabolism of losartan [abstract]. Clin Pharmacol Ther 1996; 59: 215 Spielberg S, McCrea J, Cribb A, et al. A mutation in CYP2C9 is responsible for decreased metabolism of losartan [abstract]. Clin Pharmacol Ther 1996; 59: 215
107.
go back to reference Abernathy DR, Schwartz JB. Calcium-antagonist drugs. N Engl J Med 1999; 341: 1447–57 Abernathy DR, Schwartz JB. Calcium-antagonist drugs. N Engl J Med 1999; 341: 1447–57
108.
go back to reference Guengerich FP, Bnan WR, Iwasaki M, et al. Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J Med Chem 1991; 34: 1838–44PubMed Guengerich FP, Bnan WR, Iwasaki M, et al. Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 IIIA4. J Med Chem 1991; 34: 1838–44PubMed
109.
go back to reference Pichard L, Gillett G, Fabre I, et al. Identification of the rabbit and human cytochrome P-450IIIA as the major enzymes involved in the N-demethylation of diltiazem. Drug Metab Dispos 1990; 18: 711–9PubMed Pichard L, Gillett G, Fabre I, et al. Identification of the rabbit and human cytochrome P-450IIIA as the major enzymes involved in the N-demethylation of diltiazem. Drug Metab Dispos 1990; 18: 711–9PubMed
110.
go back to reference Kroemer HK, Gautier J-C, Beaune P, et al. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1993; 348: 332–7PubMed Kroemer HK, Gautier J-C, Beaune P, et al. Identification of P450 enzymes involved in metabolism of verapamil in humans. Naunyn Schmiedebergs Arch Pharmacol 1993; 348: 332–7PubMed
111.
go back to reference Klein HO, Lang R, Weiss E, et al. The influence of verapamil on serum digoxin concentration. Circulation 1982; 65: 998–1003PubMed Klein HO, Lang R, Weiss E, et al. The influence of verapamil on serum digoxin concentration. Circulation 1982; 65: 998–1003PubMed
112.
go back to reference Jones DR, Gorski JC, Hamman MA, et al. Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther 1999; 290: 1116–25PubMed Jones DR, Gorski JC, Hamman MA, et al. Diltiazem inhibition of cytochrome P-450 3A activity is due to metabolite intermediate complex formation. J Pharmacol Exp Ther 1999; 290: 1116–25PubMed
113.
go back to reference Lundahl J, Regardh CG, Edgar B, et al. Effects of grapefruit juice ingestion: pharmacokinetics and haemodynamics of intravenously and orally administered felodipine in healthy men. Eur J Clin Pharmacol 1997; 52: 139–45PubMed Lundahl J, Regardh CG, Edgar B, et al. Effects of grapefruit juice ingestion: pharmacokinetics and haemodynamics of intravenously and orally administered felodipine in healthy men. Eur J Clin Pharmacol 1997; 52: 139–45PubMed
114.
go back to reference Takanaga H, Ohnishi A, Murakami H, et al. Relationship between time after intake of grapefruit juice and the effect on pharmacokinetics and pharmacodynamics of nisoldipine in healthy subjects. Clin Pharmacol Ther 2000; 67: 201–14PubMed Takanaga H, Ohnishi A, Murakami H, et al. Relationship between time after intake of grapefruit juice and the effect on pharmacokinetics and pharmacodynamics of nisoldipine in healthy subjects. Clin Pharmacol Ther 2000; 67: 201–14PubMed
115.
go back to reference Uno T, Ohkubo T, Sugawara K, et al. Effects of grapefruit juice on the stereoselective disposition of nicardipine in humans: evidence for dominant presystemic elimination at the gut site. Eur J Clin Pharmacol 2000; 56: 643–9PubMed Uno T, Ohkubo T, Sugawara K, et al. Effects of grapefruit juice on the stereoselective disposition of nicardipine in humans: evidence for dominant presystemic elimination at the gut site. Eur J Clin Pharmacol 2000; 56: 643–9PubMed
116.
go back to reference Vincent J, Harris SI, Foulds G, et al. Lack of effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of amlodipine. Br J Clin Pharmacol 2000; 50: 455–63PubMed Vincent J, Harris SI, Foulds G, et al. Lack of effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of amlodipine. Br J Clin Pharmacol 2000; 50: 455–63PubMed
117.
go back to reference Heinig R, Adelmann HG, Ahr G. The effect of ketoconazole on the pharmacokinetics, pharmacodynamics and safety of nisoldipine. Eur J Clin Pharmacol 1999; 55: 57–60PubMed Heinig R, Adelmann HG, Ahr G. The effect of ketoconazole on the pharmacokinetics, pharmacodynamics and safety of nisoldipine. Eur J Clin Pharmacol 1999; 55: 57–60PubMed
118.
go back to reference Jalava K-M, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997; 61: 410–5PubMed Jalava K-M, Olkkola KT, Neuvonen PJ. Itraconazole greatly increases plasma concentrations and effects of felodipine. Clin Pharmacol Ther 1997; 61: 410–5PubMed
119.
go back to reference Carr A, Miller J, Eisman JA, et al. Osteopenia in HIV-infected men: association with asymptomatic lactic academia and lower weight pre-antiretroviral therapy. AIDS 2001; 15: 703–9PubMed Carr A, Miller J, Eisman JA, et al. Osteopenia in HIV-infected men: association with asymptomatic lactic academia and lower weight pre-antiretroviral therapy. AIDS 2001; 15: 703–9PubMed
120.
go back to reference Watts NB. Treatment of osteoporosis with bisphosphonates. Rheum Dis Clin North Am 2001; 27: 197–214PubMed Watts NB. Treatment of osteoporosis with bisphosphonates. Rheum Dis Clin North Am 2001; 27: 197–214PubMed
121.
go back to reference Porras AG, Holland SD, Gertz BJ. Pharmacokinetics of alendronate. Clin Pharmacokinet 1999; 36: 315–28PubMed Porras AG, Holland SD, Gertz BJ. Pharmacokinetics of alendronate. Clin Pharmacokinet 1999; 36: 315–28PubMed
122.
go back to reference Dunn CJ, Goa KL. Risedronate: a review of its pharmacological properties and clinical use in resorptive bone disease. Drugs 2001; 61: 685–712PubMed Dunn CJ, Goa KL. Risedronate: a review of its pharmacological properties and clinical use in resorptive bone disease. Drugs 2001; 61: 685–712PubMed
123.
go back to reference Snyder KR, Sparano N, Malinowksi JM. Raloxifene hydrochloride. Am J Health Syst Pharm 2000; 57: 1669–75PubMed Snyder KR, Sparano N, Malinowksi JM. Raloxifene hydrochloride. Am J Health Syst Pharm 2000; 57: 1669–75PubMed
124.
go back to reference Ouellet D, Hsu A, Qian J, et al. Effect of ritonavir on the pharmacokinetics of ethinyl estradiol in healthy female volunteers. Br J Clin Pharmacol 1998; 46: 111–6PubMed Ouellet D, Hsu A, Qian J, et al. Effect of ritonavir on the pharmacokinetics of ethinyl estradiol in healthy female volunteers. Br J Clin Pharmacol 1998; 46: 111–6PubMed
Metadata
Title
Interactions Between Antiretroviral Drugs and Drugs Used for the Therapy of the Metabolic Complications Encountered During HIV Infection
Authors
Carl J. Fichtenbaum
Dr John G. Gerber
Publication date
01-12-2002
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 14/2002
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200241140-00004

Other articles of this Issue 14/2002

Clinical Pharmacokinetics 14/2002 Go to the issue