Skip to main content
Top
Published in: Annals of Surgical Oncology 4/2014

01-12-2014 | Translational Research and Biomarkers

LKB1 Loss at Transcriptional Level Promotes Tumor Malignancy and Poor Patient Outcomes in Colorectal Cancer

Authors: Tsung-Ying He, MD, Lung-Hung Tsai, PhD, Chi-Chou Huang, MD, PhD, Ming-Chih Chou, MD, PhD, Huei Lee, PhD

Published in: Annals of Surgical Oncology | Special Issue 4/2014

Login to get access

Abstract

Background

Liver kinase B1 (LKB1) loss by gene mutation, loss of heterozygosity, and promoter methylation rarely occurs in colorectal cancer. We wondered whether LKB1 loss could be deregulated at the transcriptional level to promote tumor progression and poor outcome in colorectal cancer.

Methods

Mechanistic studies were performed in two each of p53 wild-type (HCT116, LoVo) and p53-mutated (SW480, HT29) colon cancer cells to explore whether LKB1 loss could be deregulated by NKX2-1-mediated p53 pathway. LKB1 and NK2 homeobox 1 (NKX2-1) expressions in colorectal tumors were determined by immunohistochemistry, and the prognostic value of both molecules was assessed by Kaplan–Meier test and Cox regression model.

Results

Mechanistically, LKB1 loss at the transcriptional level due to alteration of the NKX2-1-mediated p53 pathway promotes invasiveness in colon cancer cells. The cell invasiveness induced by LKB1 loss was nearly suppressed by mammalian target of rapamycin (mTOR) inhibitor (rapamycin and everolimus) and mTOR/AKT dual inhibitor Palomid 529 (P529). Among patients, low LKB1 tumors exhibited shorter overall survival (OS) and relapse-free survival periods than high LKB1 tumors. The highest hazard ratio value for OS and relapse-free survival was observed in wild-type p53 with low LKB1/low NKX2-1 tumors and in mutated p53 with low LKB1/high NKX2-1 tumors when wild-type p53 with high LKB1/high NKX2-1 and mutated p53 with high LKB1/low NKX2-1 tumors were used as references.

Conclusions

LKB1 loss at the transcriptional level via alteration of the NKX2-1/p53 axis promotes cell invasion, consequently resulting in poor outcome in colorectal cancer patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998;391(6663):184–7.PubMedCrossRef Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998;391(6663):184–7.PubMedCrossRef
2.
go back to reference Wang HH, Xie NN, Li QY, Hu YQ, Ren JL, Guleng B. Exome sequencing revealed novel germline mutations in Chinese Peutz-Jeghers syndrome patients. Dig Dis Sci. 2014;59:64–71.PubMedCrossRef Wang HH, Xie NN, Li QY, Hu YQ, Ren JL, Guleng B. Exome sequencing revealed novel germline mutations in Chinese Peutz-Jeghers syndrome patients. Dig Dis Sci. 2014;59:64–71.PubMedCrossRef
3.
go back to reference Gao Y, Zhang FM, Huang S, Wang X, Zhang P, Huang XD, et al. A De Novo mutation of STK11 gene in a Chinese patient with Peutz-Jeghers syndrome. Dig Dis Sci. 2010;55:1032–6.PubMedCrossRef Gao Y, Zhang FM, Huang S, Wang X, Zhang P, Huang XD, et al. A De Novo mutation of STK11 gene in a Chinese patient with Peutz-Jeghers syndrome. Dig Dis Sci. 2010;55:1032–6.PubMedCrossRef
4.
go back to reference Zheng B, Pan J, Wang Y, Li M, Lian M, Zheng Y, et al. Analysis of STK11 gene variant in five Chinese patients with Peutz-Jeghers syndrome. Dig Dis Sci. 2013;58:2868–72.PubMedCrossRef Zheng B, Pan J, Wang Y, Li M, Lian M, Zheng Y, et al. Analysis of STK11 gene variant in five Chinese patients with Peutz-Jeghers syndrome. Dig Dis Sci. 2013;58:2868–72.PubMedCrossRef
5.
go back to reference Yoon KA, Ku JL, Choi HS, Heo SC, Jeong SY, Park YJ, et al. Germline mutations of the STK11 gene in Korean Peutz-Jeghers syndrome patients. Br J Cancer. 2000;82:1403–6.PubMedCentralPubMed Yoon KA, Ku JL, Choi HS, Heo SC, Jeong SY, Park YJ, et al. Germline mutations of the STK11 gene in Korean Peutz-Jeghers syndrome patients. Br J Cancer. 2000;82:1403–6.PubMedCentralPubMed
6.
go back to reference Launonen V, Avizienyte E, Loukola A, Laiho P, Salovaara R, Järvinen H, et al. No evidence of Peutz-Jeghers syndrome gene LKB1 involvement in left-sided colorectal carcinomas. Cancer Res. 2000;60:546–8.PubMed Launonen V, Avizienyte E, Loukola A, Laiho P, Salovaara R, Järvinen H, et al. No evidence of Peutz-Jeghers syndrome gene LKB1 involvement in left-sided colorectal carcinomas. Cancer Res. 2000;60:546–8.PubMed
7.
go back to reference Avizienyte E, Roth S, Loukola A, Hemminki A, Lothe RA, Stenwig A, et al. Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors. Cancer Res. 1998;58:2087–90.PubMed Avizienyte E, Roth S, Loukola A, Hemminki A, Lothe RA, Stenwig A, et al. Somatic mutations in LKB1 are rare in sporadic colorectal and testicular tumors. Cancer Res. 1998;58:2087–90.PubMed
8.
go back to reference Avizienyte E, Loukola A, Roth S, Hemminki A, Tarkkanen M, Salovaara R, et al. LKB1 somatic mutations in sporadic tumors. Am J Pathol. 1999;154:677–81.PubMedCentralPubMedCrossRef Avizienyte E, Loukola A, Roth S, Hemminki A, Tarkkanen M, Salovaara R, et al. LKB1 somatic mutations in sporadic tumors. Am J Pathol. 1999;154:677–81.PubMedCentralPubMedCrossRef
9.
go back to reference Trojan J, Brieger A, Raedle J, Esteller M, Zeuzem S. 5′-CpG island methylation of the LKB1/STK11 promoter and allelic loss at chromosome 19p13.3 in sporadic colorectal cancer. Gut. 2000;47:272–6.PubMedCentralPubMedCrossRef Trojan J, Brieger A, Raedle J, Esteller M, Zeuzem S. 5′-CpG island methylation of the LKB1/STK11 promoter and allelic loss at chromosome 19p13.3 in sporadic colorectal cancer. Gut. 2000;47:272–6.PubMedCentralPubMedCrossRef
10.
go back to reference Forster LF, Defres S, Goudie DR, Baty DU, Carey FA. An investigation of the Peutz-Jeghers gene (LKB1) in sporadic breast and colon cancers. J Clin Pathol. 2000;53:791–3.PubMedCentralPubMedCrossRef Forster LF, Defres S, Goudie DR, Baty DU, Carey FA. An investigation of the Peutz-Jeghers gene (LKB1) in sporadic breast and colon cancers. J Clin Pathol. 2000;53:791–3.PubMedCentralPubMedCrossRef
11.
go back to reference Saigusa S, Inoue Y, Tanaka K, Toiyama Y, Kawamura M, Okugawa Y, et al. Significant correlation between LKB1 and LGR5 gene expression and the association with poor recurrence-free survival in rectal cancer after preoperative chemoradiotherapy. J Cancer Res Clin Oncol. 2013;139:131–8.PubMedCrossRef Saigusa S, Inoue Y, Tanaka K, Toiyama Y, Kawamura M, Okugawa Y, et al. Significant correlation between LKB1 and LGR5 gene expression and the association with poor recurrence-free survival in rectal cancer after preoperative chemoradiotherapy. J Cancer Res Clin Oncol. 2013;139:131–8.PubMedCrossRef
13.
go back to reference Shen Z, Wen XF, Lan F, Shen ZZ, Shao ZM. The tumor suppressor gene LKB1 is associated with prognosis in human breast carcinoma. Clin Cancer Res. 2002;8:2085–90.PubMed Shen Z, Wen XF, Lan F, Shen ZZ, Shao ZM. The tumor suppressor gene LKB1 is associated with prognosis in human breast carcinoma. Clin Cancer Res. 2002;8:2085–90.PubMed
14.
go back to reference Gu Y, Lin S, Li JL, Nakagawa H, Chen Z, Jin B, et al. Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion. Oncogene. 2012;31:469–79.PubMedCrossRef Gu Y, Lin S, Li JL, Nakagawa H, Chen Z, Jin B, et al. Altered LKB1/CREB-regulated transcription co-activator (CRTC) signaling axis promotes esophageal cancer cell migration and invasion. Oncogene. 2012;31:469–79.PubMedCrossRef
15.
go back to reference Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature. 2007;448(7155):807–10.PubMedCrossRef Ji H, Ramsey MR, Hayes DN, Fan C, McNamara K, Kozlowski P, et al. LKB1 modulates lung cancer differentiation and metastasis. Nature. 2007;448(7155):807–10.PubMedCrossRef
16.
go back to reference Scott KD, Nath-Sain S, Agnew MD, Marignani PA. LKB1 catalytically deficient mutants enhance cyclin D1 expression. Cancer Res. 2007;67:5622–7.PubMedCrossRef Scott KD, Nath-Sain S, Agnew MD, Marignani PA. LKB1 catalytically deficient mutants enhance cyclin D1 expression. Cancer Res. 2007;67:5622–7.PubMedCrossRef
17.
go back to reference Feng Y, Wang Y, Wang Z, Fang Z, Li F, Gao Y, et al. The CRTC1-NEDD9 signaling axis mediates lung cancer progression caused by LKB1 loss. Cancer Res. 2012;72:6502–11.PubMedCentralPubMedCrossRef Feng Y, Wang Y, Wang Z, Fang Z, Li F, Gao Y, et al. The CRTC1-NEDD9 signaling axis mediates lung cancer progression caused by LKB1 loss. Cancer Res. 2012;72:6502–11.PubMedCentralPubMedCrossRef
18.
go back to reference Gao Y, Xiao Q, Ma H, Li L, Liu J, Feng Y, et al. LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling. Proc Natl Acad Sci USA. 2010;107:18892–7.PubMedCentralPubMedCrossRef Gao Y, Xiao Q, Ma H, Li L, Liu J, Feng Y, et al. LKB1 inhibits lung cancer progression through lysyl oxidase and extracellular matrix remodeling. Proc Natl Acad Sci USA. 2010;107:18892–7.PubMedCentralPubMedCrossRef
19.
go back to reference Upadhyay S, Liu C, Chatterjee A, Hoque MO, Kim MS, Engles J, et al. LKB1/STK11 suppresses cyclooxygenase-2 induction and cellular invasion through PEA3 in lung cancer. Cancer Res. 2006;66:7870–9.PubMedCrossRef Upadhyay S, Liu C, Chatterjee A, Hoque MO, Kim MS, Engles J, et al. LKB1/STK11 suppresses cyclooxygenase-2 induction and cellular invasion through PEA3 in lung cancer. Cancer Res. 2006;66:7870–9.PubMedCrossRef
20.
go back to reference Takeda H, Miyoshi H, Kojima Y, Oshima M, Taketo MM. Accelerated onsets of gastric hamartomas and hepatic adenomas/carcinomas in Lkb1+/−p53−/− compound mutant mice. Oncogene. 2006;25:1816–20.PubMedCrossRef Takeda H, Miyoshi H, Kojima Y, Oshima M, Taketo MM. Accelerated onsets of gastric hamartomas and hepatic adenomas/carcinomas in Lkb1+/−p53−/− compound mutant mice. Oncogene. 2006;25:1816–20.PubMedCrossRef
21.
go back to reference Miyoshi H, Nakau M, Ishikawa TO, Seldin MF, Oshima M, Taketo MM. Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res. 2002;62:2261–6.PubMed Miyoshi H, Nakau M, Ishikawa TO, Seldin MF, Oshima M, Taketo MM. Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res. 2002;62:2261–6.PubMed
22.
go back to reference Duivenvoorden WC, Beatty LK, Lhotak S, Hill B, Mak I, Paulin G, et al. Underexpression of tumour suppressor LKB1 in clear cell renal cell carcinoma is common and confers growth advantage in vitro and in vivo. Br J Cancer. 2013;108:327–33.PubMedCentralPubMedCrossRef Duivenvoorden WC, Beatty LK, Lhotak S, Hill B, Mak I, Paulin G, et al. Underexpression of tumour suppressor LKB1 in clear cell renal cell carcinoma is common and confers growth advantage in vitro and in vivo. Br J Cancer. 2013;108:327–33.PubMedCentralPubMedCrossRef
23.
go back to reference Liu W, Monahan KB, Pfefferle AD, Shimamura T, Sorrentino J, Chan KT, et al. LKB1/STK11 inactivation leads to expansion of a prometastatic tumor subpopulation in melanoma. Cancer Cell. 2012;21:751–64.PubMedCentralPubMedCrossRef Liu W, Monahan KB, Pfefferle AD, Shimamura T, Sorrentino J, Chan KT, et al. LKB1/STK11 inactivation leads to expansion of a prometastatic tumor subpopulation in melanoma. Cancer Cell. 2012;21:751–64.PubMedCentralPubMedCrossRef
24.
go back to reference Morton JP, Jamieson NB, Karim SA, Athineos D, Ridgway RA, Nixon C, et al. LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology. 2010;139:586–97, e581–6.PubMedCentralPubMedCrossRef Morton JP, Jamieson NB, Karim SA, Athineos D, Ridgway RA, Nixon C, et al. LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology. 2010;139:586–97, e581–6.PubMedCentralPubMedCrossRef
25.
go back to reference Huang YH, Chen ZK, Huang KT, Li P, He B, Guo X, et al. Decreased expression of LKB1 correlates with poor prognosis in hepatocellular carcinoma patients undergoing hepatectomy. Asian Pac J Cancer Prev. 2013;14:1985–8.PubMedCrossRef Huang YH, Chen ZK, Huang KT, Li P, He B, Guo X, et al. Decreased expression of LKB1 correlates with poor prognosis in hepatocellular carcinoma patients undergoing hepatectomy. Asian Pac J Cancer Prev. 2013;14:1985–8.PubMedCrossRef
26.
go back to reference Tsai LH, Chen PM, Cheng YW, Chen CY, Sheu GT, Wu TC, et al. LKB1 loss by alteration of the NKX2-1/p53 pathway promotes tumor malignancy and predicts poor survival and relapse in lung adenocarcinomas. Oncogene. In press. Tsai LH, Chen PM, Cheng YW, Chen CY, Sheu GT, Wu TC, et al. LKB1 loss by alteration of the NKX2-1/p53 pathway promotes tumor malignancy and predicts poor survival and relapse in lung adenocarcinomas. Oncogene. In press.
27.
go back to reference Ko JL, Chiao MC, Chang SL, Lin P, Lin JC, Sheu GT, et al. A novel p53 mutant retained functional activity in lung carcinomas. DNA Repair (Amst). 2002;1:755–62.PubMedCrossRef Ko JL, Chiao MC, Chang SL, Lin P, Lin JC, Sheu GT, et al. A novel p53 mutant retained functional activity in lung carcinomas. DNA Repair (Amst). 2002;1:755–62.PubMedCrossRef
28.
go back to reference Chen PM, Wu TC, Wang YC, Cheng YW, Sheu GT, Chen CY, et al. Activation of NF-kappaB by SOD2 promotes the aggressiveness of lung adenocarcinoma by modulating NKX2-1-mediated IKKbeta expression. Carcinogenesis. 2013;34:2655–63.PubMedCrossRef Chen PM, Wu TC, Wang YC, Cheng YW, Sheu GT, Chen CY, et al. Activation of NF-kappaB by SOD2 promotes the aggressiveness of lung adenocarcinoma by modulating NKX2-1-mediated IKKbeta expression. Carcinogenesis. 2013;34:2655–63.PubMedCrossRef
29.
go back to reference Wu DW, Lee MC, Wang J, Chen CY, Cheng YW, Lee H. DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer. Oncogene. 2014;33:1515–26.PubMedCrossRef Wu DW, Lee MC, Wang J, Chen CY, Cheng YW, Lee H. DDX3 loss by p53 inactivation promotes tumor malignancy via the MDM2/Slug/E-cadherin pathway and poor patient outcome in non-small-cell lung cancer. Oncogene. 2014;33:1515–26.PubMedCrossRef
30.
go back to reference Chen TH, Huang CC, Yeh KT, Chang SH, Chang SW, Sung WW, et al. Human papilloma virus 16 E6 oncoprotein associated with p53 inactivation in colorectal cancer. World J Gastroenterol. 2012;18:4051–8.PubMedCentralPubMedCrossRef Chen TH, Huang CC, Yeh KT, Chang SH, Chang SW, Sung WW, et al. Human papilloma virus 16 E6 oncoprotein associated with p53 inactivation in colorectal cancer. World J Gastroenterol. 2012;18:4051–8.PubMedCentralPubMedCrossRef
31.
go back to reference Esteller M, Avizienyte E, Corn PG, Lothe RA, Baylin SB, Aaltonen LA, et al. Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene. 2000;19:164–8.PubMedCrossRef Esteller M, Avizienyte E, Corn PG, Lothe RA, Baylin SB, Aaltonen LA, et al. Epigenetic inactivation of LKB1 in primary tumors associated with the Peutz-Jeghers syndrome. Oncogene. 2000;19:164–8.PubMedCrossRef
32.
33.
go back to reference Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6:91–9.PubMedCrossRef Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell. 2004;6:91–9.PubMedCrossRef
34.
go back to reference Zhong D, Liu X, Khuri FR, Sun SY, Vertino PM, Zhou W. LKB1 is necessary for Akt-mediated phosphorylation of proapoptotic proteins. Cancer Res. 2008;68:7270–7.PubMedCentralPubMedCrossRef Zhong D, Liu X, Khuri FR, Sun SY, Vertino PM, Zhou W. LKB1 is necessary for Akt-mediated phosphorylation of proapoptotic proteins. Cancer Res. 2008;68:7270–7.PubMedCentralPubMedCrossRef
Metadata
Title
LKB1 Loss at Transcriptional Level Promotes Tumor Malignancy and Poor Patient Outcomes in Colorectal Cancer
Authors
Tsung-Ying He, MD
Lung-Hung Tsai, PhD
Chi-Chou Huang, MD, PhD
Ming-Chih Chou, MD, PhD
Huei Lee, PhD
Publication date
01-12-2014
Publisher
Springer US
Published in
Annals of Surgical Oncology / Issue Special Issue 4/2014
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-014-3824-1

Other articles of this Special Issue 4/2014

Annals of Surgical Oncology 4/2014 Go to the issue