Skip to main content
Top
Published in: Annals of Surgical Oncology 9/2013

01-09-2013 | Thoracic Oncology

EGFR and TTF-1 Gene Amplification in Surgically Resected Lung Adenocarcinomas: Clinicopathologic Significance and Effect on Response to EGFR-Tyrosine Kinase Inhibitors in Recurred Cases

Authors: Jae Seok Lee, MD, Hye Ryun Kim, MD, Chang Young Lee, MD, Mihwa Shin, BSc, Hyo Sup Shim, MD, PhD

Published in: Annals of Surgical Oncology | Issue 9/2013

Login to get access

Abstract

Background

Gene amplifications are implicated in cancer development and progression. In this study we investigated the clinicopathologic characteristics associated with EGFR or TTF-1 amplification in lung adenocarcinomas and its prognostic significance.

Methods

We analyzed 118 cases of surgically resected primary lung adenocarcinomas. Amplification of the EGFR or TTF-1 gene was evaluated by fluorescence in situ hybridization and correlated with patients’ clinicopathologic features, including disease-free survival (DFS) and overall survival (OS), in all patients and a subset that were TTF-1 positive or had EGFR mutation. Progression-free survival (PFS) also was analyzed among patients with EGFR mutation who had recurred cancer that was treated with EGFR tyrosine kinase inhibitors.

Results

EGFR or TTF-1 gene amplification was an independent poor prognostic factor for DFS in all patients (p = 0.001), in patients with TTF-1 positivity (p = 0.010), and in patients with EGFR mutation (p < 0.001) and for OS in patients with TTF-1 positivity (p = 0.021) and patients with EGFR mutation (p < 0.001). Patients with TTF-1 amplification had a shorter PFS following EGFR TKI treatment (p = 0.040).

Conclusions

EGFR or TTF-1 gene amplification was a predictive factor for poor prognosis in terms of DFS and OS, especially in patients with TTF-1 positivity or EGFR mutation. Our results also suggested that TTF-1 amplification might be a predictive marker of poor response to EGFR-TKI therapy in patients with recurrent tumor after surgical resection.
Appendix
Available only for authorised users
Literature
1.
go back to reference Macconaill LE, Garraway LA. Clinical implications of the cancer genome. J Clin Oncol. 2010;28:5219–28.PubMedCrossRef Macconaill LE, Garraway LA. Clinical implications of the cancer genome. J Clin Oncol. 2010;28:5219–28.PubMedCrossRef
2.
go back to reference Cagle PT, Chirieac LR. Advances in treatment of lung cancer with targeted therapy. Arch Pathol Lab Med. 2012;136:504–9.PubMedCrossRef Cagle PT, Chirieac LR. Advances in treatment of lung cancer with targeted therapy. Arch Pathol Lab Med. 2012;136:504–9.PubMedCrossRef
3.
go back to reference Janku F, Stewart DJ, Kurzrock R. Targeted therapy in non-small-cell lung cancer—is it becoming a reality? Nat Rev Clin Oncol. 2010;7:401–14.PubMedCrossRef Janku F, Stewart DJ, Kurzrock R. Targeted therapy in non-small-cell lung cancer—is it becoming a reality? Nat Rev Clin Oncol. 2010;7:401–14.PubMedCrossRef
4.
go back to reference Yatabe Y. EGFR mutations and the terminal respiratory unit. Cancer Metastasis Rev. 2010;29:23–36.PubMedCrossRef Yatabe Y. EGFR mutations and the terminal respiratory unit. Cancer Metastasis Rev. 2010;29:23–36.PubMedCrossRef
5.
go back to reference Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.PubMedCrossRef Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N, et al. Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med. 2009;361:947–57.PubMedCrossRef
6.
go back to reference Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450:893–8.PubMedCrossRef Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450:893–8.PubMedCrossRef
7.
go back to reference Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KC, Lakshmi B, et al. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci USA. 2007;104:16663–8.PubMedCrossRef Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KC, Lakshmi B, et al. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci USA. 2007;104:16663–8.PubMedCrossRef
8.
go back to reference Yatabe Y, Takahashi T, Mitsudomi T. Epidermal growth factor receptor gene amplification is acquired in association with tumor progression of EGFR-mutated lung cancer. Cancer Res. 2008;68:2106–11.PubMedCrossRef Yatabe Y, Takahashi T, Mitsudomi T. Epidermal growth factor receptor gene amplification is acquired in association with tumor progression of EGFR-mutated lung cancer. Cancer Res. 2008;68:2106–11.PubMedCrossRef
9.
go back to reference Yamaguchi T, Yanagisawa K, Sugiyama R, Hosono Y, Shimada Y, Arima C, et al. NKX2-1/TITF1/TTF-1-induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell. 2012;21:348–61.PubMedCrossRef Yamaguchi T, Yanagisawa K, Sugiyama R, Hosono Y, Shimada Y, Arima C, et al. NKX2-1/TITF1/TTF-1-induced ROR1 is required to sustain EGFR survival signaling in lung adenocarcinoma. Cancer Cell. 2012;21:348–61.PubMedCrossRef
10.
go back to reference Winslow MM, Dayton TL, Verhaak RG, Kim-Kiselak C, Snyder EL, Feldser DM, et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature. 2011;473:101–4.PubMedCrossRef Winslow MM, Dayton TL, Verhaak RG, Kim-Kiselak C, Snyder EL, Feldser DM, et al. Suppression of lung adenocarcinoma progression by Nkx2-1. Nature. 2011;473:101–4.PubMedCrossRef
11.
go back to reference Barletta JA, Perner S, Iafrate AJ, Yeap BY, Weir BA, Johnson LA, et al. Clinical significance of TTF-1 protein expression and TTF-1 gene amplification in lung adenocarcinoma. J Cell Mol Med. 2009;13:1977–86.PubMedCrossRef Barletta JA, Perner S, Iafrate AJ, Yeap BY, Weir BA, Johnson LA, et al. Clinical significance of TTF-1 protein expression and TTF-1 gene amplification in lung adenocarcinoma. J Cell Mol Med. 2009;13:1977–86.PubMedCrossRef
12.
go back to reference Li X, Wan L, Shen H, Geng J, Nie J, Wang G, et al. Thyroid transcription factor-1 amplification and expressions in lung adenocarcinoma tissues and pleural effusions predict patient survival and prognosis. J Thorac Oncol. 2012;7:76–84.PubMedCrossRef Li X, Wan L, Shen H, Geng J, Nie J, Wang G, et al. Thyroid transcription factor-1 amplification and expressions in lung adenocarcinoma tissues and pleural effusions predict patient survival and prognosis. J Thorac Oncol. 2012;7:76–84.PubMedCrossRef
13.
go back to reference Tang X, Kadara H, Behrens C, Liu DD, Xiao Y, Rice D, et al. Abnormalities of the TITF-1 lineage-specific oncogene in NSCLC: implications in lung cancer pathogenesis and prognosis. Clin Cancer Res. 2011;17:2434–43.PubMedCrossRef Tang X, Kadara H, Behrens C, Liu DD, Xiao Y, Rice D, et al. Abnormalities of the TITF-1 lineage-specific oncogene in NSCLC: implications in lung cancer pathogenesis and prognosis. Clin Cancer Res. 2011;17:2434–43.PubMedCrossRef
14.
go back to reference Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.PubMedCrossRef Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.PubMedCrossRef
15.
go back to reference Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703.PubMedCrossRef Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–703.PubMedCrossRef
16.
go back to reference Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97:643–55.PubMedCrossRef Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97:643–55.PubMedCrossRef
17.
go back to reference Perner S, Wagner PL, Soltermann A, LaFargue C, Tischler V, Weir BA, et al. TTF1 expression in non-small cell lung carcinoma: association with TTF1 gene amplification and improved survival. J Pathol. 2009;217:65–72.PubMedCrossRef Perner S, Wagner PL, Soltermann A, LaFargue C, Tischler V, Weir BA, et al. TTF1 expression in non-small cell lung carcinoma: association with TTF1 gene amplification and improved survival. J Pathol. 2009;217:65–72.PubMedCrossRef
18.
go back to reference Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3(75):75ra26.
19.
go back to reference Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4:120ra17. Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, et al. Mechanisms of acquired crizotinib resistance in ALK-rearranged lung cancers. Sci Transl Med. 2012;4:120ra17.
21.
go back to reference Hirsch FR, Varella-Garcia M, Bunn PA, Jr., Di Maria MV, Veve R, Bremmes RM, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798–807.PubMedCrossRef Hirsch FR, Varella-Garcia M, Bunn PA, Jr., Di Maria MV, Veve R, Bremmes RM, et al. Epidermal growth factor receptor in non-small-cell lung carcinomas: correlation between gene copy number and protein expression and impact on prognosis. J Clin Oncol. 2003;21:3798–807.PubMedCrossRef
22.
go back to reference Sasaki H, Shimizu S, Okuda K, Kawano O, Yukiue H, Yano M, et al. Epidermal growth factor receptor gene amplification in surgical resected Japanese lung cancer. Lung Cancer. 2009;64:295–300.PubMedCrossRef Sasaki H, Shimizu S, Okuda K, Kawano O, Yukiue H, Yano M, et al. Epidermal growth factor receptor gene amplification in surgical resected Japanese lung cancer. Lung Cancer. 2009;64:295–300.PubMedCrossRef
23.
go back to reference Soh J, Okumura N, Lockwood WW, Yamamoto H, Shigematsu H, Zhang W, et al. Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS ONE. 2009;4:e7464.PubMedCrossRef Soh J, Okumura N, Lockwood WW, Yamamoto H, Shigematsu H, Zhang W, et al. Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS ONE. 2009;4:e7464.PubMedCrossRef
24.
go back to reference Fukuoka M, Wu Y-L, Thongprasert S, Sunpaweravong P, Leong SS, Sriuranpong V, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol. 2011;29:2866–74.PubMedCrossRef Fukuoka M, Wu Y-L, Thongprasert S, Sunpaweravong P, Leong SS, Sriuranpong V, et al. Biomarker analyses and final overall survival results from a phase III, randomized, open-label, first-line study of gefitinib versus carboplatin/paclitaxel in clinically selected patients with advanced non-small-cell lung cancer in Asia (IPASS). J Clin Oncol. 2011;29:2866–74.PubMedCrossRef
25.
go back to reference Boggaram V. Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci (Lond). 2009;116:27–35.CrossRef Boggaram V. Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci (Lond). 2009;116:27–35.CrossRef
26.
go back to reference Berghmans T, Paesmans M, Mascaux C, Martin B, Meert AP, Haller A, et al. Thyroid transcription factor 1–a new prognostic factor in lung cancer: a meta-analysis. Ann Oncol. 2006;17:1673–6.PubMedCrossRef Berghmans T, Paesmans M, Mascaux C, Martin B, Meert AP, Haller A, et al. Thyroid transcription factor 1–a new prognostic factor in lung cancer: a meta-analysis. Ann Oncol. 2006;17:1673–6.PubMedCrossRef
Metadata
Title
EGFR and TTF-1 Gene Amplification in Surgically Resected Lung Adenocarcinomas: Clinicopathologic Significance and Effect on Response to EGFR-Tyrosine Kinase Inhibitors in Recurred Cases
Authors
Jae Seok Lee, MD
Hye Ryun Kim, MD
Chang Young Lee, MD
Mihwa Shin, BSc
Hyo Sup Shim, MD, PhD
Publication date
01-09-2013
Publisher
Springer US
Published in
Annals of Surgical Oncology / Issue 9/2013
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-013-2937-2

Other articles of this Issue 9/2013

Annals of Surgical Oncology 9/2013 Go to the issue