Skip to main content
Top
Published in: Annals of Surgical Oncology 2/2021

01-02-2021 | Translational Research and Biomarkers

CD36 Expression Is Associated with Cancer Aggressiveness and Energy Source in Esophageal Squamous Cell Carcinoma

Authors: Tomonori Yoshida, MD, Takehiko Yokobori, MD, PhD, Hideyuki Saito, MD, Kengo Kuriyama, MD, Yuji Kumakura, MD, PhD, Hiroaki Honjo, MD, PhD, Keigo Hara, MD, PhD, Makoto Sakai, MD, PhD, Tatsuya Miyazaki, MD, PhD, Hideru Obinata, PhD, Bilguun Erkhem-Ochir, MD, Navchaa Gombodorj, MD, PhD, Makoto Sohda, MD, PhD, Hiroshi Saeki, MD, PhD, Hiroyuki Kuwano, MD, PhD, Ken Shirabe, MD, PhD

Published in: Annals of Surgical Oncology | Issue 2/2021

Login to get access

Abstract

Background

Esophageal squamous cell carcinoma (ESCC) is an important cause of cancer-related death worldwide. CD36, a long-chain fatty acid (FA) receptor, can initiate metastasis in human oral squamous cell carcinoma (SCC), and its expression is associated with poor prognosis in several cancers. The clinical significance of CD36 expression and its function in ESCC remain unknown.

Methods

We examined the clinical significance of CD36 expression in 160 ESCC samples using immunohistochemical staining. Functional analysis was performed to determine the association between CD36 and ESCC characteristics (proliferative ability, invasive ability, and energy source dependency).

Results

Thirty (18.8%) ESCC cases showed high CD36 expression, indicating a significant association with progression. CD36 suppression inhibited proliferation and invasiveness in ESCC cells. ESCC cells with CD36 suppression used specific essential amino acids (EAAs) as energy sources. Cell viability depended on FAs under CD36 expression. The viability of ESCC cells with CD36 suppression depended on EAAs but not FAs.

Conclusions

CD36 may be a good biomarker and therapeutic target in ESCC. Our data provide new insights into the basic mechanism of CD36-dependent energy utilization for ESCC survival. CD36 might be a key regulator of the dependency of FAs as energy source in ESCC cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kato H, Fukuchi M, Miyazaki T, Nakajima M, Tanaka N, Inose T, et al. Surgical treatment for esophageal cancer. Current issues. Dig Surg. 2007;24:88–95CrossRef Kato H, Fukuchi M, Miyazaki T, Nakajima M, Tanaka N, Inose T, et al. Surgical treatment for esophageal cancer. Current issues. Dig Surg. 2007;24:88–95CrossRef
2.
go back to reference Ohashi S, Miyamoto S, Kikuchi O, Goto T, Amanuma Y, Muto M. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology. 2015;149:1700–15CrossRef Ohashi S, Miyamoto S, Kikuchi O, Goto T, Amanuma Y, Muto M. Recent advances from basic and clinical studies of esophageal squamous cell carcinoma. Gastroenterology. 2015;149:1700–15CrossRef
3.
go back to reference Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal. 2009;2:re3CrossRef Silverstein RL, Febbraio M. CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal. 2009;2:re3CrossRef
4.
go back to reference Samovski D, Sun J, Pietka T, Gross RW, Eckel RH, Su X, et al. Regulation of AMPK activation by CD36 links fatty acid uptake to beta-oxidation. Diabetes. 2015;64:353-9CrossRef Samovski D, Sun J, Pietka T, Gross RW, Eckel RH, Su X, et al. Regulation of AMPK activation by CD36 links fatty acid uptake to beta-oxidation. Diabetes. 2015;64:353-9CrossRef
5.
go back to reference Koonen DP, Glatz JF, Bonen A, Luiken JJ. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta. 2005;1736:163–80CrossRef Koonen DP, Glatz JF, Bonen A, Luiken JJ. Long-chain fatty acid uptake and FAT/CD36 translocation in heart and skeletal muscle. Biochim Biophys Acta. 2005;1736:163–80CrossRef
6.
go back to reference Pepino MY, Kuda O, Samovski D, Abumrad NA. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr. 2014;34:281–303CrossRef Pepino MY, Kuda O, Samovski D, Abumrad NA. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annu Rev Nutr. 2014;34:281–303CrossRef
7.
go back to reference Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, Attolini CS, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541:41–5CrossRef Pascual G, Avgustinova A, Mejetta S, Martin M, Castellanos A, Attolini CS, et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature. 2017;541:41–5CrossRef
8.
go back to reference Hale JS, Otvos B, Sinyuk M, Alvarado AG, Hitomi M, Stoltz K, et al. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells. 2014;32:1746–58CrossRef Hale JS, Otvos B, Sinyuk M, Alvarado AG, Hitomi M, Stoltz K, et al. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells. 2014;32:1746–58CrossRef
9.
go back to reference Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, et al. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci Transl Med. 2019;11 Watt MJ, Clark AK, Selth LA, Haynes VR, Lister N, Rebello R, et al. Suppressing fatty acid uptake has therapeutic effects in preclinical models of prostate cancer. Sci Transl Med. 2019;11
10.
go back to reference Ladanyi A, Mukherjee A, Kenny HA, Johnson A, Mitra AK, Sundaresan S, et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene. 2018;37:2285–301CrossRef Ladanyi A, Mukherjee A, Kenny HA, Johnson A, Mitra AK, Sundaresan S, et al. Adipocyte-induced CD36 expression drives ovarian cancer progression and metastasis. Oncogene. 2018;37:2285–301CrossRef
11.
go back to reference Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74CrossRef Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74CrossRef
12.
go back to reference Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47CrossRef Pavlova NN, Thompson CB. The emerging hallmarks of cancer metabolism. Cell Metab. 2016;23:27–47CrossRef
13.
go back to reference DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2:e1600200PubMed DeBerardinis RJ, Chandel NS. Fundamentals of cancer metabolism. Sci Adv. 2016;2:e1600200PubMed
14.
go back to reference Currie E, Schulze A, Zechner R, Walther TC, Farese RV, Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61CrossRef Currie E, Schulze A, Zechner R, Walther TC, Farese RV, Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18:153–61CrossRef
15.
go back to reference Li Z, Kang Y. Lipid metabolism fuels cancer’s spread. Cell Metab. 2017;25:228–30CrossRef Li Z, Kang Y. Lipid metabolism fuels cancer’s spread. Cell Metab. 2017;25:228–30CrossRef
16.
go back to reference Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498–503CrossRef Nieman KM, Kenny HA, Penicka CV, Ladanyi A, Buell-Gutbrod R, Zillhardt MR, et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat Med. 2011;17:1498–503CrossRef
17.
go back to reference Nakayama A, Aoki S, Uchihashi K, Nishijima-Matsunobu A, Yamamoto M, Kakihara N, et al. Interaction between esophageal squamous cell carcinoma and adipose tissue in vitro. Am J Pathol. 2016;186:1180–94CrossRef Nakayama A, Aoki S, Uchihashi K, Nishijima-Matsunobu A, Yamamoto M, Kakihara N, et al. Interaction between esophageal squamous cell carcinoma and adipose tissue in vitro. Am J Pathol. 2016;186:1180–94CrossRef
18.
go back to reference Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277:30409–12CrossRef Owen OE, Kalhan SC, Hanson RW. The key role of anaplerosis and cataplerosis for citric acid cycle function. J Biol Chem. 2002;277:30409–12CrossRef
19.
go back to reference Honjo H, Kaira K, Miyazaki T, Yokobori T, Kanai Y, Nagamori S, et al. Clinicopathological significance of LAT1 and ASCT2 in patients with surgically resected esophageal squamous cell carcinoma. J Surg Oncol. 2016;113:381–9CrossRef Honjo H, Kaira K, Miyazaki T, Yokobori T, Kanai Y, Nagamori S, et al. Clinicopathological significance of LAT1 and ASCT2 in patients with surgically resected esophageal squamous cell carcinoma. J Surg Oncol. 2016;113:381–9CrossRef
20.
go back to reference Suzuki M, Yokobori T, Gombodorj N, Yashiro M, Turtoi A, Handa T, et al. High stromal transforming growth factor beta-induced expression is a novel marker of progression and poor prognosis in gastric cancer. J Surg Oncol. 2018;118:966–74CrossRef Suzuki M, Yokobori T, Gombodorj N, Yashiro M, Turtoi A, Handa T, et al. High stromal transforming growth factor beta-induced expression is a novel marker of progression and poor prognosis in gastric cancer. J Surg Oncol. 2018;118:966–74CrossRef
21.
go back to reference Yang P, Su C, Luo X, Zeng H, Zhao L, Wei L, et al. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett. 2018;438:76–85CrossRef Yang P, Su C, Luo X, Zeng H, Zhao L, Wei L, et al. Dietary oleic acid-induced CD36 promotes cervical cancer cell growth and metastasis via up-regulation Src/ERK pathway. Cancer Lett. 2018;438:76–85CrossRef
22.
go back to reference Zheng ST, Huo Q, Tuerxun A, Ma WJ, Lv GD, Huang CG, et al. The expression and activation of ERK/MAPK pathway in human esophageal cancer cell line EC9706. Mol Biol Rep. 2011;38:865–72CrossRef Zheng ST, Huo Q, Tuerxun A, Ma WJ, Lv GD, Huang CG, et al. The expression and activation of ERK/MAPK pathway in human esophageal cancer cell line EC9706. Mol Biol Rep. 2011;38:865–72CrossRef
23.
go back to reference Jiang Y, Zhang J, Zhao J, Li Z, Chen H, Qiao Y, et al. TOPK promotes metastasis of esophageal squamous cell carcinoma by activating the Src/GSK3beta/STAT3 signaling pathway via gamma-catenin. BMC Cancer. 2019;19:1264CrossRef Jiang Y, Zhang J, Zhao J, Li Z, Chen H, Qiao Y, et al. TOPK promotes metastasis of esophageal squamous cell carcinoma by activating the Src/GSK3beta/STAT3 signaling pathway via gamma-catenin. BMC Cancer. 2019;19:1264CrossRef
24.
go back to reference Birnstein E, Schattner M. Nutritional support in esophagogastric cancers. Surg Oncol Clin N Am. 2017;26:325–33CrossRef Birnstein E, Schattner M. Nutritional support in esophagogastric cancers. Surg Oncol Clin N Am. 2017;26:325–33CrossRef
25.
go back to reference Nath A, Li I, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752CrossRef Nath A, Li I, Roberts LR, Chan C. Elevated free fatty acid uptake via CD36 promotes epithelial-mesenchymal transition in hepatocellular carcinoma. Sci Rep. 2015;5:14752CrossRef
Metadata
Title
CD36 Expression Is Associated with Cancer Aggressiveness and Energy Source in Esophageal Squamous Cell Carcinoma
Authors
Tomonori Yoshida, MD
Takehiko Yokobori, MD, PhD
Hideyuki Saito, MD
Kengo Kuriyama, MD
Yuji Kumakura, MD, PhD
Hiroaki Honjo, MD, PhD
Keigo Hara, MD, PhD
Makoto Sakai, MD, PhD
Tatsuya Miyazaki, MD, PhD
Hideru Obinata, PhD
Bilguun Erkhem-Ochir, MD
Navchaa Gombodorj, MD, PhD
Makoto Sohda, MD, PhD
Hiroshi Saeki, MD, PhD
Hiroyuki Kuwano, MD, PhD
Ken Shirabe, MD, PhD
Publication date
01-02-2021
Publisher
Springer International Publishing
Published in
Annals of Surgical Oncology / Issue 2/2021
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-020-08711-3

Other articles of this Issue 2/2021

Annals of Surgical Oncology 2/2021 Go to the issue