Skip to main content
Top
Published in: Annals of Surgical Oncology 11/2020

01-10-2020 | Gastric Cancer | Translational Research and Biomarkers

High RAD18 Expression is Associated with Disease Progression and Poor Prognosis in Patients with Gastric Cancer

Authors: Seded Baatar, MD, Tuya Bai, PhD, Takehiko Yokobori, MD, PhD, Navchaa Gombodorj, MD, PhD, Nobuhiro Nakazawa, MD, Yasunari Ubukata, MD, Akiharu Kimura, MD, PhD, Norimichi Kogure, MD, PhD, Akihiko Sano, MD, PhD, Makoto Sohda, MD, PhD, Makoto Sakai, MD, PhD, Amartuvshin Tumenjargal, MD, Kyoichi Ogata, MD, PhD, Hiroyuki Kuwano, MD, PhD, Ken Shirabe, MD, PhD, Hiroshi Saeki, MD, PhD

Published in: Annals of Surgical Oncology | Issue 11/2020

Login to get access

Abstract

Background

RAD18 plays an important role in DNA damage repair by inducing monoubiquitinated PCNA (mUB-PCNA) in both cancer and normal tissues. Previous studies have not determined the significance of RAD18 expression in clinical gastric cancer (GC) samples. Thus, this study aimed to clarify the expression and functional significance of RAD18 in GC.

Methods

Overall, 96 resected GC samples were subjected to an immunohistochemical analysis of RAD18. GC cell lines were also subjected to functional RNA interference analyses of RAD18.

Results

RAD18 expression was predominantly nuclear and was observed at higher levels in GC tissues than in normal tissues. In GC tissues, strong RAD18 expression was associated with progression of lymph node metastasis (p = 0.0001), lymphatic invasion (p = 0.0255), venous invasion (p < 0.0001), recurrence (p = 0.028), and disease stage (p = 0.0253). Moreover, GC patients with high tumor RAD18 expression had shorter overall survival (p = 0.0061) and recurrence-free survival durations (p = 0.035) than those with low tumor RAD18 expression. RAD18 knockdown inhibited GC proliferation and invasiveness and increased chemosensitivity by suppressing mUB-PCNA.

Conclusions

RAD18 expression may be a useful marker of progression and poor prognosis of GC. Moreover, therapeutic strategies that target RAD18 might be a novel chemosensitizer to eradicate the refractory GC.
Appendix
Available only for authorised users
Literature
1.
go back to reference Carlomagno N, Incollingo P, Tammaro V, et al. Diagnostic, predictive, prognostic, and therapeutic molecular biomarkers in third millennium: a breakthrough in gastric cancer. Biomed Res Int. 2017;2017:7869802.PubMedPubMedCentralCrossRef Carlomagno N, Incollingo P, Tammaro V, et al. Diagnostic, predictive, prognostic, and therapeutic molecular biomarkers in third millennium: a breakthrough in gastric cancer. Biomed Res Int. 2017;2017:7869802.PubMedPubMedCentralCrossRef
2.
go back to reference Cao J, Qi F, Liu T. Adjuvant chemotherapy after curative resection for gastric cancer: a meta-analysis. Scand J Gastroenterol. 2014;49(6):690–704.PubMedCrossRef Cao J, Qi F, Liu T. Adjuvant chemotherapy after curative resection for gastric cancer: a meta-analysis. Scand J Gastroenterol. 2014;49(6):690–704.PubMedCrossRef
3.
go back to reference Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.PubMedCrossRef
4.
go back to reference Varanasi L, Do PM, Goluszko E, Martinez LA. Rad18 is a transcriptional target of E2F3. Cell Cycle. 2012;11(6):1131–41.PubMedCrossRef Varanasi L, Do PM, Goluszko E, Martinez LA. Rad18 is a transcriptional target of E2F3. Cell Cycle. 2012;11(6):1131–41.PubMedCrossRef
5.
go back to reference Hibbert RG, Huang A, Boelens R, Sixma TK. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proc Natl Acad Sci USA. 2011;108(14):5590–5.PubMedCrossRef Hibbert RG, Huang A, Boelens R, Sixma TK. E3 ligase Rad18 promotes monoubiquitination rather than ubiquitin chain formation by E2 enzyme Rad6. Proc Natl Acad Sci USA. 2011;108(14):5590–5.PubMedCrossRef
6.
go back to reference Zou S, Yang J, Guo J, et al. RAD18 promotes the migration and invasion of esophageal squamous cell cancer via the JNK-MMPs pathway. Cancer Lett. 2018;417:65–74.PubMedCrossRef Zou S, Yang J, Guo J, et al. RAD18 promotes the migration and invasion of esophageal squamous cell cancer via the JNK-MMPs pathway. Cancer Lett. 2018;417:65–74.PubMedCrossRef
7.
go back to reference Suzuki M, Yokobori T, Gombodorj N, et al. High stromal transforming growth factor beta-induced expression is a novel marker of progression and poor prognosis in gastric cancer. J Surg Oncol. 2018;118(6):966–74.PubMedCrossRef Suzuki M, Yokobori T, Gombodorj N, et al. High stromal transforming growth factor beta-induced expression is a novel marker of progression and poor prognosis in gastric cancer. J Surg Oncol. 2018;118(6):966–74.PubMedCrossRef
8.
go back to reference Zhang W, Qin Z, Zhang X, Xiao W. Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett. 2011;585(18):2786–94.PubMedCrossRef Zhang W, Qin Z, Zhang X, Xiao W. Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett. 2011;585(18):2786–94.PubMedCrossRef
9.
go back to reference Hedglin M, Aitha M, Pedley A, Benkovic SJ. Replication protein A dynamically regulates monoubiquitination of proliferating cell nuclear antigen. J Biol Chem. 2019;294(13):5157–68.PubMedPubMedCentralCrossRef Hedglin M, Aitha M, Pedley A, Benkovic SJ. Replication protein A dynamically regulates monoubiquitination of proliferating cell nuclear antigen. J Biol Chem. 2019;294(13):5157–68.PubMedPubMedCentralCrossRef
10.
go back to reference Garg P, Burgers PM. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. Proc Natl Acad Sci USA. 2005;102(51):18361–6.PubMedCrossRef Garg P, Burgers PM. Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. Proc Natl Acad Sci USA. 2005;102(51):18361–6.PubMedCrossRef
11.
go back to reference Nakamura T, Ishikawa S, Koga Y, et al. Mutation analysis of Rad18 in human cancer cell lines and non small cell lung cancer tissues. J Exp Clin Cancer Res. 2009;28:106.PubMedPubMedCentralCrossRef Nakamura T, Ishikawa S, Koga Y, et al. Mutation analysis of Rad18 in human cancer cell lines and non small cell lung cancer tissues. J Exp Clin Cancer Res. 2009;28:106.PubMedPubMedCentralCrossRef
12.
go back to reference Durando M, Tateishi S, Vaziri C. A non-catalytic role of DNA polymerase eta in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks. Nucleic Acids Res. 2013;41(5):3079–93.PubMedPubMedCentralCrossRef Durando M, Tateishi S, Vaziri C. A non-catalytic role of DNA polymerase eta in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks. Nucleic Acids Res. 2013;41(5):3079–93.PubMedPubMedCentralCrossRef
13.
go back to reference Shiomi N, Mori M, Tsuji H, et al. Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination. Nucleic Acids Res. 2007;35(2):e9.PubMedCrossRef Shiomi N, Mori M, Tsuji H, et al. Human RAD18 is involved in S phase-specific single-strand break repair without PCNA monoubiquitination. Nucleic Acids Res. 2007;35(2):e9.PubMedCrossRef
14.
go back to reference Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 2004;23(19):3886–96.PubMedPubMedCentralCrossRef Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T, Inoue H, Yamaizumi M. Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J. 2004;23(19):3886–96.PubMedPubMedCentralCrossRef
15.
go back to reference Liu T, Chen H, Kim H, Huen MS, Chen J, Huang J. RAD18-BRCTx interaction is required for efficient repair of UV-induced DNA damage. DNA Repair (Amst). 2012;11(2):131–8.CrossRef Liu T, Chen H, Kim H, Huen MS, Chen J, Huang J. RAD18-BRCTx interaction is required for efficient repair of UV-induced DNA damage. DNA Repair (Amst). 2012;11(2):131–8.CrossRef
16.
go back to reference Yan X, Chen J, Meng Y, et al. RAD18 may function as a predictor of response to preoperative concurrent chemoradiotherapy in patients with locally advanced rectal cancer through caspase-9-caspase-3-dependent apoptotic pathway. Cancer Med. 2019;8(6):3094–104.PubMedPubMedCentral Yan X, Chen J, Meng Y, et al. RAD18 may function as a predictor of response to preoperative concurrent chemoradiotherapy in patients with locally advanced rectal cancer through caspase-9-caspase-3-dependent apoptotic pathway. Cancer Med. 2019;8(6):3094–104.PubMedPubMedCentral
17.
go back to reference Lou P, Zou S, Shang Z, et al. RAD18 contributes to the migration and invasion of human cervical cancer cells via the interleukin1beta pathway. Mol Med Rep. 2019;20(4):3415–23.PubMed Lou P, Zou S, Shang Z, et al. RAD18 contributes to the migration and invasion of human cervical cancer cells via the interleukin1beta pathway. Mol Med Rep. 2019;20(4):3415–23.PubMed
18.
go back to reference Wong RP, Aguissa-Toure AH, Wani AA, et al. Elevated expression of Rad18 regulates melanoma cell proliferation. Pigment Cell Melanoma Res. 2012;25(2):213–8.PubMedCrossRef Wong RP, Aguissa-Toure AH, Wani AA, et al. Elevated expression of Rad18 regulates melanoma cell proliferation. Pigment Cell Melanoma Res. 2012;25(2):213–8.PubMedCrossRef
Metadata
Title
High RAD18 Expression is Associated with Disease Progression and Poor Prognosis in Patients with Gastric Cancer
Authors
Seded Baatar, MD
Tuya Bai, PhD
Takehiko Yokobori, MD, PhD
Navchaa Gombodorj, MD, PhD
Nobuhiro Nakazawa, MD
Yasunari Ubukata, MD
Akiharu Kimura, MD, PhD
Norimichi Kogure, MD, PhD
Akihiko Sano, MD, PhD
Makoto Sohda, MD, PhD
Makoto Sakai, MD, PhD
Amartuvshin Tumenjargal, MD
Kyoichi Ogata, MD, PhD
Hiroyuki Kuwano, MD, PhD
Ken Shirabe, MD, PhD
Hiroshi Saeki, MD, PhD
Publication date
01-10-2020
Publisher
Springer International Publishing
Published in
Annals of Surgical Oncology / Issue 11/2020
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-020-08518-2

Other articles of this Issue 11/2020

Annals of Surgical Oncology 11/2020 Go to the issue