Skip to main content
Top
Published in: Clinical Pharmacokinetics 10/2002

01-08-2002 | Review Article

Enterohepatic Circulation

Physiological, Pharmacokinetic and Clinical Implications

Authors: Dr Michael S. Roberts, Beatrice M. Magnusson, Frank J. Burczynski, Michael Weiss

Published in: Clinical Pharmacokinetics | Issue 10/2002

Login to get access

Abstract

Enterohepatic recycling occurs by biliary excretion and intestinal reabsorption of a solute, sometimes with hepatic conjugation and intestinal deconjugation. Cycling is often associated with multiple peaks and a longer apparent half-life in a plasma concentration-time profile. Factors affecting biliary excretion include drug characteristics (chemical structure, polarity and molecular size), transport across sinusoidal plasma membrane and canniculae membranes, biotransformation and possible reabsorption from intrahepatic bile ductules. Intestinal reabsorption to complete the enterohepatic cycle may depend on hydrolysis of a drug conjugate by gut bacteria. Bioavailability is also affected by the extent of intestinal absorption, gut-wall P-glycoprotein efflux and gut-wall metabolism.
Recently, there has been a considerable increase in our understanding of the role of transporters, of gene expression of intestinal and hepatic enzymes, and of hepatic zonation. Drugs, disease and genetics may result in induced or inhibited activity of transporters and metabolising enzymes. Reduced expression of one transporter, for example hepatic canalicular multidrug resistance-associated protein (MRP) 2, is often associated with enhanced expression of others, for example the usually quiescent basolateral efflux MRP3, to limit hepatic toxicity. In addition, physiologically relevant pharmacokinetic models, which describe enterohepatic recirculation in terms of its determinants (such as sporadic gall bladder emptying), have been developed.
In general, enterohepatic recirculation may prolong the pharmacological effect of certain drugs and drug metabolites. Of particular importance is the potential amplifying effect of enterohepatic variability in defining differences in the bioavailability, apparent volume of distribution and clearance of a given compound. Genetic abnormalities, disease states, orally administered adsorbents and certain coadministered drugs all affect enterohepatic recycling.
Literature
1.
go back to reference Hofmann AF. The enterohepatic circulation of bile acids in man. Adv Intern Med 1976; 21: 501–34PubMed Hofmann AF. The enterohepatic circulation of bile acids in man. Adv Intern Med 1976; 21: 501–34PubMed
2.
go back to reference Plaa GL. Toxic responses of the liver. In: Amdur MO, Doull J, Klaassen CD, editors. Casarett and Doull’s toxicology. New York: Pergamon Press, 1991 Plaa GL. Toxic responses of the liver. In: Amdur MO, Doull J, Klaassen CD, editors. Casarett and Doull’s toxicology. New York: Pergamon Press, 1991
3.
go back to reference Mehendale HM. Hepatotoxicity. In: Haley TJ, Berndt WO, editors. Handbook of toxicology. Washington, DC: Hemisphere, 1987 Mehendale HM. Hepatotoxicity. In: Haley TJ, Berndt WO, editors. Handbook of toxicology. Washington, DC: Hemisphere, 1987
4.
go back to reference Laurent A. Analysis in the rat of 4-hydroxynonenal metabolites excreted in bile: evidence of enterohepatic circulation of these byproducts of lipid peroxidation. Chem Res Toxicol 1999; 12: 887–94PubMedCrossRef Laurent A. Analysis in the rat of 4-hydroxynonenal metabolites excreted in bile: evidence of enterohepatic circulation of these byproducts of lipid peroxidation. Chem Res Toxicol 1999; 12: 887–94PubMedCrossRef
5.
go back to reference Jonsson A, Rydberg T, Sternber G, et al. Pharmacokinetics of glibenclamide and its metabolites in diabetic patients with impaired renal function. Eur J Clin Pharmacol 1998; 53(6): 429–35PubMedCrossRef Jonsson A, Rydberg T, Sternber G, et al. Pharmacokinetics of glibenclamide and its metabolites in diabetic patients with impaired renal function. Eur J Clin Pharmacol 1998; 53(6): 429–35PubMedCrossRef
6.
go back to reference Hellstern A, Hildebrand M, Humpel M, et al. Minimal biliary excretion and enterohepatic recirculation of lormetazepam in man as investigated by a new nasobiliary drainage technique. Int J Clin Pharmacol Ther Toxicol 1990; 28(6): 256–61PubMed Hellstern A, Hildebrand M, Humpel M, et al. Minimal biliary excretion and enterohepatic recirculation of lormetazepam in man as investigated by a new nasobiliary drainage technique. Int J Clin Pharmacol Ther Toxicol 1990; 28(6): 256–61PubMed
7.
go back to reference Melnik G, Schwesinger WH, Teng R, et al. Hepatobiliary elimination of trovafloxacin and metabolites following single oral doses in healthy volunteers. Eur J Clin Microbiol Infect Dis 1998; 17(6): 424–6PubMed Melnik G, Schwesinger WH, Teng R, et al. Hepatobiliary elimination of trovafloxacin and metabolites following single oral doses in healthy volunteers. Eur J Clin Microbiol Infect Dis 1998; 17(6): 424–6PubMed
8.
go back to reference Lenzen R, Bahr A, Eichstadt H, et al. In liver transplantation, T tube bile represents total bile flow: physiological and scintigraphic studies on biliary secretion of organic anions. Liver Transpl Surg 1999; 5(1): 8–15PubMedCrossRef Lenzen R, Bahr A, Eichstadt H, et al. In liver transplantation, T tube bile represents total bile flow: physiological and scintigraphic studies on biliary secretion of organic anions. Liver Transpl Surg 1999; 5(1): 8–15PubMedCrossRef
9.
go back to reference Erlinger S. Review article: new insights into the mechanisms of hepatic transport and bile secretion. J Gastroenterol Hepatol 1996; 11: 575–9PubMedCrossRef Erlinger S. Review article: new insights into the mechanisms of hepatic transport and bile secretion. J Gastroenterol Hepatol 1996; 11: 575–9PubMedCrossRef
10.
go back to reference Klaassen CD, Watkins III JB. Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol Rev 1984; 36: 1–67PubMed Klaassen CD, Watkins III JB. Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol Rev 1984; 36: 1–67PubMed
11.
go back to reference Erlinger S. Bile flow. In: Arias IM, Boyer JL, Fausto N, et al., editors. Liver biology and pathobiology. New York: Raven Press, 1994: 769–86 Erlinger S. Bile flow. In: Arias IM, Boyer JL, Fausto N, et al., editors. Liver biology and pathobiology. New York: Raven Press, 1994: 769–86
12.
go back to reference Roberts S, Ludwig J, Larusso N. The pathobiology of biliary epithelia. Gastroenterology 1997; 112: 269–79PubMedCrossRef Roberts S, Ludwig J, Larusso N. The pathobiology of biliary epithelia. Gastroenterology 1997; 112: 269–79PubMedCrossRef
13.
go back to reference Alpini G, Phillips JO, LaRusso NF. The biology of biliary epithelia. In: Arias IM, Boyer JL, Fausto N, et al., editors. Liver biology and pathobiology. New York: Raven Press, 1994: 623–53 Alpini G, Phillips JO, LaRusso NF. The biology of biliary epithelia. In: Arias IM, Boyer JL, Fausto N, et al., editors. Liver biology and pathobiology. New York: Raven Press, 1994: 623–53
14.
go back to reference Seifter S, Englard S. Energy metabolism. In: Arias IM, Boyer JL, Fausto N, et al., editors. Liver biology and pathobiology. New York: Raven Press, 1994: 323–64 Seifter S, Englard S. Energy metabolism. In: Arias IM, Boyer JL, Fausto N, et al., editors. Liver biology and pathobiology. New York: Raven Press, 1994: 323–64
15.
go back to reference Schaffner F, Popper H. Electron microscopic studies of normal and proliferated bile ductules. Am J Pathol 1961; 38: 393–410PubMed Schaffner F, Popper H. Electron microscopic studies of normal and proliferated bile ductules. Am J Pathol 1961; 38: 393–410PubMed
16.
go back to reference Steiner J, Carruthers J, Kalifat S. The ductular cell reaction of rat liver in extrahepatic cholestasis: I. Proliferated biliary epithelial cells. Exp Mol Pathol 1962; 1: 162–85PubMedCrossRef Steiner J, Carruthers J, Kalifat S. The ductular cell reaction of rat liver in extrahepatic cholestasis: I. Proliferated biliary epithelial cells. Exp Mol Pathol 1962; 1: 162–85PubMedCrossRef
17.
go back to reference Meier PJ. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J Cell Biol 1984; 98: 991–1000PubMedCrossRef Meier PJ. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J Cell Biol 1984; 98: 991–1000PubMedCrossRef
18.
go back to reference Gumbiner B. Structure, biochemistry and assembly of epithelial tight junctions. Am J Physiol 1987; 253: 749–58 Gumbiner B. Structure, biochemistry and assembly of epithelial tight junctions. Am J Physiol 1987; 253: 749–58
19.
go back to reference Coleman R. Biochemistry of bile secretion. Biochem J 1987; 244: 249–61PubMed Coleman R. Biochemistry of bile secretion. Biochem J 1987; 244: 249–61PubMed
20.
go back to reference Phillips MJ, Poucell S, Oda M. Biology of disease: mechanisms of cholestasis. Lab Invest 1986; 54: 593–608PubMed Phillips MJ, Poucell S, Oda M. Biology of disease: mechanisms of cholestasis. Lab Invest 1986; 54: 593–608PubMed
21.
go back to reference Phillips M. Intrahepatic cholestasis as a canalicular motility disorder: evidence using cytochalasin. Lab Invest 1983; 48: 205–11PubMed Phillips M. Intrahepatic cholestasis as a canalicular motility disorder: evidence using cytochalasin. Lab Invest 1983; 48: 205–11PubMed
22.
go back to reference Thompson R, Jansen P. Genetic defects in hepatocanalicular transport. Semin Liver Dis 2000; 20(3): 365–72PubMedCrossRef Thompson R, Jansen P. Genetic defects in hepatocanalicular transport. Semin Liver Dis 2000; 20(3): 365–72PubMedCrossRef
23.
go back to reference Masyuk A. Perfused rat intrahepatic bile ducts secrete and absorb water, solute, and ions. Gastroenterology 2000; 119(6): 1672–80PubMedCrossRef Masyuk A. Perfused rat intrahepatic bile ducts secrete and absorb water, solute, and ions. Gastroenterology 2000; 119(6): 1672–80PubMedCrossRef
24.
go back to reference Marinelli R, Larusso N. Solute and water transport pathways in cholangiocytes. Semin Liver Dis 1996; 16(2): 221–9PubMedCrossRef Marinelli R, Larusso N. Solute and water transport pathways in cholangiocytes. Semin Liver Dis 1996; 16(2): 221–9PubMedCrossRef
25.
go back to reference Dumont M, Uchman S, Erlinger S. Hypercholeresis induced by ursodeoxycholic acid and 7-ketolithocholic acid in the rat: possible role of bicarbonate transport. Gastroenterology 1980; 79: 82–9PubMed Dumont M, Uchman S, Erlinger S. Hypercholeresis induced by ursodeoxycholic acid and 7-ketolithocholic acid in the rat: possible role of bicarbonate transport. Gastroenterology 1980; 79: 82–9PubMed
26.
go back to reference Kitani K, Kanai S. Effect of ursodeoxycholate on the bile flow in the rat. Life Sci 1982; 31: 1973–85PubMedCrossRef Kitani K, Kanai S. Effect of ursodeoxycholate on the bile flow in the rat. Life Sci 1982; 31: 1973–85PubMedCrossRef
27.
go back to reference Kanai S, Kitani K, Sato Y. Bile secretory characteristics of beta-muricholate and its taurine conjugate are similar to those of ursodeoxycholate in the rat. Life Sci 1991; 48: 949–57PubMedCrossRef Kanai S, Kitani K, Sato Y. Bile secretory characteristics of beta-muricholate and its taurine conjugate are similar to those of ursodeoxycholate in the rat. Life Sci 1991; 48: 949–57PubMedCrossRef
28.
go back to reference Sjoqvist F. Fundamentals of clinical pharmacology. In: Speight T, Holford N, editors. Avery’s drug treatment. Auckland: ADIS Press, 1997: 1–73 Sjoqvist F. Fundamentals of clinical pharmacology. In: Speight T, Holford N, editors. Avery’s drug treatment. Auckland: ADIS Press, 1997: 1–73
29.
go back to reference Doherty M, Pang K. First-pass effect: significance of the intestine for absorption and metabolism. Drug Chem Toxicol 1997; 20(4): 329–44PubMedCrossRef Doherty M, Pang K. First-pass effect: significance of the intestine for absorption and metabolism. Drug Chem Toxicol 1997; 20(4): 329–44PubMedCrossRef
30.
go back to reference Yang CY, Dantzig AH, Pidgeon C. Intestinal peptide transport systems and oral drug availability. Pharm Res 1999; 16(9): 1331–43PubMedCrossRef Yang CY, Dantzig AH, Pidgeon C. Intestinal peptide transport systems and oral drug availability. Pharm Res 1999; 16(9): 1331–43PubMedCrossRef
31.
go back to reference Florence A, Attwood D. Physicochemical principles of pharmacy. 2nd ed. Wallington: Macmillan Press, 1988 Florence A, Attwood D. Physicochemical principles of pharmacy. 2nd ed. Wallington: Macmillan Press, 1988
32.
go back to reference Charman WN. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci 1997; 86(3): 269–82PubMedCrossRef Charman WN. Physiochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci 1997; 86(3): 269–82PubMedCrossRef
33.
go back to reference Wu C. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporin. Clin Pharmacol Ther 1995; 58: 492–7PubMedCrossRef Wu C. Differentiation of absorption and first-pass gut and hepatic metabolism in humans: studies with cyclosporin. Clin Pharmacol Ther 1995; 58: 492–7PubMedCrossRef
34.
go back to reference Ilett K, Tee LB, Reeves PT, et al. Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol Ther 1990; 46: 67–93PubMedCrossRef Ilett K, Tee LB, Reeves PT, et al. Metabolism of drugs and other xenobiotics in the gut lumen and wall. Pharmacol Ther 1990; 46: 67–93PubMedCrossRef
35.
go back to reference Hall SD. Molecular and physical mechanisms of first-pass extraction. Drug Metab Dispos 1999; 27(2): 161–6PubMed Hall SD. Molecular and physical mechanisms of first-pass extraction. Drug Metab Dispos 1999; 27(2): 161–6PubMed
36.
37.
go back to reference Roberts MS, Anissimov YG, Weiss M. Commentary: using the convection-dispersion model and transit time density functions in the analysis of organ distribution kinetics. J Pharm Sci 2000; 89(12): 1579–86PubMedCrossRef Roberts MS, Anissimov YG, Weiss M. Commentary: using the convection-dispersion model and transit time density functions in the analysis of organ distribution kinetics. J Pharm Sci 2000; 89(12): 1579–86PubMedCrossRef
38.
go back to reference Iwatsubo T. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther 1997; 73(2): 147–71PubMedCrossRef Iwatsubo T. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther 1997; 73(2): 147–71PubMedCrossRef
39.
go back to reference Izumi T. Pharmacokinetics of troglitazone, an antidiabetic agent: prediction of in vivo stereoselective sulfation and glucuronidation from in vitro data. J Pharmacol Exp Ther 1997; 280(3): 1392–400PubMed Izumi T. Pharmacokinetics of troglitazone, an antidiabetic agent: prediction of in vivo stereoselective sulfation and glucuronidation from in vitro data. J Pharmacol Exp Ther 1997; 280(3): 1392–400PubMed
40.
go back to reference Ueda K. Enantioselective local disposition of semotiadil (R-enantiomer) and levosemotiadil (S-enantiomer) in perfused rat liver. Drug Metab Dispos 1997; 25(3): 281–6PubMed Ueda K. Enantioselective local disposition of semotiadil (R-enantiomer) and levosemotiadil (S-enantiomer) in perfused rat liver. Drug Metab Dispos 1997; 25(3): 281–6PubMed
41.
go back to reference Kamisako T. Recent advances in bilirubin metabolism research: the molecular mechanism of hepatocyte bilirubin transport and its clinical relevance. J Gastroenterol 2000; 35(9): 659–64PubMedCrossRef Kamisako T. Recent advances in bilirubin metabolism research: the molecular mechanism of hepatocyte bilirubin transport and its clinical relevance. J Gastroenterol 2000; 35(9): 659–64PubMedCrossRef
42.
go back to reference Kouzuki H, Suzuki H, Sugiyama Y. Pharmacokinetic study of the hepatobiliary transport of indomethacin. Pharm Res 2000; 17(4): 432–8PubMedCrossRef Kouzuki H, Suzuki H, Sugiyama Y. Pharmacokinetic study of the hepatobiliary transport of indomethacin. Pharm Res 2000; 17(4): 432–8PubMedCrossRef
43.
go back to reference Suzuki H, Sugiyama Y. Transport of drugs across the hepatic sinusoidal membrane: sinusoidal drug influx and efflux in the liver. Semin Liver Dis 2000; 20(3): 251–63PubMedCrossRef Suzuki H, Sugiyama Y. Transport of drugs across the hepatic sinusoidal membrane: sinusoidal drug influx and efflux in the liver. Semin Liver Dis 2000; 20(3): 251–63PubMedCrossRef
44.
go back to reference Proost J, Roggeveld J, Wierda JM, et al. Relationship between chemical structure and physicochemical properties of series of bulky organic cations and their hepatic uptake and biliary excretion rates. J Pharmacol Exp Ther 1997; 282(2): 715–26PubMed Proost J, Roggeveld J, Wierda JM, et al. Relationship between chemical structure and physicochemical properties of series of bulky organic cations and their hepatic uptake and biliary excretion rates. J Pharmacol Exp Ther 1997; 282(2): 715–26PubMed
45.
go back to reference Weisiger R, Fitz J, Scharschmidt B. Hepatic oleate uptake: electrochemical driving forces in the intact rat liver. J Clin Invest 1989; 83: 411–20PubMedCrossRef Weisiger R, Fitz J, Scharschmidt B. Hepatic oleate uptake: electrochemical driving forces in the intact rat liver. J Clin Invest 1989; 83: 411–20PubMedCrossRef
46.
go back to reference Fitz J, Bass N, Weisiger R. Hepatic transport of a fluorescent stearate derivative: electrochemical driving forces in intact rat liver. Am J Physiol 1991; 261: 83–91 Fitz J, Bass N, Weisiger R. Hepatic transport of a fluorescent stearate derivative: electrochemical driving forces in intact rat liver. Am J Physiol 1991; 261: 83–91
47.
go back to reference Weinman S, Graf J, Boyer J. Voltage-driven, taurocholate-dependent secretion in isolated hepatocyte couplets. Am J Physiol 1989; 256: 826–32 Weinman S, Graf J, Boyer J. Voltage-driven, taurocholate-dependent secretion in isolated hepatocyte couplets. Am J Physiol 1989; 256: 826–32
48.
go back to reference Weinman S, Carruth M, Dawson P. Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. J Biol Chem 1998; 273: 34691–5PubMedCrossRef Weinman S, Carruth M, Dawson P. Bile acid uptake via the human apical sodium-bile acid cotransporter is electrogenic. J Biol Chem 1998; 273: 34691–5PubMedCrossRef
49.
go back to reference Smith P, Pritchard J, Miller D. Membrane potential drives organic cation transport into teleost renal proximal tubules. Am J Physiol 1988; 255: 492–9 Smith P, Pritchard J, Miller D. Membrane potential drives organic cation transport into teleost renal proximal tubules. Am J Physiol 1988; 255: 492–9
50.
go back to reference Luxon B, Weisiger R. A new method for quantitating intracellular transport: application to the thyroid hormone 3,5,3′-triiodothyronine. Am J Physiol 1992; 263: 733–41 Luxon B, Weisiger R. A new method for quantitating intracellular transport: application to the thyroid hormone 3,5,3′-triiodothyronine. Am J Physiol 1992; 263: 733–41
51.
go back to reference Luxon BA, Weisiger RA. Sex differences in intracellular fatty acid transport: role of cytoplasmic binding proteins. Am J Physiol 1993; 265: 831–41 Luxon BA, Weisiger RA. Sex differences in intracellular fatty acid transport: role of cytoplasmic binding proteins. Am J Physiol 1993; 265: 831–41
52.
go back to reference Weiss M. Cytoplasmic binding and disposition kinetics of diclofenac in the isolated perfused rat liver. Br J Pharmacol 2000; 130(6): 1331–8PubMedCrossRef Weiss M. Cytoplasmic binding and disposition kinetics of diclofenac in the isolated perfused rat liver. Br J Pharmacol 2000; 130(6): 1331–8PubMedCrossRef
53.
go back to reference Schwab AJ. Transfer of enalaprilat across rat liver cell membranes is barrier limited. Am J Physiol 1990; 258(3 Pt 1): G461–75PubMed Schwab AJ. Transfer of enalaprilat across rat liver cell membranes is barrier limited. Am J Physiol 1990; 258(3 Pt 1): G461–75PubMed
54.
go back to reference Zucker S, Goessling W, Gollan J. Intracellular transport of small hydrophobic compounds by the hepatocyte. Semin Liv Dis 1996; 16: 159–67CrossRef Zucker S, Goessling W, Gollan J. Intracellular transport of small hydrophobic compounds by the hepatocyte. Semin Liv Dis 1996; 16: 159–67CrossRef
55.
go back to reference Stolz A. The role of cytoplasmic proteins in hepatic bile acid transport. Annu Rev Physiol 1989; 51: 161–76PubMedCrossRef Stolz A. The role of cytoplasmic proteins in hepatic bile acid transport. Annu Rev Physiol 1989; 51: 161–76PubMedCrossRef
56.
go back to reference Erlinger S. Do intracellular organelles have any role in transport of bile acids by hepatocytes. J Hepatol 1996; 24 Suppl. 1: 88–93PubMedCrossRef Erlinger S. Do intracellular organelles have any role in transport of bile acids by hepatocytes. J Hepatol 1996; 24 Suppl. 1: 88–93PubMedCrossRef
57.
go back to reference Gregory D. Mechanism of secretion of biliary lipids: role of a microtubular system in hepatocellular transport of biliary lipids in the rat. Gastroenterology 1978; 74: 93–100PubMed Gregory D. Mechanism of secretion of biliary lipids: role of a microtubular system in hepatocellular transport of biliary lipids in the rat. Gastroenterology 1978; 74: 93–100PubMed
58.
go back to reference El-Seaidy A, Mills CO, Elias E, et al. Lack of evidence for vesicle trafficking of fluorescent bile salts in rat hepatocyte couplets. Am J Physiol 1997; 272: 298–309 El-Seaidy A, Mills CO, Elias E, et al. Lack of evidence for vesicle trafficking of fluorescent bile salts in rat hepatocyte couplets. Am J Physiol 1997; 272: 298–309
59.
go back to reference Ishizaki J. Uptake of imipramine in rat liver lysosomes in vitro and its inhibition by basic drugs. J Pharmacol Exp Ther 2000; 294(3): 1088–98PubMed Ishizaki J. Uptake of imipramine in rat liver lysosomes in vitro and its inhibition by basic drugs. J Pharmacol Exp Ther 2000; 294(3): 1088–98PubMed
60.
go back to reference Daniel W, Wojcikowski J. Contribution of lysosomal trapping to the total tissue uptake of psychotropic drugs. Pharmacol Toxicol 1997; 80(2): 62–8PubMedCrossRef Daniel W, Wojcikowski J. Contribution of lysosomal trapping to the total tissue uptake of psychotropic drugs. Pharmacol Toxicol 1997; 80(2): 62–8PubMedCrossRef
61.
go back to reference Hung DY. Structure-hepatic disposition relationships for cationic drugs in isolated perfused rat livers: transmembrane exchange and cytoplasmic binding process. J Pharmacol Exp Ther 2001; 297(2): 780–9PubMed Hung DY. Structure-hepatic disposition relationships for cationic drugs in isolated perfused rat livers: transmembrane exchange and cytoplasmic binding process. J Pharmacol Exp Ther 2001; 297(2): 780–9PubMed
62.
go back to reference Hung D. Cationic drug pharmacokinetics in diseased livers determined by fibrosis index, hepatic protein content, microsomal activity and nature of drug. J Pharmacol Exp Ther 2002; 301(3): 1079–87PubMedCrossRef Hung D. Cationic drug pharmacokinetics in diseased livers determined by fibrosis index, hepatic protein content, microsomal activity and nature of drug. J Pharmacol Exp Ther 2002; 301(3): 1079–87PubMedCrossRef
63.
go back to reference Jakoby WB. Detoxication: conjugation and hydrolysis. In: Arias IM, Boyer JL, Fausto N, et al., editors. Liver biology and pathobiology. New York: Raven Press, 1994: 429–42 Jakoby WB. Detoxication: conjugation and hydrolysis. In: Arias IM, Boyer JL, Fausto N, et al., editors. Liver biology and pathobiology. New York: Raven Press, 1994: 429–42
64.
go back to reference Horkovics-Kovats S. Efficiency of enterohepatic circulation, its determination and influence on drug bioavailability. Drug Res 1999; 49: 805–15 Horkovics-Kovats S. Efficiency of enterohepatic circulation, its determination and influence on drug bioavailability. Drug Res 1999; 49: 805–15
65.
go back to reference Caldwell J. Biological implications of xenobiotic metabolism. In: Arias IM, Jakoby WB, Popper H, editors. The liver: biology and pathobiology. New York: Raven Press, 1988: 355–62. Caldwell J. Biological implications of xenobiotic metabolism. In: Arias IM, Jakoby WB, Popper H, editors. The liver: biology and pathobiology. New York: Raven Press, 1988: 355–62.
66.
go back to reference Mulder GJ, Meerman JHN. The role of extrahepatic and hepatic sulfation and glucuronidation in chemical carcinogenesis: an overview. In: Rydstrom J, Montelius J, Bengtsson M, editors. Extrahepatic drug metabolism and chemical carcinogenesis. Amsterdam: Elsevier Science, 1983: 227–8 Mulder GJ, Meerman JHN. The role of extrahepatic and hepatic sulfation and glucuronidation in chemical carcinogenesis: an overview. In: Rydstrom J, Montelius J, Bengtsson M, editors. Extrahepatic drug metabolism and chemical carcinogenesis. Amsterdam: Elsevier Science, 1983: 227–8
67.
go back to reference Hussain MD. Mechanisms of time-dependent kinetics of diltiazem in the isolated perfused rat liver. Drug Metab Dispos 1993; 22: 36–42 Hussain MD. Mechanisms of time-dependent kinetics of diltiazem in the isolated perfused rat liver. Drug Metab Dispos 1993; 22: 36–42
68.
go back to reference Seitz S, Boelsterli UA. Diclofenac acyl glucuronide, a major biliary metabolite, is directly involved in small intestinal injury in rats. Gastroenterology 1998; 115: 1476–82PubMedCrossRef Seitz S, Boelsterli UA. Diclofenac acyl glucuronide, a major biliary metabolite, is directly involved in small intestinal injury in rats. Gastroenterology 1998; 115: 1476–82PubMedCrossRef
69.
go back to reference Masimirembwa CM, Otter C, Berg M, et al. Heterologous expression and kinetic characterization of human cytochromes P-450: validation of a pharmaceutical tool for drug metabolism research. Drug Metab Dispos 1999; 27(10): 1117–22PubMed Masimirembwa CM, Otter C, Berg M, et al. Heterologous expression and kinetic characterization of human cytochromes P-450: validation of a pharmaceutical tool for drug metabolism research. Drug Metab Dispos 1999; 27(10): 1117–22PubMed
70.
go back to reference de Wildt SN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 1999; 37(6): 485–505PubMedCrossRef de Wildt SN. Cytochrome P450 3A: ontogeny and drug disposition. Clin Pharmacokinet 1999; 37(6): 485–505PubMedCrossRef
71.
go back to reference de Wildt SN. Glucuronidation in humans: pharmacogenetic and developmental aspects. Clin Pharmacokinet 1999; 36(6): 439–52PubMedCrossRef de Wildt SN. Glucuronidation in humans: pharmacogenetic and developmental aspects. Clin Pharmacokinet 1999; 36(6): 439–52PubMedCrossRef
72.
go back to reference Ballinger LN, Cross SE, Roberts MS. Availability and mean transit times of phenol and its metabolites in the isolated perfused rat liver: normal and retrograde studies using tracer concentrations of phenol. J Pharm Pharmacol 1995; 47(11): 949–56PubMedCrossRef Ballinger LN, Cross SE, Roberts MS. Availability and mean transit times of phenol and its metabolites in the isolated perfused rat liver: normal and retrograde studies using tracer concentrations of phenol. J Pharm Pharmacol 1995; 47(11): 949–56PubMedCrossRef
73.
go back to reference Evans AM. Membrane transport as a determinant of the hepatic elimination of drugs and metabolites. Clin Exp Pharmacol Physiol 1996; 23(10–11): 970–4PubMedCrossRef Evans AM. Membrane transport as a determinant of the hepatic elimination of drugs and metabolites. Clin Exp Pharmacol Physiol 1996; 23(10–11): 970–4PubMedCrossRef
74.
go back to reference Oinonen T, Lindros K. Zonation of hepatic cytochrome P-450 expression and regulation. Biochem J 1998; 329: 17–35PubMed Oinonen T, Lindros K. Zonation of hepatic cytochrome P-450 expression and regulation. Biochem J 1998; 329: 17–35PubMed
75.
go back to reference Palmer C. Localization of cytochrome P-450 gene expression in normal and diseased human liver by in situ hybridization of wax-embedded archival material. Hepatology 1992; 16(3): 682–7PubMedCrossRef Palmer C. Localization of cytochrome P-450 gene expression in normal and diseased human liver by in situ hybridization of wax-embedded archival material. Hepatology 1992; 16(3): 682–7PubMedCrossRef
76.
go back to reference McKinnon R, Hall PD, Quattrochi LC, et al. Localization of CYP1A1 and CYP1A2 messenger RNA in normal human liver and in hepatocellular carcinoma by in situ hybridization. Hepatology 1991; 14(5): 848–56PubMedCrossRef McKinnon R, Hall PD, Quattrochi LC, et al. Localization of CYP1A1 and CYP1A2 messenger RNA in normal human liver and in hepatocellular carcinoma by in situ hybridization. Hepatology 1991; 14(5): 848–56PubMedCrossRef
77.
go back to reference Tsutsumi M. The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology 1989; 10(4): 437–46PubMedCrossRef Tsutsumi M. The intralobular distribution of ethanol-inducible P450IIE1 in rat and human liver. Hepatology 1989; 10(4): 437–46PubMedCrossRef
78.
go back to reference Niemela O. Cytochromes P450 2A6, 2E1, and 3A and production of protein-aldehyde adducts in the liver of patients with alcoholic and non-alcoholic liver diseases. J Hepatol 2000; 33(6): 893–901PubMedCrossRef Niemela O. Cytochromes P450 2A6, 2E1, and 3A and production of protein-aldehyde adducts in the liver of patients with alcoholic and non-alcoholic liver diseases. J Hepatol 2000; 33(6): 893–901PubMedCrossRef
79.
go back to reference Schwab AJ, Pang KS. The multiple indicator-dilution method for the study of enzyme heterogeneity in liver: theoretical basis. Drug Metab Dispos 1999; 27(6): 746–55PubMed Schwab AJ, Pang KS. The multiple indicator-dilution method for the study of enzyme heterogeneity in liver: theoretical basis. Drug Metab Dispos 1999; 27(6): 746–55PubMed
81.
go back to reference Kakyo M. Immunohistochemical distribution and functional characterization of an organic anion transporting polypeptide 2 (oatp2). FEBS Lett 1999; 445: 343–6PubMedCrossRef Kakyo M. Immunohistochemical distribution and functional characterization of an organic anion transporting polypeptide 2 (oatp2). FEBS Lett 1999; 445: 343–6PubMedCrossRef
82.
go back to reference Burger H. Different capacities for amino acid transport in periportal and perivenous hepatocytes isolated by digitonin/collagenase perfusion. Hepatology 1989; 9: 22–8PubMedCrossRef Burger H. Different capacities for amino acid transport in periportal and perivenous hepatocytes isolated by digitonin/collagenase perfusion. Hepatology 1989; 9: 22–8PubMedCrossRef
83.
go back to reference Kool M. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci U S A 1999; 96: 6914–9PubMedCrossRef Kool M. MRP3, an organic anion transporter able to transport anti-cancer drugs. Proc Natl Acad Sci U S A 1999; 96: 6914–9PubMedCrossRef
84.
go back to reference Kwon Y, Morris ME. Membrane transport in hepatic clearance of drugs II: zonal distribution patterns of concentration-dependent transport and elimination processes. Pharm Res 1997; 14: 780–5PubMedCrossRef Kwon Y, Morris ME. Membrane transport in hepatic clearance of drugs II: zonal distribution patterns of concentration-dependent transport and elimination processes. Pharm Res 1997; 14: 780–5PubMedCrossRef
85.
go back to reference Mainwaring G. The distribution of theta-class glutathione S-transferases in the liver and lung of mouse, rat and human. Biochem J 1996; 318: 297–303PubMed Mainwaring G. The distribution of theta-class glutathione S-transferases in the liver and lung of mouse, rat and human. Biochem J 1996; 318: 297–303PubMed
86.
go back to reference Meyer-Wentrup F. Membrane localization of the electrogenic cation transporter rOCT1 in rat liver. Biochem Biophys Res Commun 1998; 248: 673–8PubMedCrossRef Meyer-Wentrup F. Membrane localization of the electrogenic cation transporter rOCT1 in rat liver. Biochem Biophys Res Commun 1998; 248: 673–8PubMedCrossRef
87.
go back to reference Moseley R, Jarose S, Permoad P. Hepatic Na+-dicarboxylate cotransport: identification, characterization, and acinar localization. Am J Physiol 1992; 263: G871–9PubMed Moseley R, Jarose S, Permoad P. Hepatic Na+-dicarboxylate cotransport: identification, characterization, and acinar localization. Am J Physiol 1992; 263: G871–9PubMed
88.
go back to reference Pang K. Acinar factors in drug processing: protein binding, futile cycling and cosubstrate. Drug Metab Rev 1995; 27: 325–68PubMedCrossRef Pang K. Acinar factors in drug processing: protein binding, futile cycling and cosubstrate. Drug Metab Rev 1995; 27: 325–68PubMedCrossRef
89.
go back to reference Ploemen J. Ethacrynic acid and its glutathione conjugate as inhibitors of glutathione S-transferases. Xenobiotica 1993; 23: 913–23PubMedCrossRef Ploemen J. Ethacrynic acid and its glutathione conjugate as inhibitors of glutathione S-transferases. Xenobiotica 1993; 23: 913–23PubMedCrossRef
90.
go back to reference Ploemen J, Ommen BV, Bladeren PV. Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate. Biochem Pharmacol 1990; 40: 1631–5PubMedCrossRef Ploemen J, Ommen BV, Bladeren PV. Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate. Biochem Pharmacol 1990; 40: 1631–5PubMedCrossRef
91.
go back to reference Ploemen J. Reversible conjugation of ethacrynic acid with glutathione and human glutathione S-transferase P1-1. Cancer Res 1994; 54: 915–9PubMed Ploemen J. Reversible conjugation of ethacrynic acid with glutathione and human glutathione S-transferase P1-1. Cancer Res 1994; 54: 915–9PubMed
92.
go back to reference Redick J, Jakoby W, Baron J. Immunohistochemical localization of glutathione S-transferases in livers of untreated rats. J Biol Chem 1982; 257: 15200–3PubMed Redick J, Jakoby W, Baron J. Immunohistochemical localization of glutathione S-transferases in livers of untreated rats. J Biol Chem 1982; 257: 15200–3PubMed
93.
go back to reference Saiki H. Zonal distribution of cysteine uptake in the perfused rat liver. J Biol Chem 1992; 267: 192–6PubMed Saiki H. Zonal distribution of cysteine uptake in the perfused rat liver. J Biol Chem 1992; 267: 192–6PubMed
94.
go back to reference Sippel H, Lindros K, Oinonen T. Distribution of glutathione S-transferase isoforms in rat liver after induction by naphthoflavone or 3-methylcholanthrene. Pharmacol Toxicol 1996; 79: 80–6PubMedCrossRef Sippel H, Lindros K, Oinonen T. Distribution of glutathione S-transferase isoforms in rat liver after induction by naphthoflavone or 3-methylcholanthrene. Pharmacol Toxicol 1996; 79: 80–6PubMedCrossRef
95.
go back to reference Stieger B. In situ localization of the hepatocyte Na+/taurocholate cotransporting polypeptide in rat liver. Gastroenterology 1994; 107: 1781–7PubMed Stieger B. In situ localization of the hepatocyte Na+/taurocholate cotransporting polypeptide in rat liver. Gastroenterology 1994; 107: 1781–7PubMed
96.
go back to reference Tal M. Restricted expression of the erythroid/brain glucose transporter isoform to perivenous hepatocytes in rats: modulation by glucose. J Clin Invest 1990; 86: 986–92PubMedCrossRef Tal M. Restricted expression of the erythroid/brain glucose transporter isoform to perivenous hepatocytes in rats: modulation by glucose. J Clin Invest 1990; 86: 986–92PubMedCrossRef
97.
go back to reference Tan E, Tirona R, Pang K. Lack of zonal uptake of estrone sulfate in enriched periportal and perivenous isolated rat hepatocytes. Drug Metab Dispos 1999; 27: 336–41PubMed Tan E, Tirona R, Pang K. Lack of zonal uptake of estrone sulfate in enriched periportal and perivenous isolated rat hepatocytes. Drug Metab Dispos 1999; 27: 336–41PubMed
98.
go back to reference Tirona R, Pang K. Bimolecular glutathione conjugation kinetics of ethacrynic acid in rat liver: in vitro and perfusion studies. J Pharmacol Exp Ther 1999; 290: 1230–41PubMed Tirona R, Pang K. Bimolecular glutathione conjugation kinetics of ethacrynic acid in rat liver: in vitro and perfusion studies. J Pharmacol Exp Ther 1999; 290: 1230–41PubMed
99.
go back to reference Oinonen T. Growth hormone-regulated periportal expression of CYP2C7 in the liver. Biochem Pharmacol 2000; 59(5): 583–9PubMedCrossRef Oinonen T. Growth hormone-regulated periportal expression of CYP2C7 in the liver. Biochem Pharmacol 2000; 59(5): 583–9PubMedCrossRef
100.
go back to reference Saarikoski S. Induction of UDP-glycosyltransferase family 1 genes in rat liver: different patterns of mRNA expression with two inducers, 3-methylcholanthrene and beta-naphthoflavone. Biochem Pharmacol 1998; 56(5): 569–75PubMedCrossRef Saarikoski S. Induction of UDP-glycosyltransferase family 1 genes in rat liver: different patterns of mRNA expression with two inducers, 3-methylcholanthrene and beta-naphthoflavone. Biochem Pharmacol 1998; 56(5): 569–75PubMedCrossRef
101.
go back to reference Gumucio J, Miller D. Functional implications of liver cell heterogeneity. Gastroenterology 1981; 80(2): 393–403PubMed Gumucio J, Miller D. Functional implications of liver cell heterogeneity. Gastroenterology 1981; 80(2): 393–403PubMed
102.
go back to reference Lecureur V. Expression and regulation of hepatic drug and bile acid transporters. Toxicology 2000; 153(1–3): 203–19PubMedCrossRef Lecureur V. Expression and regulation of hepatic drug and bile acid transporters. Toxicology 2000; 153(1–3): 203–19PubMedCrossRef
103.
go back to reference Tirona R. Uptake and glutathione conjugation of ethacrynic acid and efflux of the glutathione adduct by periportal and perivenous rat hepatocytes. J Pharmacol Exp Ther 1999; 291(3): 1210–9PubMed Tirona R. Uptake and glutathione conjugation of ethacrynic acid and efflux of the glutathione adduct by periportal and perivenous rat hepatocytes. J Pharmacol Exp Ther 1999; 291(3): 1210–9PubMed
104.
go back to reference Kwon Y, Kamath A, Morris M. Inhibitors of P-glycoprotein-mediated daunomycin transport in rat liver canalicular membrane vesicles. J Pharm Sci 1996; 85(9): 935–9PubMedCrossRef Kwon Y, Kamath A, Morris M. Inhibitors of P-glycoprotein-mediated daunomycin transport in rat liver canalicular membrane vesicles. J Pharm Sci 1996; 85(9): 935–9PubMedCrossRef
105.
go back to reference Fardel O. Up-regulation of P-glycoprotein expression in rat liver cells by acute doxorubicin treatment. Eur J Biochem 1997; 246(1): 186–92PubMedCrossRef Fardel O. Up-regulation of P-glycoprotein expression in rat liver cells by acute doxorubicin treatment. Eur J Biochem 1997; 246(1): 186–92PubMedCrossRef
106.
go back to reference Alvaro D. The function of alkaline phosphatase in the liver: regulation of intrahepatic biliary epithelium secretory activities in the rat. Hepatology 2000; 32(2): 174–84PubMedCrossRef Alvaro D. The function of alkaline phosphatase in the liver: regulation of intrahepatic biliary epithelium secretory activities in the rat. Hepatology 2000; 32(2): 174–84PubMedCrossRef
107.
go back to reference Hirohashi T. ATP-dependent transport of bile salts by rat multi-drug resistance-associated protein 3 (Mrp3). J Biol Chem 2000; 275(4): 2905–10PubMedCrossRef Hirohashi T. ATP-dependent transport of bile salts by rat multi-drug resistance-associated protein 3 (Mrp3). J Biol Chem 2000; 275(4): 2905–10PubMedCrossRef
108.
go back to reference Milne RW. Comparison of the disposition of hepatically-generated morphine-3-glucuronide and morphine-6-glucuronide in isolated perfused liver from the guinea pig. Pharm Res 1997; 14(8): 1014–8PubMedCrossRef Milne RW. Comparison of the disposition of hepatically-generated morphine-3-glucuronide and morphine-6-glucuronide in isolated perfused liver from the guinea pig. Pharm Res 1997; 14(8): 1014–8PubMedCrossRef
109.
go back to reference Muller M, Roelofsen H, Jansen PL. Secretion of organic anions by hepatocytes: involvement of homologues of the multidrug resistance protein. Semin Liver Dis 1996; 16(2): 211–20PubMedCrossRef Muller M, Roelofsen H, Jansen PL. Secretion of organic anions by hepatocytes: involvement of homologues of the multidrug resistance protein. Semin Liver Dis 1996; 16(2): 211–20PubMedCrossRef
110.
go back to reference Patrick J, Kosoglou T, Stauber KL, et al. Disposition of the selective cholesterol absorption inhibitor ezetimibe in healthy male subjects. Drug Metab Dispos 2002; 30(4): 430–7PubMedCrossRef Patrick J, Kosoglou T, Stauber KL, et al. Disposition of the selective cholesterol absorption inhibitor ezetimibe in healthy male subjects. Drug Metab Dispos 2002; 30(4): 430–7PubMedCrossRef
111.
go back to reference Mikov M. The metabolism of drugs by the gut flora. Eur J Drug Metab Pharmacokinet 1994; 19(3): 201–7PubMedCrossRef Mikov M. The metabolism of drugs by the gut flora. Eur J Drug Metab Pharmacokinet 1994; 19(3): 201–7PubMedCrossRef
112.
go back to reference Hughes RD, Millburn P, Williams RT. Molecular weight as a factor in the excretion of monoquaternary ammonium cations in the bile of the rat, rabbit and guinea pig. Biochem J 1973; 136: 967–78PubMed Hughes RD, Millburn P, Williams RT. Molecular weight as a factor in the excretion of monoquaternary ammonium cations in the bile of the rat, rabbit and guinea pig. Biochem J 1973; 136: 967–78PubMed
113.
go back to reference Levine W. Biliary excretion of drugs and other xenobiotics. Ann Rev Pharmacol Toxicol 1978; 18: 81–96CrossRef Levine W. Biliary excretion of drugs and other xenobiotics. Ann Rev Pharmacol Toxicol 1978; 18: 81–96CrossRef
114.
go back to reference Freedman M, Somberg J. Pharmacology and pharmacokinetics of amiodarone. J Clin Pharmacol 1991; 31(11): 1061–9PubMed Freedman M, Somberg J. Pharmacology and pharmacokinetics of amiodarone. J Clin Pharmacol 1991; 31(11): 1061–9PubMed
115.
go back to reference Vree T, Timmer C. Enterohepatic cycling and pharmacokinetics of oestradiol in postmenopausal women. J Pharm Pharmacol 1998; 50(8): 857–64PubMedCrossRef Vree T, Timmer C. Enterohepatic cycling and pharmacokinetics of oestradiol in postmenopausal women. J Pharm Pharmacol 1998; 50(8): 857–64PubMedCrossRef
116.
go back to reference Morris D. Biliary pharmacokinetics of sulbactam plus ampicillin in humans. Rev Infect Dis 1986; 8: 589–92CrossRef Morris D. Biliary pharmacokinetics of sulbactam plus ampicillin in humans. Rev Infect Dis 1986; 8: 589–92CrossRef
117.
go back to reference Carey MC, Duane WC. Enterohepatic circulation. In: Arias IM, Boyer JL, Fausto N, et al., editors. Liver biology and pathobiology. New York: Raven Press, 1994: 719–67 Carey MC, Duane WC. Enterohepatic circulation. In: Arias IM, Boyer JL, Fausto N, et al., editors. Liver biology and pathobiology. New York: Raven Press, 1994: 719–67
118.
119.
go back to reference Zhang R. A mathematical model of the kinetics and tissue distribution of 2-fluoro-beta-alanine, the major catabolite of 5-fluorouracil. Biochem Pharmacol 1993; 45(10): 2063–9PubMedCrossRef Zhang R. A mathematical model of the kinetics and tissue distribution of 2-fluoro-beta-alanine, the major catabolite of 5-fluorouracil. Biochem Pharmacol 1993; 45(10): 2063–9PubMedCrossRef
120.
go back to reference Brown WR, Grodsky GM, Carbone JV. Intracellular distribution of tritiated bilirubin during hepatic uptake and excretion. Am J Physiol 1964; 159: 23–7 Brown WR, Grodsky GM, Carbone JV. Intracellular distribution of tritiated bilirubin during hepatic uptake and excretion. Am J Physiol 1964; 159: 23–7
121.
go back to reference Watkins JB, Dykstra TP. Alteration in biliary excretory function by streptozotocin-induced diabetes. Drug Metab Dispos 1987; 15: 177–83PubMed Watkins JB, Dykstra TP. Alteration in biliary excretory function by streptozotocin-induced diabetes. Drug Metab Dispos 1987; 15: 177–83PubMed
122.
go back to reference Crosignani A. Clinical pharmacokinetics of therapeutic bile acids. Clin Pharmacokinet 1996; 30: 333–58PubMedCrossRef Crosignani A. Clinical pharmacokinetics of therapeutic bile acids. Clin Pharmacokinet 1996; 30: 333–58PubMedCrossRef
123.
go back to reference Davis T. Pharmacokinetics and pharmacodynamics of gliclazide in Caucasians and australian aborigines with type 2 diabetes. Br J Clin Pharmacol 2000; 49: 223–30PubMedCrossRef Davis T. Pharmacokinetics and pharmacodynamics of gliclazide in Caucasians and australian aborigines with type 2 diabetes. Br J Clin Pharmacol 2000; 49: 223–30PubMedCrossRef
124.
go back to reference Westphal J, Jehl F, Adloff M, et al. Role of intrahepatic protein binding in the hepatobiliary extraction profile of cefixime in humans. Clin Pharmacol Ther 1993; 54(5): 476–84PubMedCrossRef Westphal J, Jehl F, Adloff M, et al. Role of intrahepatic protein binding in the hepatobiliary extraction profile of cefixime in humans. Clin Pharmacol Ther 1993; 54(5): 476–84PubMedCrossRef
125.
go back to reference Dobrinska M. Enterohepatic circulation of drugs. J Clin Pharmacol 1989; 29: 577–80PubMed Dobrinska M. Enterohepatic circulation of drugs. J Clin Pharmacol 1989; 29: 577–80PubMed
126.
go back to reference Strandgarden K. Absorption and disposition including enterohepatic circulation of [14C]roquinimex after oral administration to healthy volunteers. Biopharm Drug Dispos 2000; 21(2): 53–67PubMedCrossRef Strandgarden K. Absorption and disposition including enterohepatic circulation of [14C]roquinimex after oral administration to healthy volunteers. Biopharm Drug Dispos 2000; 21(2): 53–67PubMedCrossRef
127.
go back to reference Brogden RN, Ward A. Ceftriaxone: a reappraisal of its antibacterial activity and pharmacokinetic properties, and an update on its therapeutic use with particular reference on once-daily administration. Drugs 1988; 35: 604–45PubMedCrossRef Brogden RN, Ward A. Ceftriaxone: a reappraisal of its antibacterial activity and pharmacokinetic properties, and an update on its therapeutic use with particular reference on once-daily administration. Drugs 1988; 35: 604–45PubMedCrossRef
128.
go back to reference Walstad R. Pharmacokinetics of ceftazidime in patients with biliary tract disease. Eur J Clin Pharmacol 1986; 31(3): 327–31PubMedCrossRef Walstad R. Pharmacokinetics of ceftazidime in patients with biliary tract disease. Eur J Clin Pharmacol 1986; 31(3): 327–31PubMedCrossRef
129.
go back to reference Kuhn J. Pharmacology of irinotecan. Oncology (Huntingt) 1998; 12(8): 39–42 Kuhn J. Pharmacology of irinotecan. Oncology (Huntingt) 1998; 12(8): 39–42
130.
go back to reference Chaudhary A. Multiple-dose lorazapam kinetics: shuttling of lorazepam glucuronide between the circulation and the gut during day- and night-time dosing intervals in response to feeding. J Pharmacol Exp Ther 1992; 267: 1034–8 Chaudhary A. Multiple-dose lorazapam kinetics: shuttling of lorazepam glucuronide between the circulation and the gut during day- and night-time dosing intervals in response to feeding. J Pharmacol Exp Ther 1992; 267: 1034–8
131.
132.
go back to reference Barriere SL, Flaherty JF. Third-generation cephalosporins: a critical evaluation. Clin Pharm 1984; 3: 351–73PubMed Barriere SL, Flaherty JF. Third-generation cephalosporins: a critical evaluation. Clin Pharm 1984; 3: 351–73PubMed
134.
go back to reference Pentikainen P. Pharmacokinetics of tolfenamic acid: disposition in bile, blood and urine after intravenous administration to man. Eur J Clin Pharmacol 1984; 27(3): 349–54PubMedCrossRef Pentikainen P. Pharmacokinetics of tolfenamic acid: disposition in bile, blood and urine after intravenous administration to man. Eur J Clin Pharmacol 1984; 27(3): 349–54PubMedCrossRef
135.
go back to reference Shipkova M, Armstrong VW, Kuypers D, et al. Effect of cyclosporine withdrawal on mycophenolic acid pharmacokinetics in kidney transplant recipients with deteriorating renal function: preliminary report. Ther Drug Monit 2001; 23(6): 717–21PubMedCrossRef Shipkova M, Armstrong VW, Kuypers D, et al. Effect of cyclosporine withdrawal on mycophenolic acid pharmacokinetics in kidney transplant recipients with deteriorating renal function: preliminary report. Ther Drug Monit 2001; 23(6): 717–21PubMedCrossRef
136.
137.
go back to reference Schmidt L. The effect of selective bowel decontamination on the pharmacokinetics of mycophenolate mofetil in liver transplant recipients. Liver Transpl 2001; 7(8): 739–42PubMedCrossRef Schmidt L. The effect of selective bowel decontamination on the pharmacokinetics of mycophenolate mofetil in liver transplant recipients. Liver Transpl 2001; 7(8): 739–42PubMedCrossRef
138.
go back to reference Johnson A. The kinetic of mycophenolic acid and its glucuronide metabolite in adult kidney transplant recipients. Clin Pharmacol Ther 1999; 66: 492–500PubMedCrossRef Johnson A. The kinetic of mycophenolic acid and its glucuronide metabolite in adult kidney transplant recipients. Clin Pharmacol Ther 1999; 66: 492–500PubMedCrossRef
139.
go back to reference Young M, Lettis S, Eastmond R. Concomitant administration of cholestyramine influences the absorption of troglitazone. Br J Clin Pharmacol 1998; 45: 37–40PubMedCrossRef Young M, Lettis S, Eastmond R. Concomitant administration of cholestyramine influences the absorption of troglitazone. Br J Clin Pharmacol 1998; 45: 37–40PubMedCrossRef
140.
go back to reference O’Dwyer P. Pharmacokinetics of the chemopreventive agent oltipraz and of its metabolite M3 in human subjects after a single oral dose. Clin Cancer Res 2000; 6(12): 4692–6PubMed O’Dwyer P. Pharmacokinetics of the chemopreventive agent oltipraz and of its metabolite M3 in human subjects after a single oral dose. Clin Cancer Res 2000; 6(12): 4692–6PubMed
141.
go back to reference Frimmer M, Ziegler K. The transport of bile acids in liver cells. Biochim Biophys Acta 1988; 947: 75–99PubMedCrossRef Frimmer M, Ziegler K. The transport of bile acids in liver cells. Biochim Biophys Acta 1988; 947: 75–99PubMedCrossRef
143.
go back to reference Meijer DKF. Current concepts on hepatic transport of drugs. Hepatology 1987; 4: 259–68CrossRef Meijer DKF. Current concepts on hepatic transport of drugs. Hepatology 1987; 4: 259–68CrossRef
144.
go back to reference Anwer MS, Hegner D. Effect of Na+ on bile acid uptake by isolated rat hepatocytes. Hoppe-Seylers Z Physiol Chem 1978; 359: 181–92PubMed Anwer MS, Hegner D. Effect of Na+ on bile acid uptake by isolated rat hepatocytes. Hoppe-Seylers Z Physiol Chem 1978; 359: 181–92PubMed
145.
go back to reference Stravitz RT. Induction of sodium-dependent bile acid transporter messenger RNA, protein, and activity in rat ileum by cholic acid. Gastroenterology 1997; 113: 1599–608PubMedCrossRef Stravitz RT. Induction of sodium-dependent bile acid transporter messenger RNA, protein, and activity in rat ileum by cholic acid. Gastroenterology 1997; 113: 1599–608PubMedCrossRef
146.
go back to reference Anwer MS. Influence of side-chain charge on hepatic transport of bile acids and bile acid analogues. Am J Physiol 1985; 249: 479–88 Anwer MS. Influence of side-chain charge on hepatic transport of bile acids and bile acid analogues. Am J Physiol 1985; 249: 479–88
147.
go back to reference Aldini R. Hepatic bile acid uptake: effect of conjugation, hydroxyl and ketogroups, and albumin binding. J Lipid Res 1982; 23: 1167–73PubMed Aldini R. Hepatic bile acid uptake: effect of conjugation, hydroxyl and ketogroups, and albumin binding. J Lipid Res 1982; 23: 1167–73PubMed
148.
go back to reference Roda A. Quantitative aspects of the interaction of bile acids with human serum albumin. J Lipid Res 1982; 23: 490–5PubMed Roda A. Quantitative aspects of the interaction of bile acids with human serum albumin. J Lipid Res 1982; 23: 490–5PubMed
149.
150.
go back to reference O’Maille ER, Richards TG, Short AH. The influence of conjugation of cholic acid on its uptake and secretion: hepatic extraction of taurocholate and cholate in the dog. J Physiol 1987; 189: 337–50 O’Maille ER, Richards TG, Short AH. The influence of conjugation of cholic acid on its uptake and secretion: hepatic extraction of taurocholate and cholate in the dog. J Physiol 1987; 189: 337–50
151.
go back to reference Hoffman NE, Isler JH, Smallwood RA. Hepatic bile acid transport: effect of conjugation and position of hydroxyl groups. Am J Physiol 1975; 229: 298–302PubMed Hoffman NE, Isler JH, Smallwood RA. Hepatic bile acid transport: effect of conjugation and position of hydroxyl groups. Am J Physiol 1975; 229: 298–302PubMed
152.
go back to reference Aldini R. Uptake of bile acids by perfused rat liver: evidence of a structure-activity relationship. Hepatology 1989; 10: 840–5PubMedCrossRef Aldini R. Uptake of bile acids by perfused rat liver: evidence of a structure-activity relationship. Hepatology 1989; 10: 840–5PubMedCrossRef
153.
go back to reference Dyke RWV, Stephens JE, Scharschmidt BF. Bile acid transport in cultured rat hepatocytes. Am J Physiol 1982; 243: 484–92 Dyke RWV, Stephens JE, Scharschmidt BF. Bile acid transport in cultured rat hepatocytes. Am J Physiol 1982; 243: 484–92
154.
go back to reference Habig WH. The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc Natl Acad Sci U S A 1974; 71: 3879–82PubMedCrossRef Habig WH. The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc Natl Acad Sci U S A 1974; 71: 3879–82PubMedCrossRef
155.
go back to reference Levi A, Gatmaitan Z, Arias IM. Two hepatic cytoplasmic fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J Clin Invest 1969; 48: 2156–67PubMedCrossRef Levi A, Gatmaitan Z, Arias IM. Two hepatic cytoplasmic fractions, Y and Z, and their possible role in the hepatic uptake of bilirubin, sulfobromophthalein, and other anions. J Clin Invest 1969; 48: 2156–67PubMedCrossRef
156.
go back to reference Mishkin S, Stein L, Gatmaitan Z. The binding of fatty acids to cytoplasmic proteins: binding to Z protein in liver and other tissues of the rat. Biochem Biophys Res Commun 1972; 47: 997–1003PubMedCrossRef Mishkin S, Stein L, Gatmaitan Z. The binding of fatty acids to cytoplasmic proteins: binding to Z protein in liver and other tissues of the rat. Biochem Biophys Res Commun 1972; 47: 997–1003PubMedCrossRef
157.
go back to reference Hansen P, Thiesen H, Brodersen R. Bilirubin activity: titrimetric and 13C NMR studies. Acta Chem Scand 1979; 33: 281–93CrossRef Hansen P, Thiesen H, Brodersen R. Bilirubin activity: titrimetric and 13C NMR studies. Acta Chem Scand 1979; 33: 281–93CrossRef
158.
go back to reference Brodersen R. Bilirubin: solubility and interaction with albumin and phospholipid. J Biol Chem 1979; 254: 2364–9PubMed Brodersen R. Bilirubin: solubility and interaction with albumin and phospholipid. J Biol Chem 1979; 254: 2364–9PubMed
159.
go back to reference Bonnet R, Davies J, Hursthouse M. Structure of bilirubin. Nature 1976; 262: 326–8CrossRef Bonnet R, Davies J, Hursthouse M. Structure of bilirubin. Nature 1976; 262: 326–8CrossRef
160.
go back to reference Paumgartner G, Reichen J. Kinetics of hepatic uptake of unconjugated bilirubin. Clin Sci Mol Med 1976; 51: 169–76PubMed Paumgartner G, Reichen J. Kinetics of hepatic uptake of unconjugated bilirubin. Clin Sci Mol Med 1976; 51: 169–76PubMed
161.
go back to reference Inoue M. Metabolism and transport of amphiphatic molecules in analbuminemic rats and human subjects. Hepatology 1985; 5: 892–8PubMedCrossRef Inoue M. Metabolism and transport of amphiphatic molecules in analbuminemic rats and human subjects. Hepatology 1985; 5: 892–8PubMedCrossRef
162.
go back to reference Stremmel W. Physicochemical and immunohistological studies of a sulfobromophthalein- and bilirubin-binding protein from rat liverplasma membranes. J Clin Invest 1983; 71: 796–805CrossRef Stremmel W. Physicochemical and immunohistological studies of a sulfobromophthalein- and bilirubin-binding protein from rat liverplasma membranes. J Clin Invest 1983; 71: 796–805CrossRef
163.
go back to reference Stremmel W, Berk PD. Hepatocellular uptake of sulfobromophthalein and bilirubin is selectively inhibited by an antibody to the liver plasma membrane sulfobromophthalein/-bilirubin binding protein. J Clin Invest 1986; 78: 822–6PubMedCrossRef Stremmel W, Berk PD. Hepatocellular uptake of sulfobromophthalein and bilirubin is selectively inhibited by an antibody to the liver plasma membrane sulfobromophthalein/-bilirubin binding protein. J Clin Invest 1986; 78: 822–6PubMedCrossRef
164.
go back to reference Scharschmidt BF, Waggoner JG, Berk PD. Hepatic inorganic anion uptake in the rat. J Clin Invest 1975; 56: 1280–92PubMedCrossRef Scharschmidt BF, Waggoner JG, Berk PD. Hepatic inorganic anion uptake in the rat. J Clin Invest 1975; 56: 1280–92PubMedCrossRef
165.
go back to reference Hunton DB, Bollman JL, Hoffman HN. The plasma removal of indocyanine green and sulfobromophthalein: II. effect of dosage and blocking agents. J Clin Invest 1961; 40: 1648–55PubMedCrossRef Hunton DB, Bollman JL, Hoffman HN. The plasma removal of indocyanine green and sulfobromophthalein: II. effect of dosage and blocking agents. J Clin Invest 1961; 40: 1648–55PubMedCrossRef
166.
go back to reference Goresky CA. Bilirubin and sulfobromophthalein uptake by the liver [abstract]. Gastroenterology 1971; 60: 194 Goresky CA. Bilirubin and sulfobromophthalein uptake by the liver [abstract]. Gastroenterology 1971; 60: 194
167.
go back to reference Berk PD, Potter BJ, Stremmel W. Role of plasma membrane ligand-binding proteins in the hepatocellular uptake of albumin-bound organic anions. Hepatology 1987; 7: 165–76PubMedCrossRef Berk PD, Potter BJ, Stremmel W. Role of plasma membrane ligand-binding proteins in the hepatocellular uptake of albumin-bound organic anions. Hepatology 1987; 7: 165–76PubMedCrossRef
168.
go back to reference Litwack G, Ketterer B, Arias IM. A hepatic protein which binds steroids, bilirubin, carcinogens, and a number of exogenous anions. Nature 1971; 234: 466–7PubMedCrossRef Litwack G, Ketterer B, Arias IM. A hepatic protein which binds steroids, bilirubin, carcinogens, and a number of exogenous anions. Nature 1971; 234: 466–7PubMedCrossRef
169.
go back to reference Davies N, Skjodt N. Choosing the right nonsteroidal anti-inflammatory drug for the right patient: a pharmacokinetic approach. Clin Pharmacokinet 2000; 38(5): 377–92PubMedCrossRef Davies N, Skjodt N. Choosing the right nonsteroidal anti-inflammatory drug for the right patient: a pharmacokinetic approach. Clin Pharmacokinet 2000; 38(5): 377–92PubMedCrossRef
170.
go back to reference Jarvis M. Clinical pharmacokinetics of tricyclic antidepressant overdose. Psychopharmacol Bull 1991; 27(4): 541–50PubMed Jarvis M. Clinical pharmacokinetics of tricyclic antidepressant overdose. Psychopharmacol Bull 1991; 27(4): 541–50PubMed
171.
go back to reference Kumar R. Vitamin D metabolism and mechanisms of calcium transport. J Am Soc Nephrol 1990; 1(1): 30–42PubMed Kumar R. Vitamin D metabolism and mechanisms of calcium transport. J Am Soc Nephrol 1990; 1(1): 30–42PubMed
172.
go back to reference Weiner IM. Organic acids and bases and uric acid. In: Seldin DW, Giebisch GL, editors. The kidney, physiology and pathophysiology. New York: Raven Press, 1985: 1703–24 Weiner IM. Organic acids and bases and uric acid. In: Seldin DW, Giebisch GL, editors. The kidney, physiology and pathophysiology. New York: Raven Press, 1985: 1703–24
173.
go back to reference Lauterbach F. Intestinal secretion of organic ions and drugs. In: Kramer M, editor. Intestinal permeation. Amsterdam: Excerpta Medica, 1977: 173–95 Lauterbach F. Intestinal secretion of organic ions and drugs. In: Kramer M, editor. Intestinal permeation. Amsterdam: Excerpta Medica, 1977: 173–95
174.
go back to reference Suzuki H. Transport of cimetidine by the rat choroid plexus in vitro. J Pharmacol Exp Ther 1986; 239: 927–35PubMed Suzuki H. Transport of cimetidine by the rat choroid plexus in vitro. J Pharmacol Exp Ther 1986; 239: 927–35PubMed
175.
go back to reference Meijer DKF. Carrier-mediated transport of drugs in the hepatic distribution and elimination of drug, with special reference to the category of organic cations. J Pharmacokinet Biopharm 1990; 18: 35–70PubMed Meijer DKF. Carrier-mediated transport of drugs in the hepatic distribution and elimination of drug, with special reference to the category of organic cations. J Pharmacokinet Biopharm 1990; 18: 35–70PubMed
176.
go back to reference Neef C, Meijer DKF. Structure-pharmacokinetics relationship of quaternary ammonium compounds: correlation of physicochemical and pharmacokinetic parameters. Naunyn Schmiedebergs Arch Pharmacol 1984; 328: 111–8PubMedCrossRef Neef C, Meijer DKF. Structure-pharmacokinetics relationship of quaternary ammonium compounds: correlation of physicochemical and pharmacokinetic parameters. Naunyn Schmiedebergs Arch Pharmacol 1984; 328: 111–8PubMedCrossRef
177.
go back to reference Feitsma KG. Unequal disposition of enantiomers of the organic cation oxyphenonium in the rat isolated perfused liver. J Pharm Pharmacol 1989; 41: 27–31PubMedCrossRef Feitsma KG. Unequal disposition of enantiomers of the organic cation oxyphenonium in the rat isolated perfused liver. J Pharm Pharmacol 1989; 41: 27–31PubMedCrossRef
178.
go back to reference Neef C, Oosting R, Meijer DKF. Structure-pharmacokinetics relationship of quaternary ammonium compounds: elimination and distribution characteristics. Naunyn Schmiedebergs Arch Pharmacol 1984; 328: 103–10PubMedCrossRef Neef C, Oosting R, Meijer DKF. Structure-pharmacokinetics relationship of quaternary ammonium compounds: elimination and distribution characteristics. Naunyn Schmiedebergs Arch Pharmacol 1984; 328: 103–10PubMedCrossRef
179.
go back to reference Hughes RD, Millburn P, Williams RT. Biliary excretion of some diquaternary ammonium cations in the rat, guinea pig and rabbit. Biochem J 1973; 136: 979–84PubMed Hughes RD, Millburn P, Williams RT. Biliary excretion of some diquaternary ammonium cations in the rat, guinea pig and rabbit. Biochem J 1973; 136: 979–84PubMed
180.
go back to reference Meijer DKF, Weitering JG, Vonk RJ. Hepatic uptake and biliary excretion of d-tubocurarine and trimethylcurarine in the rat in vivo and in isolated perfused rat livers. J Pharmacol Exp Ther 1976; 198: 229–39PubMed Meijer DKF, Weitering JG, Vonk RJ. Hepatic uptake and biliary excretion of d-tubocurarine and trimethylcurarine in the rat in vivo and in isolated perfused rat livers. J Pharmacol Exp Ther 1976; 198: 229–39PubMed
181.
go back to reference Weitering JG. On the localization of d-tubocurarine in rat liver lysosomes in vivo by electron microscopy and subcellular fractionation. Naunyn-Schmiedebergs Arch Pharmacol 1975; 289: 251–6PubMedCrossRef Weitering JG. On the localization of d-tubocurarine in rat liver lysosomes in vivo by electron microscopy and subcellular fractionation. Naunyn-Schmiedebergs Arch Pharmacol 1975; 289: 251–6PubMedCrossRef
182.
go back to reference Westra P. Mechanisms underlaying the prolonged duration of action of muscle relaxants caused by extrahepatic cholestasis. Br J Anaesth 1981; 58: 217–27CrossRef Westra P. Mechanisms underlaying the prolonged duration of action of muscle relaxants caused by extrahepatic cholestasis. Br J Anaesth 1981; 58: 217–27CrossRef
183.
go back to reference Dunkerly R. Gastric and biliary excretion of meperidine in man. Clin Pharmacol Ther 1977; 20: 546–51 Dunkerly R. Gastric and biliary excretion of meperidine in man. Clin Pharmacol Ther 1977; 20: 546–51
184.
go back to reference Sandberg AA, Slaunwhite WR. Studies on phenolic steroids in human subjects: II. the metabolic fate and hepato-biliary-enteric circulation of 14C-estrone and 14C-estradiol in women. J Clin Invest 1957; 36: 1266–78PubMedCrossRef Sandberg AA, Slaunwhite WR. Studies on phenolic steroids in human subjects: II. the metabolic fate and hepato-biliary-enteric circulation of 14C-estrone and 14C-estradiol in women. J Clin Invest 1957; 36: 1266–78PubMedCrossRef
185.
go back to reference Sandberg AA, Slaunwhite WR. Studies on phenolic steroids in human subjects: VII. metabolic fate of estriol and its glucuronide. J Clin Invest 1965; 44: 694–702PubMedCrossRef Sandberg AA, Slaunwhite WR. Studies on phenolic steroids in human subjects: VII. metabolic fate of estriol and its glucuronide. J Clin Invest 1965; 44: 694–702PubMedCrossRef
186.
go back to reference Peterson RE. The physiological disposition and metabolic fate of hydrocortisone in man. J Clin Invest 1955; 34: 1779–94PubMedCrossRef Peterson RE. The physiological disposition and metabolic fate of hydrocortisone in man. J Clin Invest 1955; 34: 1779–94PubMedCrossRef
187.
go back to reference Sandberg AA, Slaunwhite WR. Metabolism of 4-14C-testosterone in human subjects: I. Distribution in bile, blood, faeces and urine. J Clin Invest 1956; 35: 1331–9PubMedCrossRef Sandberg AA, Slaunwhite WR. Metabolism of 4-14C-testosterone in human subjects: I. Distribution in bile, blood, faeces and urine. J Clin Invest 1956; 35: 1331–9PubMedCrossRef
188.
go back to reference Adlercreutz H. Biliary excretion and intestinal metabolism of progesterone and estrogens in man. J Steroid Biochem 1980; 13: 231–44PubMedCrossRef Adlercreutz H. Biliary excretion and intestinal metabolism of progesterone and estrogens in man. J Steroid Biochem 1980; 13: 231–44PubMedCrossRef
189.
go back to reference Ballatori N, Clarkson TW. Biliary secretion of glutathione and of glutathione-metal complexes. Fundam Appl Toxicol 1985; 5: 816–31PubMedCrossRef Ballatori N, Clarkson TW. Biliary secretion of glutathione and of glutathione-metal complexes. Fundam Appl Toxicol 1985; 5: 816–31PubMedCrossRef
190.
go back to reference Alexander J, Aaseth J, Mikalsen A. Excretion of lead in rat bile — the role of glutathione. Acta Pharmacol Toxicol 1986; 59(7): 486–9 Alexander J, Aaseth J, Mikalsen A. Excretion of lead in rat bile — the role of glutathione. Acta Pharmacol Toxicol 1986; 59(7): 486–9
191.
go back to reference Gregus Z, Varga F. Role of glutathione and hepatic glutathione S-transferase in the biliary excretion of methyl mercury, cadmium and zinc: a study with enzyme inducers and glutathione depletors. Acta Pharmacol Toxicol 1985; 56: 398–403CrossRef Gregus Z, Varga F. Role of glutathione and hepatic glutathione S-transferase in the biliary excretion of methyl mercury, cadmium and zinc: a study with enzyme inducers and glutathione depletors. Acta Pharmacol Toxicol 1985; 56: 398–403CrossRef
192.
go back to reference Norseth T. Biliary excretion of chromium in the rat: a role of glutathione. Acta Pharmacol Toxicol 1982; 51: 450–5CrossRef Norseth T. Biliary excretion of chromium in the rat: a role of glutathione. Acta Pharmacol Toxicol 1982; 51: 450–5CrossRef
193.
194.
go back to reference Xiong H. Altered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR (-) rats. J Pharmacol Exp Ther 2000; 295(2): 512–8PubMed Xiong H. Altered hepatobiliary disposition of acetaminophen glucuronide in isolated perfused livers from multidrug resistance-associated protein 2-deficient TR (-) rats. J Pharmacol Exp Ther 2000; 295(2): 512–8PubMed
195.
go back to reference Oude-Elferink R. Hepatobiliary secretion of organic compounds: molecular mechanisms of membrane transport. Biochim Biophys Acta (Rev Biomembr) 1995; 1241: 215–68CrossRef Oude-Elferink R. Hepatobiliary secretion of organic compounds: molecular mechanisms of membrane transport. Biochim Biophys Acta (Rev Biomembr) 1995; 1241: 215–68CrossRef
196.
go back to reference Keppler D, Konig J. Expression and localization of the conjugate export pump encoded by the MRP2 (cMRP/cMOAT) gene in liver. FASEB J 1997; 11: 509–16PubMed Keppler D, Konig J. Expression and localization of the conjugate export pump encoded by the MRP2 (cMRP/cMOAT) gene in liver. FASEB J 1997; 11: 509–16PubMed
197.
go back to reference Kato Y, Igarashi T, Sugiyama Y. Both cMOAT/MRP2 and another unknown transporter(s) are responsible for the biliary excretion of glucuronide conjugate of the nonpeptide angiotensin II antagonist, telmisartan. Drug Metab Dispos 2000; 28(10): 1146–8PubMed Kato Y, Igarashi T, Sugiyama Y. Both cMOAT/MRP2 and another unknown transporter(s) are responsible for the biliary excretion of glucuronide conjugate of the nonpeptide angiotensin II antagonist, telmisartan. Drug Metab Dispos 2000; 28(10): 1146–8PubMed
198.
go back to reference Madon J. Functional expression of the rat liver canalicular isoform of the multidrug resistance-associated protein. FEBS Lett 1997; 406: 75–8PubMedCrossRef Madon J. Functional expression of the rat liver canalicular isoform of the multidrug resistance-associated protein. FEBS Lett 1997; 406: 75–8PubMedCrossRef
199.
go back to reference Niinuma K. Primary active transport of organic anions on bile canalicular membrane in humans. Am J Physiol 1999; 276(5 Pt 1): G1153–64PubMed Niinuma K. Primary active transport of organic anions on bile canalicular membrane in humans. Am J Physiol 1999; 276(5 Pt 1): G1153–64PubMed
200.
go back to reference Greenberger NJ, Thomas FB. Biliary excretion of 3H-digitoxin: modification by bile salts and phenobarbital. J Lab Clin Med 1973; 81: 241–51PubMed Greenberger NJ, Thomas FB. Biliary excretion of 3H-digitoxin: modification by bile salts and phenobarbital. J Lab Clin Med 1973; 81: 241–51PubMed
201.
go back to reference Goresky CA. The enhancement of maximal bilirubin excretion with taurocholate-induced increments in bile flow. Can J Physiol Pharmacol 1974; 52: 389–403PubMedCrossRef Goresky CA. The enhancement of maximal bilirubin excretion with taurocholate-induced increments in bile flow. Can J Physiol Pharmacol 1974; 52: 389–403PubMedCrossRef
202.
go back to reference Gregus Z, Fischer E, Varga F. Effect of cholestyramine-induced bile acid depletion on the hepatobiliary transport of cholephilic organic anions in rats. Arch Int Pharmacodyn Ther 1980; 245: 311–22PubMed Gregus Z, Fischer E, Varga F. Effect of cholestyramine-induced bile acid depletion on the hepatobiliary transport of cholephilic organic anions in rats. Arch Int Pharmacodyn Ther 1980; 245: 311–22PubMed
203.
go back to reference Gregus Z. Comparison of the effects of cholestyramine and aluminium hydroxide on the biliary bile acid excretion in rats: an experimental model for the depletion of bile acids in bile. Acta Biol Med Ger 1980; 39: 705–9PubMed Gregus Z. Comparison of the effects of cholestyramine and aluminium hydroxide on the biliary bile acid excretion in rats: an experimental model for the depletion of bile acids in bile. Acta Biol Med Ger 1980; 39: 705–9PubMed
204.
go back to reference Watkins JB, Noda H. Biliary excretion of organic anions in diabetic rats. J Pharmacol Exp Ther 1986. 239: 467–73PubMed Watkins JB, Noda H. Biliary excretion of organic anions in diabetic rats. J Pharmacol Exp Ther 1986. 239: 467–73PubMed
205.
go back to reference Rozman K. Hexadecane enhances non-biliary, intestinal excretion of stored hexachlorophenol by rats. Toxicology 1982; 24: 107–13PubMedCrossRef Rozman K. Hexadecane enhances non-biliary, intestinal excretion of stored hexachlorophenol by rats. Toxicology 1982; 24: 107–13PubMedCrossRef
206.
go back to reference Cohn WJ. Treatment of chlordecone (Kepone) toxicity with cholestyramine. N Engl J Med 1978; 298: 243–8PubMedCrossRef Cohn WJ. Treatment of chlordecone (Kepone) toxicity with cholestyramine. N Engl J Med 1978; 298: 243–8PubMedCrossRef
207.
go back to reference Cohn WJ. Distribution and excretion of kepone in humans [abstract]. Gastroenterology 1976; 71: 901 Cohn WJ. Distribution and excretion of kepone in humans [abstract]. Gastroenterology 1976; 71: 901
208.
go back to reference Boyland JJ, Egle JL, Guzelian PS. Cholestyramine: use a new therapeutic approach for chlordecone (Kepone) poisoning. Science 1978; 199: 893–5CrossRef Boyland JJ, Egle JL, Guzelian PS. Cholestyramine: use a new therapeutic approach for chlordecone (Kepone) poisoning. Science 1978; 199: 893–5CrossRef
209.
go back to reference Guzelian PS. Comparative toxicology of chlordecone (Kepone) in humans and experimental animals. Annu Rev Pharmacol Toxicol 1982; 22: 89–113PubMedCrossRef Guzelian PS. Comparative toxicology of chlordecone (Kepone) in humans and experimental animals. Annu Rev Pharmacol Toxicol 1982; 22: 89–113PubMedCrossRef
210.
go back to reference Ballhorn L. Cholestyramine enhances fecal elimination of pentachlorophenol in rhesus monkey. Chemospere 1981; 10: 877–88CrossRef Ballhorn L. Cholestyramine enhances fecal elimination of pentachlorophenol in rhesus monkey. Chemospere 1981; 10: 877–88CrossRef
211.
go back to reference Rozman K. The effect of cholestyramine on the disposition of pentachlorophenol in Rhesus monkeys. J Toxicol Environ Health 1982; 10: 277–83PubMedCrossRef Rozman K. The effect of cholestyramine on the disposition of pentachlorophenol in Rhesus monkeys. J Toxicol Environ Health 1982; 10: 277–83PubMedCrossRef
212.
go back to reference Billiau A, Bosch JVD. The influence of cholestyramine on the intestinal absorption of glycocholic acid. Arch Int Pharmacodyn Ther 1964; 150: 46–51PubMed Billiau A, Bosch JVD. The influence of cholestyramine on the intestinal absorption of glycocholic acid. Arch Int Pharmacodyn Ther 1964; 150: 46–51PubMed
213.
go back to reference Siegers CP, Rozman K, Klaassen CD. Biliary excretion and enterohepatic circulation of paracetamol in the rat. Xenobiotica 1983; 13: 591–6PubMedCrossRef Siegers CP, Rozman K, Klaassen CD. Biliary excretion and enterohepatic circulation of paracetamol in the rat. Xenobiotica 1983; 13: 591–6PubMedCrossRef
214.
go back to reference Siegers CP, Moller-Hartmann W. Cholestyramine as an antidote against paracetamol-induced hepato- and nephrotoxicity in the rat. Toxicol Lett 1989; 47: 179–84PubMedCrossRef Siegers CP, Moller-Hartmann W. Cholestyramine as an antidote against paracetamol-induced hepato- and nephrotoxicity in the rat. Toxicol Lett 1989; 47: 179–84PubMedCrossRef
215.
go back to reference Neuvonen PJ, Elonen E. Effect of activated charcoal on absorption and elimination of phenobarbitone, carbamazepine and phenylbutazone in man. Eur J Clin Pharmacol 1980; 17: 51–7PubMedCrossRef Neuvonen PJ, Elonen E. Effect of activated charcoal on absorption and elimination of phenobarbitone, carbamazepine and phenylbutazone in man. Eur J Clin Pharmacol 1980; 17: 51–7PubMedCrossRef
216.
go back to reference Elomaa K. The possible role of enterohepatic cycling on bio-availability of norethisterone and gestodene in women using combined oral contraceptives. Contraception 2001; 63(1): 13–8PubMedCrossRef Elomaa K. The possible role of enterohepatic cycling on bio-availability of norethisterone and gestodene in women using combined oral contraceptives. Contraception 2001; 63(1): 13–8PubMedCrossRef
217.
go back to reference Heimer GM, Englund DE. Enterohepatic recirculation of oestriol: inhibition by activated charcoal. Acta Endocrinol (Copenh) 1986; 113(1): 93–5 Heimer GM, Englund DE. Enterohepatic recirculation of oestriol: inhibition by activated charcoal. Acta Endocrinol (Copenh) 1986; 113(1): 93–5
218.
go back to reference Gregus Z, Klaasen CD. Enterohepatic circulation of toxicants. In: Rozman K, Hanninen O, editors. Gastrointestinal toxicology. New York: Elsevier, 1986: 57–118 Gregus Z, Klaasen CD. Enterohepatic circulation of toxicants. In: Rozman K, Hanninen O, editors. Gastrointestinal toxicology. New York: Elsevier, 1986: 57–118
219.
go back to reference Caldwell J. Comparative aspects of detoxication in mammals. In: Jacoby WB, editor. Enzymatic basis of detoxication. New York: Academic Press, 1980: 85–114 Caldwell J. Comparative aspects of detoxication in mammals. In: Jacoby WB, editor. Enzymatic basis of detoxication. New York: Academic Press, 1980: 85–114
220.
go back to reference Gregus Z. Hepatic phase I and phase II biotransformation in quail and trout: comparison to other species commonly used in toxicity testing. Toxicol Appl Pharmacol 1983; 67: 430–41PubMedCrossRef Gregus Z. Hepatic phase I and phase II biotransformation in quail and trout: comparison to other species commonly used in toxicity testing. Toxicol Appl Pharmacol 1983; 67: 430–41PubMedCrossRef
221.
go back to reference Laitinen M, Watkins III JB. Mucosal biotransformation. In: Rozman K, Hanninen O, editors. Gastrointestinal toxicology. Amsterdam: Elsevier, 1986: 169–92 Laitinen M, Watkins III JB. Mucosal biotransformation. In: Rozman K, Hanninen O, editors. Gastrointestinal toxicology. Amsterdam: Elsevier, 1986: 169–92
222.
go back to reference Scheline RR. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev 1973; 25: 451–523PubMed Scheline RR. Metabolism of foreign compounds by gastrointestinal microorganisms. Pharmacol Rev 1973; 25: 451–523PubMed
223.
go back to reference Drasar BS, Hill MJ. Human intestine flora. New York: Academic Press, 1974 Drasar BS, Hill MJ. Human intestine flora. New York: Academic Press, 1974
224.
go back to reference Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 1995; 16(5): 351–80PubMedCrossRef Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm Drug Dispos 1995; 16(5): 351–80PubMedCrossRef
225.
go back to reference Suchy FJ, Heubi JE, Balistreri WF. The enterohepatic circulation of bile acids in suckling and weandling rats [abstract]. Gastroenterology 1981; 80: 1351 Suchy FJ, Heubi JE, Balistreri WF. The enterohepatic circulation of bile acids in suckling and weandling rats [abstract]. Gastroenterology 1981; 80: 1351
226.
go back to reference Klaassen CD. Hepatic excretory function in the newborn rat. J Pharmacol Exp Ther 1973; 184: 721–8PubMed Klaassen CD. Hepatic excretory function in the newborn rat. J Pharmacol Exp Ther 1973; 184: 721–8PubMed
227.
go back to reference Kleeberg U. Effect of 3-methylcholanthrene on the biliary excretion of bromsulphthalein and eosine in newborn rats. Acta Physiol Acad Sci Hung 1979; 53: 363–7PubMed Kleeberg U. Effect of 3-methylcholanthrene on the biliary excretion of bromsulphthalein and eosine in newborn rats. Acta Physiol Acad Sci Hung 1979; 53: 363–7PubMed
228.
go back to reference McMahon TF, Beierschmitt WP, Weiner M. Changes in phase I and phase II biotransformation with age in male Fischer 344 rat colon: relationship to colon carcinogenesis. Cancer Lett 1987; 36: 273–82PubMedCrossRef McMahon TF, Beierschmitt WP, Weiner M. Changes in phase I and phase II biotransformation with age in male Fischer 344 rat colon: relationship to colon carcinogenesis. Cancer Lett 1987; 36: 273–82PubMedCrossRef
229.
go back to reference Greenberger DJ, Engelkling LR. Enterohepatic circulation of lorazepam and acetaminophen conjugates in ponies. J Pharmacol Exp Ther 1988; 244: 674–9 Greenberger DJ, Engelkling LR. Enterohepatic circulation of lorazepam and acetaminophen conjugates in ponies. J Pharmacol Exp Ther 1988; 244: 674–9
230.
go back to reference Meuldermans W. Excretion and biotransformation of alfentanil and sufentanil in rats and dogs. Drug Metab Dispos 1987; 15: 905–13PubMed Meuldermans W. Excretion and biotransformation of alfentanil and sufentanil in rats and dogs. Drug Metab Dispos 1987; 15: 905–13PubMed
231.
go back to reference Solymoss B, Zsigmond G. Effects of various steroids on the hepatic glucuronidation and biliary excretion of bilirubin. Can J Physiol Pharmacol 1973; 51: 319–23PubMedCrossRef Solymoss B, Zsigmond G. Effects of various steroids on the hepatic glucuronidation and biliary excretion of bilirubin. Can J Physiol Pharmacol 1973; 51: 319–23PubMedCrossRef
232.
go back to reference Levine WG. The role of the hepatic endoplasmic reticulum in the biliary excretion of foreign compounds by the rat: the effect of phenobarbitone and SKF525-A (diethylaminoethyl diphenyl-propylacetate). Biochem Pharmacol 1970; 19: 235–44PubMedCrossRef Levine WG. The role of the hepatic endoplasmic reticulum in the biliary excretion of foreign compounds by the rat: the effect of phenobarbitone and SKF525-A (diethylaminoethyl diphenyl-propylacetate). Biochem Pharmacol 1970; 19: 235–44PubMedCrossRef
233.
go back to reference Fawaz F. Influence of poly (DL-lactide) nanocapsules on the biliary clearance and enterohepatic circulation of indomethacin in the rabbit. Pharm Res 1993; 10(5): 750–6PubMedCrossRef Fawaz F. Influence of poly (DL-lactide) nanocapsules on the biliary clearance and enterohepatic circulation of indomethacin in the rabbit. Pharm Res 1993; 10(5): 750–6PubMedCrossRef
234.
go back to reference Sabordo L. Hepatic disposition of the acyl glucuronide 1-O-gemfibrozil-beta-D-glucuronide: effects of clofibric acid, acetaminophen, and acetaminophen glucuronide. J Pharmacol Exp Ther 2000; 295(1): 44–50PubMed Sabordo L. Hepatic disposition of the acyl glucuronide 1-O-gemfibrozil-beta-D-glucuronide: effects of clofibric acid, acetaminophen, and acetaminophen glucuronide. J Pharmacol Exp Ther 2000; 295(1): 44–50PubMed
235.
go back to reference Kim R, Leake B, Cvetkovic M, et al. Modulation by drugs of human hepatic sodium-dependent bile acid transporter (sodium taurocholate cotransporting polypeptide) activity. J Pharmacol Exp Ther 1999; 291(3): 1204–9PubMed Kim R, Leake B, Cvetkovic M, et al. Modulation by drugs of human hepatic sodium-dependent bile acid transporter (sodium taurocholate cotransporting polypeptide) activity. J Pharmacol Exp Ther 1999; 291(3): 1204–9PubMed
236.
go back to reference Dantzig A. Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr Med Chem 2001; 8(1): 39–50PubMedCrossRef Dantzig A. Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr Med Chem 2001; 8(1): 39–50PubMedCrossRef
237.
go back to reference Morikawa A. Biliary excretion of 17beta-estradiol 17beta-D-glucuronide is predominantly mediated by cMOAT/MRP2. Pharm Res 2000; 17(5): 546–52PubMedCrossRef Morikawa A. Biliary excretion of 17beta-estradiol 17beta-D-glucuronide is predominantly mediated by cMOAT/MRP2. Pharm Res 2000; 17(5): 546–52PubMedCrossRef
238.
go back to reference Yam J, Roberts RJ. Hepatic uptake of foreign compounds: influence of acute extrahepatic biliary obstruction. J Pharmacol Exp Ther 1977; 200: 425–33PubMed Yam J, Roberts RJ. Hepatic uptake of foreign compounds: influence of acute extrahepatic biliary obstruction. J Pharmacol Exp Ther 1977; 200: 425–33PubMed
239.
go back to reference Klaassen CD. Comparison of the effects of two-thirds hepatectomy and bile-duct ligation on hepatic excretory function. J Pharmacol Exp Ther 1974; 191: 25–31PubMed Klaassen CD. Comparison of the effects of two-thirds hepatectomy and bile-duct ligation on hepatic excretory function. J Pharmacol Exp Ther 1974; 191: 25–31PubMed
240.
go back to reference Siegers CP. Effects of liver injury and cholestasis on microsomal enzyme activities and in vivo metabolism of halothane, enflurane and methoxyflurane. Xenobiotica 1981 11: 293–9PubMedCrossRef Siegers CP. Effects of liver injury and cholestasis on microsomal enzyme activities and in vivo metabolism of halothane, enflurane and methoxyflurane. Xenobiotica 1981 11: 293–9PubMedCrossRef
241.
go back to reference Siegers CP, Klaassen CD. Biliary excretion of acetaminophen in ureter-ligated rats. Pharmacology 1984; 29: 177–80CrossRef Siegers CP, Klaassen CD. Biliary excretion of acetaminophen in ureter-ligated rats. Pharmacology 1984; 29: 177–80CrossRef
242.
243.
go back to reference Lindell T. Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science 1970; 170: 447–9PubMedCrossRef Lindell T. Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science 1970; 170: 447–9PubMedCrossRef
244.
go back to reference Reichen J. Decreased uptake of taurocholate and ouabain by hepatocytes isolated from cirrhotic rat liver. Hepatology 1987; 7: 67–70PubMedCrossRef Reichen J. Decreased uptake of taurocholate and ouabain by hepatocytes isolated from cirrhotic rat liver. Hepatology 1987; 7: 67–70PubMedCrossRef
245.
go back to reference Beuers U. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis. J Clin Invest 1993; 92: 2984–93PubMedCrossRef Beuers U. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis. J Clin Invest 1993; 92: 2984–93PubMedCrossRef
246.
go back to reference Wood A. Intact hepatocyte theory of impaired drug metabolism in experimental cirrhosis in the rat. Gastroenterology 1979; 76: 1358–62PubMed Wood A. Intact hepatocyte theory of impaired drug metabolism in experimental cirrhosis in the rat. Gastroenterology 1979; 76: 1358–62PubMed
247.
go back to reference Varin F, Huet PM. Hepatic microcirculation in the perfused cirrhotic rat liver. J Clin Invest 1991; 76: 1904–12CrossRef Varin F, Huet PM. Hepatic microcirculation in the perfused cirrhotic rat liver. J Clin Invest 1991; 76: 1904–12CrossRef
248.
go back to reference Sherman I, Pappas S, Fisher M. Hepatic microvascular changes associated with development of liver fibrosis and cirrhosis. Am J Physiol 1990; 258: 460–5 Sherman I, Pappas S, Fisher M. Hepatic microvascular changes associated with development of liver fibrosis and cirrhosis. Am J Physiol 1990; 258: 460–5
249.
go back to reference Milani S. Differential expression of matrix-metalloproteinase-1 and -2 genes in normal and fibrotic human liver. Am J Pathol 1994; 144: 528–37PubMed Milani S. Differential expression of matrix-metalloproteinase-1 and -2 genes in normal and fibrotic human liver. Am J Pathol 1994; 144: 528–37PubMed
250.
go back to reference Murawaki Y. Serum collagenase activity reflects the amount of liver collagenase in chronic carbon tetrachloride-treated rats. Res Commun Chem Pathol Pharmacol 1994; 84: 63–72PubMed Murawaki Y. Serum collagenase activity reflects the amount of liver collagenase in chronic carbon tetrachloride-treated rats. Res Commun Chem Pathol Pharmacol 1994; 84: 63–72PubMed
251.
go back to reference Krähenbühl S, Stucki J, Reichen J. Reduced activity of the electron transport chain in liver mitochondria isolated from rats with secondary biliary cirrhosis. Hepatology 1992; 15: 1160–6PubMedCrossRef Krähenbühl S, Stucki J, Reichen J. Reduced activity of the electron transport chain in liver mitochondria isolated from rats with secondary biliary cirrhosis. Hepatology 1992; 15: 1160–6PubMedCrossRef
252.
go back to reference Gebhart A, Brabec M. Carbon tetrachloride depresses hepatic phospholipid synthesis in rats. Toxicol Lett 1985; 24: 71–8PubMedCrossRef Gebhart A, Brabec M. Carbon tetrachloride depresses hepatic phospholipid synthesis in rats. Toxicol Lett 1985; 24: 71–8PubMedCrossRef
253.
go back to reference Muriel P, Favari L, Soto C. Erythrocyte alterations correlate with CC14 and biliary obstruction-induced liver damage in the rat. Life Sci 1993; 52: 647–55PubMedCrossRef Muriel P, Favari L, Soto C. Erythrocyte alterations correlate with CC14 and biliary obstruction-induced liver damage in the rat. Life Sci 1993; 52: 647–55PubMedCrossRef
254.
go back to reference Yahuaca P. Cryptic adenosine triphosphatase activities in plasma membranes of CC14-cirrhotic rats. Lab Invest 1985; 53: 541–5PubMed Yahuaca P. Cryptic adenosine triphosphatase activities in plasma membranes of CC14-cirrhotic rats. Lab Invest 1985; 53: 541–5PubMed
255.
go back to reference Hong S, Chung S, Shim C. Functional impairment of sinusoidal membrane transport of organic cations in rats with CC14-induced hepatic failure. Pharm Res 2000; 17(7): 833–8PubMedCrossRef Hong S, Chung S, Shim C. Functional impairment of sinusoidal membrane transport of organic cations in rats with CC14-induced hepatic failure. Pharm Res 2000; 17(7): 833–8PubMedCrossRef
256.
go back to reference Feuer G, Fonzo CD. Intrahepatic cholestasis: a review of biochemical-pathological mechanisms. Drug Metabol Drug Interact 1992; 10: 1–161PubMedCrossRef Feuer G, Fonzo CD. Intrahepatic cholestasis: a review of biochemical-pathological mechanisms. Drug Metabol Drug Interact 1992; 10: 1–161PubMedCrossRef
257.
go back to reference Reichen J. Mechanisms of cholestasis. In: Tavoloni N, Berk P, editors. Hepatic transport and bile secretion: physiology and pathophysiology. New York: Raven Press, 1993: 665–72 Reichen J. Mechanisms of cholestasis. In: Tavoloni N, Berk P, editors. Hepatic transport and bile secretion: physiology and pathophysiology. New York: Raven Press, 1993: 665–72
258.
go back to reference Schaffner F, Popper H. Classification and mechanism of cholestasis. In: Wright R, editor. Liver and biliary disease: pathophysiology, diagnosis, management. London: WB Saunders Company Ltd, 1979: 296–323 Schaffner F, Popper H. Classification and mechanism of cholestasis. In: Wright R, editor. Liver and biliary disease: pathophysiology, diagnosis, management. London: WB Saunders Company Ltd, 1979: 296–323
259.
go back to reference Phillips M, Latham P, Poucell S. Electron microscopy of human liver disease. In: Schiff L, Schiff E, editors. Diseases of the liver. Philadelphia: JB Lippincott Co, 1987: 47–76 Phillips M, Latham P, Poucell S. Electron microscopy of human liver disease. In: Schiff L, Schiff E, editors. Diseases of the liver. Philadelphia: JB Lippincott Co, 1987: 47–76
260.
go back to reference Plaa G, Priestly B. Intrahepatic cholestasis induced by drugs and chemicals. Pharmacol Rev 1976; 28: 207–73PubMed Plaa G, Priestly B. Intrahepatic cholestasis induced by drugs and chemicals. Pharmacol Rev 1976; 28: 207–73PubMed
261.
go back to reference Becker B, Plaa G. Quantitative and temporal delineation of various parameters of liver dysfunction due to alpha-naphthylisothiocyanate. Toxicol Appl Pharmacol 1965; 7: 708–18PubMedCrossRef Becker B, Plaa G. Quantitative and temporal delineation of various parameters of liver dysfunction due to alpha-naphthylisothiocyanate. Toxicol Appl Pharmacol 1965; 7: 708–18PubMedCrossRef
262.
go back to reference Indacochea-Redmond N, Plaa G. Functional aspects of alpha-naphthylisothiocyanate in various species. Toxicol Appl Pharmacol 1971; 19: 71–80PubMedCrossRef Indacochea-Redmond N, Plaa G. Functional aspects of alpha-naphthylisothiocyanate in various species. Toxicol Appl Pharmacol 1971; 19: 71–80PubMedCrossRef
263.
go back to reference Lock S, Lavigne J, Plaa G. The effect of alpha-naphthylisothiocyanate on bile secretion prior to and during the onset of cholestasis in the rat. Toxicol Lett 1982; 10: 427–35PubMedCrossRef Lock S, Lavigne J, Plaa G. The effect of alpha-naphthylisothiocyanate on bile secretion prior to and during the onset of cholestasis in the rat. Toxicol Lett 1982; 10: 427–35PubMedCrossRef
264.
go back to reference Wieland T. Identity of hepatic membrane transport systems for bile salts, phalloidin, and antamanide by photoaffinity labelling. Proc Natl Acad Sci U S A 1984; 81: 5232–6PubMedCrossRef Wieland T. Identity of hepatic membrane transport systems for bile salts, phalloidin, and antamanide by photoaffinity labelling. Proc Natl Acad Sci U S A 1984; 81: 5232–6PubMedCrossRef
265.
go back to reference Kramer W. Bile-salt-binding polypeptides in plasma membranes of hepatocytes revealed by photoaffmity labelling. Eur JBiochem 1982; 129: 13–24CrossRef Kramer W. Bile-salt-binding polypeptides in plasma membranes of hepatocytes revealed by photoaffmity labelling. Eur JBiochem 1982; 129: 13–24CrossRef
266.
go back to reference Gabbiani G. Phalloidin-induced hyperplasia of actin filaments in rat hepatocytes. Lab Invest 1975; 53: 562–9 Gabbiani G. Phalloidin-induced hyperplasia of actin filaments in rat hepatocytes. Lab Invest 1975; 53: 562–9
267.
go back to reference Tuchweber B, Gabbiani G. Phalloidin-induced hyperplasia of actin microfilaments in rat hepatocytes. In: Preisig R, Bircher J, Paumgartner G, editors. The liver: quantitative aspects of structure and function. Basel: S Karger AG, 1976: 84–90 Tuchweber B, Gabbiani G. Phalloidin-induced hyperplasia of actin microfilaments in rat hepatocytes. In: Preisig R, Bircher J, Paumgartner G, editors. The liver: quantitative aspects of structure and function. Basel: S Karger AG, 1976: 84–90
268.
go back to reference Jansen P. The pathophysiology of cholestasis with special reference to primary biliary cirrhosis. Baillieres Best Pract Res Clin Gastroenterol 2000; 14(4): 571–83PubMedCrossRef Jansen P. The pathophysiology of cholestasis with special reference to primary biliary cirrhosis. Baillieres Best Pract Res Clin Gastroenterol 2000; 14(4): 571–83PubMedCrossRef
269.
go back to reference Liber M. The incidence of gallstones and their correlation with other diseases. Am Surg 1952; 135: 394–405 Liber M. The incidence of gallstones and their correlation with other diseases. Am Surg 1952; 135: 394–405
270.
go back to reference Feldman M, Feldman M. The incidence of cholelithiasis, cholesterosis and liver disease in diabetes mellitus: an autopsy study. Diabetes 1954; 3: 3505–9 Feldman M, Feldman M. The incidence of cholelithiasis, cholesterosis and liver disease in diabetes mellitus: an autopsy study. Diabetes 1954; 3: 3505–9
271.
go back to reference Goldstein M, Schein C. The significance of biliary tract disease in the diabetic: its unique features. Am J Gastroenterol 1963; 39: 630–4PubMed Goldstein M, Schein C. The significance of biliary tract disease in the diabetic: its unique features. Am J Gastroenterol 1963; 39: 630–4PubMed
272.
go back to reference Grant M, Duthie S. Conjugation reactions in hepatocytes isolated from streptozotocin-induced diabetic rats. Biochem Pharmacol 1987; 36: 3647–55PubMedCrossRef Grant M, Duthie S. Conjugation reactions in hepatocytes isolated from streptozotocin-induced diabetic rats. Biochem Pharmacol 1987; 36: 3647–55PubMedCrossRef
273.
go back to reference Salmela P, Sotaniemi E, Pelkonen R. The evaluation of the drug-metabolizing capacity in patients with diabetes mellitus. Diabetes 1980; 29: 788–94PubMedCrossRef Salmela P, Sotaniemi E, Pelkonen R. The evaluation of the drug-metabolizing capacity in patients with diabetes mellitus. Diabetes 1980; 29: 788–94PubMedCrossRef
274.
go back to reference Watkins J, Dykstra T. Alterations in biliary excretory function by streptozotocin-induced diabetes. Drug Metab Dispos 1987; 15: 177–83PubMed Watkins J, Dykstra T. Alterations in biliary excretory function by streptozotocin-induced diabetes. Drug Metab Dispos 1987; 15: 177–83PubMed
275.
go back to reference Carnovale C, Marinelli R, Rodriguez-Garay E. Bile flow decrease and altered bile composition in streptozotocin-treated rats. Biochem Pharmacol 1986; 35: 2625–8PubMedCrossRef Carnovale C, Marinelli R, Rodriguez-Garay E. Bile flow decrease and altered bile composition in streptozotocin-treated rats. Biochem Pharmacol 1986; 35: 2625–8PubMedCrossRef
276.
go back to reference Berk P, Stump D. Mechanisms of cellular uptake of long chain free fatty acids. Mol Cell Biochem 1999; 192: 17–31PubMedCrossRef Berk P, Stump D. Mechanisms of cellular uptake of long chain free fatty acids. Mol Cell Biochem 1999; 192: 17–31PubMedCrossRef
277.
go back to reference Danysz A, Wisniewski K. The influence of insulin on drug passage into the tissues. Arch Int Pharmacodyn Ther 1965; 158: 30–8PubMed Danysz A, Wisniewski K. The influence of insulin on drug passage into the tissues. Arch Int Pharmacodyn Ther 1965; 158: 30–8PubMed
278.
go back to reference Jefferson L. Diabetes induced alterations in liver protein synthesis. J Biol Chem 1983; 258: 1369–75PubMed Jefferson L. Diabetes induced alterations in liver protein synthesis. J Biol Chem 1983; 258: 1369–75PubMed
279.
go back to reference Huang Z, Murakami T, Okochi A. Expression and function of P-glycoprotein in rats with glycerol-induced acute renal failure. Eur J Pharmacol 2000; 406(3): 453–60PubMedCrossRef Huang Z, Murakami T, Okochi A. Expression and function of P-glycoprotein in rats with glycerol-induced acute renal failure. Eur J Pharmacol 2000; 406(3): 453–60PubMedCrossRef
280.
go back to reference Zollner G, Fickert P, Zenz R. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 2001; 33(3): 633–46PubMedCrossRef Zollner G, Fickert P, Zenz R. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 2001; 33(3): 633–46PubMedCrossRef
281.
go back to reference Vree T, Ven AVD. Clinical consequences of the biphasic elimination kinetics for the diuretic effect of furosemide and its acyl glucuronide in humans. J Pharm Pharmacol 1999; 51(3): 239–48PubMedCrossRef Vree T, Ven AVD. Clinical consequences of the biphasic elimination kinetics for the diuretic effect of furosemide and its acyl glucuronide in humans. J Pharm Pharmacol 1999; 51(3): 239–48PubMedCrossRef
282.
go back to reference Bullingham R, Nicholls A, Kamm B. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998; 34(6): 429–55PubMedCrossRef Bullingham R, Nicholls A, Kamm B. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet 1998; 34(6): 429–55PubMedCrossRef
283.
go back to reference Funaki T. Enterohepatic circulation model for population pharmacokinetic analysis. J Pharm Pharmacol 1999; 10: 1143–8CrossRef Funaki T. Enterohepatic circulation model for population pharmacokinetic analysis. J Pharm Pharmacol 1999; 10: 1143–8CrossRef
284.
go back to reference Shepard T, Reuning R, Aarons L. Interpretation of area under the curve measurements for drugs subject to enterohepatic cycling. J Pharm Sci 1985; 2: 227–8CrossRef Shepard T, Reuning R, Aarons L. Interpretation of area under the curve measurements for drugs subject to enterohepatic cycling. J Pharm Sci 1985; 2: 227–8CrossRef
285.
go back to reference Shepard T, Gannaway D, Lockwood G. Accumulation and time to steady state for drugs subject to enterohepatic cycling: a stimulation study. J Pharm Sci 1985; 12: 1331–3CrossRef Shepard T, Gannaway D, Lockwood G. Accumulation and time to steady state for drugs subject to enterohepatic cycling: a stimulation study. J Pharm Sci 1985; 12: 1331–3CrossRef
286.
go back to reference Shepard T, Reuning R, Aarons L. Estimation of area under the curve for drugs subject to enterohepatic cycling. J Pharmacokinet Biopharm 1985; 6: 589–608 Shepard T, Reuning R, Aarons L. Estimation of area under the curve for drugs subject to enterohepatic cycling. J Pharmacokinet Biopharm 1985; 6: 589–608
287.
go back to reference Dahlstrom B, Paalzow L. Pharmacokinetic interpretation of the enterohepatic recirculation and first-pass elimination of morphine in the rat. J Pharmacokinet Biopharm 1978; 6: 505–19PubMed Dahlstrom B, Paalzow L. Pharmacokinetic interpretation of the enterohepatic recirculation and first-pass elimination of morphine in the rat. J Pharmacokinet Biopharm 1978; 6: 505–19PubMed
288.
go back to reference Pollack G, Brouwer K. Physiologic and metabolic influences on enterohepatic recirculation: simulations based upon the disposition of valproic acid in the rat. J Pharmacokinet Biopharm 1991; 2: 189–225 Pollack G, Brouwer K. Physiologic and metabolic influences on enterohepatic recirculation: simulations based upon the disposition of valproic acid in the rat. J Pharmacokinet Biopharm 1991; 2: 189–225
289.
go back to reference Ouellet D, Pollack G. Biliary excretion and enterohepatic recirculation of morphine-3-glucuronide in rats. Drug Metab Dispos 1995; 23: 478–784PubMed Ouellet D, Pollack G. Biliary excretion and enterohepatic recirculation of morphine-3-glucuronide in rats. Drug Metab Dispos 1995; 23: 478–784PubMed
290.
go back to reference Steimer J, Plusquellec Y, Guillaume A, et al. A time-lag model for pharmacokinetics of drugs subject to enterohepatic circulation. J Pharm Sci 1982; 3: 297–302CrossRef Steimer J, Plusquellec Y, Guillaume A, et al. A time-lag model for pharmacokinetics of drugs subject to enterohepatic circulation. J Pharm Sci 1982; 3: 297–302CrossRef
291.
go back to reference Peris-Ribera J, Kanba M, Toyoda Y, et al. General treatment of the enterohepatic recirculation of drugs and its influence on the area under the plasma level curves, bioavailability, and clearance. Pharm Res 1992; 10: 1306–13CrossRef Peris-Ribera J, Kanba M, Toyoda Y, et al. General treatment of the enterohepatic recirculation of drugs and its influence on the area under the plasma level curves, bioavailability, and clearance. Pharm Res 1992; 10: 1306–13CrossRef
292.
go back to reference Wang Y, Reuning R. An experimental design strategy for quantitating complex pharmacokinetic models: enterohepatic circulation with time-varying gallbladder emptying as an example. Pharm Res 1992; 2: 169–77CrossRef Wang Y, Reuning R. An experimental design strategy for quantitating complex pharmacokinetic models: enterohepatic circulation with time-varying gallbladder emptying as an example. Pharm Res 1992; 2: 169–77CrossRef
293.
go back to reference Colburn W, Lucek R. Noncompartmental area under the curve determinations for drugs that cycle in the bile. Biopharm Drug Dispos 1988; 9(5): 465–75PubMedCrossRef Colburn W, Lucek R. Noncompartmental area under the curve determinations for drugs that cycle in the bile. Biopharm Drug Dispos 1988; 9(5): 465–75PubMedCrossRef
294.
go back to reference Semmes R, Shen D. A reversible clearance model for the enterohepatic circulation of drug and conjugate metabolite pair. Drug Metab Dispos 1990; 18(1): 80–7PubMed Semmes R, Shen D. A reversible clearance model for the enterohepatic circulation of drug and conjugate metabolite pair. Drug Metab Dispos 1990; 18(1): 80–7PubMed
295.
go back to reference Veng-Pedersen P, Miller R. Pharmacokinetics of doxycycline reabsorption. J Pharm Sci 1980; 69: 204–398CrossRef Veng-Pedersen P, Miller R. Pharmacokinetics of doxycycline reabsorption. J Pharm Sci 1980; 69: 204–398CrossRef
296.
go back to reference Plusquellec Y, Houin G. Drug recirculation model with multiple cycles occurring at unequal time intervals. J Biomed Eng 1992; 6: 521–6CrossRef Plusquellec Y, Houin G. Drug recirculation model with multiple cycles occurring at unequal time intervals. J Biomed Eng 1992; 6: 521–6CrossRef
297.
go back to reference Plusquellec Y, Arnaud R, Saivin S, et al. Enterohepatic recirculation of the new antihypertensive drug UP 269-6 in humans: a possible model to account for multiple plasma peaks. Arzneimittel Forschung 1998; 48: 138–44PubMed Plusquellec Y, Arnaud R, Saivin S, et al. Enterohepatic recirculation of the new antihypertensive drug UP 269-6 in humans: a possible model to account for multiple plasma peaks. Arzneimittel Forschung 1998; 48: 138–44PubMed
298.
go back to reference Shepard T. Mean residence time for drugs subject to enterohepatic cycling. J Pharmacokinet Biopharm 1989; 3: 327–45 Shepard T. Mean residence time for drugs subject to enterohepatic cycling. J Pharmacokinet Biopharm 1989; 3: 327–45
299.
go back to reference Yamaoka K, Kanba M, Toyoda Y, et al. Analysis of enterohepatic circulation of cefixime in rat by fast inverse Laplace transform (FILT). J Pharmacokinet Biopharm 1990; 6: 545–59 Yamaoka K, Kanba M, Toyoda Y, et al. Analysis of enterohepatic circulation of cefixime in rat by fast inverse Laplace transform (FILT). J Pharmacokinet Biopharm 1990; 6: 545–59
300.
go back to reference Yamaoka K. Disposition analysis by fast inverse Laplace transform. Yakugaku Zasshi 1992; 112(8): 503–15PubMed Yamaoka K. Disposition analysis by fast inverse Laplace transform. Yakugaku Zasshi 1992; 112(8): 503–15PubMed
301.
go back to reference Yasui H, Yamaoka K, Nakagawa T. Moment analysis of stereoselective enterohepatic circulation and unidirectional chiral inversion of ketoprofen enantiomers in rat. J Pharm Sci 1996; 85: 580–5PubMedCrossRef Yasui H, Yamaoka K, Nakagawa T. Moment analysis of stereoselective enterohepatic circulation and unidirectional chiral inversion of ketoprofen enantiomers in rat. J Pharm Sci 1996; 85: 580–5PubMedCrossRef
302.
go back to reference Fukuyama T. A new analysis method for disposition kinetics of enterohepatic circulation of diclofenac in rats. Drug Metab Dispos 1994; 22: 479–85PubMed Fukuyama T. A new analysis method for disposition kinetics of enterohepatic circulation of diclofenac in rats. Drug Metab Dispos 1994; 22: 479–85PubMed
303.
go back to reference Ploeger B, Mesinga T, Sips A, et al. A human physiologically-based model for glycyrrhzic acid, a compound subject to pre-systemic metabolism and enterohepatic cycling. Pharm Res 2000; 17(12): 1516–25PubMedCrossRef Ploeger B, Mesinga T, Sips A, et al. A human physiologically-based model for glycyrrhzic acid, a compound subject to pre-systemic metabolism and enterohepatic cycling. Pharm Res 2000; 17(12): 1516–25PubMedCrossRef
304.
go back to reference Wang Y, Roy A, Sun L, et al. A double-peak phenomenon in the pharmacokinetics of alprazolam after oral administration. Drug Metab Dispos 1999; 27(8): 855–9PubMed Wang Y, Roy A, Sun L, et al. A double-peak phenomenon in the pharmacokinetics of alprazolam after oral administration. Drug Metab Dispos 1999; 27(8): 855–9PubMed
305.
go back to reference Veng-Pedersen P, Miller R. Pharmacokinetics and bioavailability of cimetidine in humans. J Pharm Sci 1980; 69(4): 394–8CrossRef Veng-Pedersen P, Miller R. Pharmacokinetics and bioavailability of cimetidine in humans. J Pharm Sci 1980; 69(4): 394–8CrossRef
306.
go back to reference Abshagen U. Effect of enterohepatic circulation on the pharmacokinetics of spironolactone in man. Naunyn Schmiedebergs Arch Pharmacol 1977; 300: 281–7PubMed Abshagen U. Effect of enterohepatic circulation on the pharmacokinetics of spironolactone in man. Naunyn Schmiedebergs Arch Pharmacol 1977; 300: 281–7PubMed
307.
go back to reference Duggan D. The disposition of sulindac. Clin Pharm Ther 1977; 21: 326–35 Duggan D. The disposition of sulindac. Clin Pharm Ther 1977; 21: 326–35
308.
go back to reference Hoglund P, Ohlin M. Effect modelling for drugs undergoing enterohepatic circulation. Eur J Drug Metab Pharmacokinet 1993; 18(4): 333–8PubMedCrossRef Hoglund P, Ohlin M. Effect modelling for drugs undergoing enterohepatic circulation. Eur J Drug Metab Pharmacokinet 1993; 18(4): 333–8PubMedCrossRef
309.
go back to reference Serra M, Caballero A, Del Olmo JA, et al. Maximal biliary transport of sulfobromophthalein in patients with a T-tube placed in the common bile duct. Eur J Drug Metab Pharmacokinet 1997; 22(2): 135–9PubMedCrossRef Serra M, Caballero A, Del Olmo JA, et al. Maximal biliary transport of sulfobromophthalein in patients with a T-tube placed in the common bile duct. Eur J Drug Metab Pharmacokinet 1997; 22(2): 135–9PubMedCrossRef
310.
go back to reference Fleuren H, Wissen CV-V, Thien T. Biliary excretion of chlorthalidone inhumans. Biopharm Drug Dispos 1980; 1(3): 103–10PubMedCrossRef Fleuren H, Wissen CV-V, Thien T. Biliary excretion of chlorthalidone inhumans. Biopharm Drug Dispos 1980; 1(3): 103–10PubMedCrossRef
311.
go back to reference Kreek M. Biliary secretion of methadone and methadone metabolites in man. Res Commun Chem Pathol Pharmacol 1980; 29(1): 67–78PubMed Kreek M. Biliary secretion of methadone and methadone metabolites in man. Res Commun Chem Pathol Pharmacol 1980; 29(1): 67–78PubMed
312.
go back to reference Buchan PC, Klopper A. Enterohepatic circulation of oestriol: a study of the effects of ampicillin on plasma oestriol levels. Br J Obstet Gynaecol 1979; 86(9): 713–6PubMedCrossRef Buchan PC, Klopper A. Enterohepatic circulation of oestriol: a study of the effects of ampicillin on plasma oestriol levels. Br J Obstet Gynaecol 1979; 86(9): 713–6PubMedCrossRef
313.
go back to reference Shenfield GM, Griffin JM. Clinical pharmacokinetics of contraceptive steroids: an update. Clin Pharmacokinet 1991; 20(1): 15–37PubMedCrossRef Shenfield GM, Griffin JM. Clinical pharmacokinetics of contraceptive steroids: an update. Clin Pharmacokinet 1991; 20(1): 15–37PubMedCrossRef
314.
go back to reference Shenfield G. Oral contraceptives: are drug interactions of clinical significance?. Drug Saf 1993; 9(1): 21–37PubMedCrossRef Shenfield G. Oral contraceptives: are drug interactions of clinical significance?. Drug Saf 1993; 9(1): 21–37PubMedCrossRef
315.
go back to reference Weisberg E. Interactions between oral contraceptives and antifungals/antibacterials: is contraceptive failure the result?. Clin Pharmacokinet 1999; 36(5): 309–13PubMedCrossRef Weisberg E. Interactions between oral contraceptives and antifungals/antibacterials: is contraceptive failure the result?. Clin Pharmacokinet 1999; 36(5): 309–13PubMedCrossRef
316.
go back to reference Lin J, Lu A. Interindividual variability in inhibition and induction of cytochrome p450 enzymes. Annu Rev Pharmacol Toxicol 2001; 41: 535–67PubMedCrossRef Lin J, Lu A. Interindividual variability in inhibition and induction of cytochrome p450 enzymes. Annu Rev Pharmacol Toxicol 2001; 41: 535–67PubMedCrossRef
Metadata
Title
Enterohepatic Circulation
Physiological, Pharmacokinetic and Clinical Implications
Authors
Dr Michael S. Roberts
Beatrice M. Magnusson
Frank J. Burczynski
Michael Weiss
Publication date
01-08-2002
Publisher
Springer International Publishing
Published in
Clinical Pharmacokinetics / Issue 10/2002
Print ISSN: 0312-5963
Electronic ISSN: 1179-1926
DOI
https://doi.org/10.2165/00003088-200241100-00005

Other articles of this Issue 10/2002

Clinical Pharmacokinetics 10/2002 Go to the issue