Skip to main content
Top
Published in: Annals of Surgical Oncology 3/2013

01-03-2013 | Endocrine Tumors

BRAF V600E Mutation Analysis in Papillary Thyroid Carcinomas by Peptide Nucleic Acid Clamp Real-time PCR

Authors: Dongjun Jeong, PhD, Yujun Jeong, MS, Ji Hye Park, MD, Sun Wook Han, MD, Sung Yong Kim, MD, PhD, Yeo Joo Kim, MD, PhD, Sang Jin Kim, MD, PhD, Young Hwangbo, MD, PhD, Soyoung Park, MS, Hyun Deuk Cho, MD, PhD, Mee Hye Oh, MD, PhD, Seung Ha Yang, MD, PhD, Chang Jin Kim, MD, PhD

Published in: Annals of Surgical Oncology | Issue 3/2013

Login to get access

ABSTRACT

Background

Activating somatic mutation of the BRAF V600E has been identified as the most common genetic event in papillary thyroid carcinoma (PTC) with a variable frequency (32–87 %) in different series by different methods. The BRAF V600E mutation is associated with various clinicopathological parameters. The mutation is an important factor for the management of the PTC patients. The objective of this study was to detect the BRAF V600E mutation in PTCs by peptide nucleic acid (PNA) clamp real-time PCR and to analyze the results with clinicopathological parameters.

Methods

We performed genetic analysis of BRAF V600E by PNA clamp real-time PCR in 211 PTCs in Korea, stratified by clinicopathological parameters.

Results

The BRAF V600E mutation was detected in 90 % of PTC cases, and it occurred significantly more often in female patients than in male patients (p = 0.001). The clinicopathological parameters of age, tumor size, and disease stage were not associated with the BRAF V600E mutation, while extrathyroid invasion (p = 0.031), lymph nodal metastasis (p = 0.002), and tumor multiplicity (p = 0.020) were.

Conclusions

The prevalence (90 %) of the BRAF V600E mutation in this study is the highest ever reported, confirming the key role of this mutation in PTC tumorigenesis. The BRAF V600E mutation was associated with aggressive clinical behaviors including extrathyroid invasion, lymph nodal metastasis and tumor multifocality. The PNA clamp real-time PCR method for the BRAF V600E mutation detection is sensitive and is applicable in a clinical setting.
Literature
1.
go back to reference Paterson IC, Greenlee R, Adams Jones D. Thyroid cancer in Wales, 1985–1996: a cancer registry–based study. Clin Oncol (R Coll Radiol). 1999;11:245–51.CrossRef Paterson IC, Greenlee R, Adams Jones D. Thyroid cancer in Wales, 1985–1996: a cancer registry–based study. Clin Oncol (R Coll Radiol). 1999;11:245–51.CrossRef
2.
go back to reference Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery. 1993;114:1050–7.PubMed Hay ID, Bergstralh EJ, Goellner JR, Ebersold JR, Grant CS. Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989. Surgery. 1993;114:1050–7.PubMed
3.
go back to reference Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95:625–7.PubMedCrossRef Cohen Y, Xing M, Mambo E, et al. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst. 2003;95:625–7.PubMedCrossRef
4.
go back to reference Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res. 2003;63:4561–7.PubMed Xu X, Quiros RM, Gattuso P, Ain KB, Prinz RA. High prevalence of BRAF gene mutation in papillary thyroid carcinomas and thyroid tumor cell lines. Cancer Res. 2003;63:4561–7.PubMed
5.
go back to reference Fukushima T, Suzuki S, Mashiko M, et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene. 2003;22:6455–7.PubMedCrossRef Fukushima T, Suzuki S, Mashiko M, et al. BRAF mutations in papillary carcinomas of the thyroid. Oncogene. 2003;22:6455–7.PubMedCrossRef
6.
go back to reference Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90:6373–9.PubMedCrossRef Xing M, Westra WH, Tufano RP, et al. BRAF mutation predicts a poorer clinical prognosis for papillary thyroid cancer. J Clin Endocrinol Metab. 2005;90:6373–9.PubMedCrossRef
7.
go back to reference Fugazzola L, Mannavola D, Cirello V, et al. BRAF mutations in an Italian cohort of thyroid cancers. Clin Endocrinol (Oxf). 2004;61:239–43.CrossRef Fugazzola L, Mannavola D, Cirello V, et al. BRAF mutations in an Italian cohort of thyroid cancers. Clin Endocrinol (Oxf). 2004;61:239–43.CrossRef
8.
go back to reference Kim KH, Kang DW, Kim SH, Seong IO, Kang DY. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Med J. 2004;45:818–21.PubMed Kim KH, Kang DW, Kim SH, Seong IO, Kang DY. Mutations of the BRAF gene in papillary thyroid carcinoma in a Korean population. Yonsei Med J. 2004;45:818–21.PubMed
9.
go back to reference Nakamura N, Carney JA, Jin L, et al. RASSF1A and NORE1A methylation and BRAF V600E mutations in thyroid tumors. Lab Invest. 2005;85:1065–75.PubMedCrossRef Nakamura N, Carney JA, Jin L, et al. RASSF1A and NORE1A methylation and BRAF V600E mutations in thyroid tumors. Lab Invest. 2005;85:1065–75.PubMedCrossRef
10.
go back to reference Kebebew E, Weng J, Bauer J, et al. The prevalence of prognostic value of BRAF mutation in thyroid cancer. Ann Surg. 2007;246:466–71.PubMedCrossRef Kebebew E, Weng J, Bauer J, et al. The prevalence of prognostic value of BRAF mutation in thyroid cancer. Ann Surg. 2007;246:466–71.PubMedCrossRef
11.
go back to reference Vasil’ev EV, Roumiantsev PO, Saenko VA, et al. Molecular analysis of structural abnormalities in papillary thyroid carcinoma genome. Mol Biol. 2004;38:538–48.CrossRef Vasil’ev EV, Roumiantsev PO, Saenko VA, et al. Molecular analysis of structural abnormalities in papillary thyroid carcinoma genome. Mol Biol. 2004;38:538–48.CrossRef
12.
go back to reference Gu LQ, Li FY, Zhao L, et al. BRAF V600E mutation and X-linked inhibitor of apoptosis expression in papillary thyroid carcinoma. Thyroid. 2009;19:347–54.PubMedCrossRef Gu LQ, Li FY, Zhao L, et al. BRAF V600E mutation and X-linked inhibitor of apoptosis expression in papillary thyroid carcinoma. Thyroid. 2009;19:347–54.PubMedCrossRef
13.
go back to reference Nam JK, Jung CK, Song BJ, et al. Is the BRAF V600E mutation useful as a predictor of preoperative risk in papillary thyroid cancer? Am J Surg. 2012;203:436–41.PubMedCrossRef Nam JK, Jung CK, Song BJ, et al. Is the BRAF V600E mutation useful as a predictor of preoperative risk in papillary thyroid cancer? Am J Surg. 2012;203:436–41.PubMedCrossRef
14.
go back to reference Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.PubMed Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA. High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res. 2003;63:1454–7.PubMed
15.
go back to reference Puxeddu E, Moretti S, Elisei R, et al. BRAF V599E mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab. 2004;89:2414–20.PubMedCrossRef Puxeddu E, Moretti S, Elisei R, et al. BRAF V599E mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab. 2004;89:2414–20.PubMedCrossRef
16.
go back to reference Perren A, Schmid S, Locher T, et al. BRAF and endocrine tumors: mutations are frequent in papillary thyroid carcinomas, rare in endocrine tumors of the gastrointestinal tract and not detected in other endocrine tumors. Endocr Relat Cancer. 2004;11:855–60.PubMedCrossRef Perren A, Schmid S, Locher T, et al. BRAF and endocrine tumors: mutations are frequent in papillary thyroid carcinomas, rare in endocrine tumors of the gastrointestinal tract and not detected in other endocrine tumors. Endocr Relat Cancer. 2004;11:855–60.PubMedCrossRef
17.
go back to reference Trovisco V, Vieira de Castro I, Soares P, et al. BRAF mutations are associated with some histological types of thyroid papillary carcinoma. J Pathol. 2004;202:247–51.PubMedCrossRef Trovisco V, Vieira de Castro I, Soares P, et al. BRAF mutations are associated with some histological types of thyroid papillary carcinoma. J Pathol. 2004;202:247–51.PubMedCrossRef
18.
go back to reference Soares P, Trovisco V, Rocha AS, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 2003;22:4578–80.PubMedCrossRef Soares P, Trovisco V, Rocha AS, et al. BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene. 2003;22:4578–80.PubMedCrossRef
19.
go back to reference Sykorova V, Dvorakova S, Ryska A, et al. BRAF V600E mutation in the pathogenesis of the large series of papillary thyroid carcinoma in Czech Republic. J Endocrinol Invest. 2010;33:318–24.PubMed Sykorova V, Dvorakova S, Ryska A, et al. BRAF V600E mutation in the pathogenesis of the large series of papillary thyroid carcinoma in Czech Republic. J Endocrinol Invest. 2010;33:318–24.PubMed
20.
go back to reference Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.PubMedCrossRef Nikiforova MN, Kimura ET, Gandhi M, et al. BRAF mutations in thyroid tumors are restricted to papillary carcinomas and anaplastic or poorly differentiated carcinomas arising from papillary carcinomas. J Clin Endocrinol Metab. 2003;88:5399–404.PubMedCrossRef
21.
go back to reference Rowe LR, Bentz BG, Bentz JS. Detection of BRAF V600E activating mutation in papillary thyroid carcinoma using PCR with allele-specific fluorescent probe melting curve analysis. J Clinl Pathol. 2007;60:1211–5.CrossRef Rowe LR, Bentz BG, Bentz JS. Detection of BRAF V600E activating mutation in papillary thyroid carcinoma using PCR with allele-specific fluorescent probe melting curve analysis. J Clinl Pathol. 2007;60:1211–5.CrossRef
22.
go back to reference Kim J, Giuliano AE, Turner RR, et al. Lymphatic mapping establishes the role of BRAF gene mutation in papillary thyroid carcinoma. Ann Surg. 2006;244:799–804.PubMedCrossRef Kim J, Giuliano AE, Turner RR, et al. Lymphatic mapping establishes the role of BRAF gene mutation in papillary thyroid carcinoma. Ann Surg. 2006;244:799–804.PubMedCrossRef
23.
go back to reference Sapio MR, Posca D, Troncone G, et al. Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific PCR amplification (MASA). Eur J Endocrinol. 2006;154:341–8.PubMedCrossRef Sapio MR, Posca D, Troncone G, et al. Detection of BRAF mutation in thyroid papillary carcinomas by mutant allele-specific PCR amplification (MASA). Eur J Endocrinol. 2006;154:341–8.PubMedCrossRef
24.
go back to reference Hayashida N, Namba H, Kumagai A, et al. A rapid and simple detection method for the BRAF T1796A mutation in fine-needle aspirated thyroid carcinoma cells. Thyroid. 2004;14:910–5.PubMedCrossRef Hayashida N, Namba H, Kumagai A, et al. A rapid and simple detection method for the BRAF T1796A mutation in fine-needle aspirated thyroid carcinoma cells. Thyroid. 2004;14:910–5.PubMedCrossRef
25.
go back to reference Kim SK, Song KH, Lim SD, et al. Clinical and pathological features and the BRAF V600E mutation in patients with papillary thyroid carcinoma with and without concurrent Hashimoto thyroiditis. Thyroid. 2009;19:137–41.PubMedCrossRef Kim SK, Song KH, Lim SD, et al. Clinical and pathological features and the BRAF V600E mutation in patients with papillary thyroid carcinoma with and without concurrent Hashimoto thyroiditis. Thyroid. 2009;19:137–41.PubMedCrossRef
26.
go back to reference Lyon E, Wittwer CT. LightCycler technology in molecular diagnostics. J Mol Diagn. 2009;11:93–101.PubMedCrossRef Lyon E, Wittwer CT. LightCycler technology in molecular diagnostics. J Mol Diagn. 2009;11:93–101.PubMedCrossRef
27.
go back to reference Demers DB, Curry ET, Egholm M, Sozer AC. Enhanced PCR amplification of VNTR locus D1S80 using peptide nucleic acid (PNA). Nucleic Acids Res. 1995;23:3050–5.PubMedCrossRef Demers DB, Curry ET, Egholm M, Sozer AC. Enhanced PCR amplification of VNTR locus D1S80 using peptide nucleic acid (PNA). Nucleic Acids Res. 1995;23:3050–5.PubMedCrossRef
28.
go back to reference Jeong D, Jeong Y, Lee J, et al. Rapid and sensitive detection of KRAS mutation by peptide nucleic acid–based real-time PCR clamping: a comparison with direct sequencing between fresh tissue and formalin-fixed and paraffin embedded tissue of colorectal cancer. Korean J Pathol. 2011;45:151–9.CrossRef Jeong D, Jeong Y, Lee J, et al. Rapid and sensitive detection of KRAS mutation by peptide nucleic acid–based real-time PCR clamping: a comparison with direct sequencing between fresh tissue and formalin-fixed and paraffin embedded tissue of colorectal cancer. Korean J Pathol. 2011;45:151–9.CrossRef
29.
go back to reference Kyger EM, Krevolin MD, Powell MJ. Detection of the hereditary hemochromatosis gene mutation by real-time fluorescence polymerase chain reaction and peptide nucleic acid clamping. Anal Biochem. 1998;260:142–8.PubMedCrossRef Kyger EM, Krevolin MD, Powell MJ. Detection of the hereditary hemochromatosis gene mutation by real-time fluorescence polymerase chain reaction and peptide nucleic acid clamping. Anal Biochem. 1998;260:142–8.PubMedCrossRef
30.
go back to reference Taback B, Bilchik AJ, Saha S, et al. Peptide nucleic acid clamp PCR: a novel K-ras mutation detection assay for colorectal cancer micrometastases in lymph nodes. Int J Cancer. 2004;111:409–14.PubMedCrossRef Taback B, Bilchik AJ, Saha S, et al. Peptide nucleic acid clamp PCR: a novel K-ras mutation detection assay for colorectal cancer micrometastases in lymph nodes. Int J Cancer. 2004;111:409–14.PubMedCrossRef
31.
go back to reference Thiede C, Bayerdörffer E, Blasczyk R, Wittig B, Neubauer A. Simple and sensitive detection of mutations in the ras proto-oncogenes using PNA-mediated PCR clamping. Nucleic Acids Res. 1996;24:983–4.PubMedCrossRef Thiede C, Bayerdörffer E, Blasczyk R, Wittig B, Neubauer A. Simple and sensitive detection of mutations in the ras proto-oncogenes using PNA-mediated PCR clamping. Nucleic Acids Res. 1996;24:983–4.PubMedCrossRef
32.
go back to reference Guan H, Ji M, Bao R, et al. Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab. 2009;94:1612–7.PubMedCrossRef Guan H, Ji M, Bao R, et al. Association of high iodine intake with the T1799A BRAF mutation in papillary thyroid cancer. J Clin Endocrinol Metab. 2009;94:1612–7.PubMedCrossRef
33.
go back to reference Kim JY, Moon SJ, Kim KR, et al. Dietary iodine intake and urinary iodine excretion in normal Korean adults. Yonsei Med J. 2000;39:355–62. Kim JY, Moon SJ, Kim KR, et al. Dietary iodine intake and urinary iodine excretion in normal Korean adults. Yonsei Med J. 2000;39:355–62.
34.
go back to reference Kim JY, Kim KR. Dietary iodine intake and urinary iodine excretion in patients with thyroid diseases. Yonsei Med J. 2000;41:22–8.PubMed Kim JY, Kim KR. Dietary iodine intake and urinary iodine excretion in patients with thyroid diseases. Yonsei Med J. 2000;41:22–8.PubMed
35.
go back to reference Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Globocan 2008 v1.2, Cancer incidence and mortality worldwide. IARC CancerBase 10 [Internet]. Lyon, France: International Agency for Research on Cancer; 2010. Available from: http://globocan.iarc.fr. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Globocan 2008 v1.2, Cancer incidence and mortality worldwide. IARC CancerBase 10 [Internet]. Lyon, France: International Agency for Research on Cancer; 2010. Available from: http://​globocan.​iarc.​fr.
36.
go back to reference Ahmad T, Eisen T. Kinase inhibition with BAY 43-9006 in renal cell carcinoma. Clin Cancer Res. 2004;10(18 Pt 2):6388S–92S.PubMedCrossRef Ahmad T, Eisen T. Kinase inhibition with BAY 43-9006 in renal cell carcinoma. Clin Cancer Res. 2004;10(18 Pt 2):6388S–92S.PubMedCrossRef
37.
go back to reference Sala E, Mologni L, Truffa S, Gactano C, Bollag GE, Gambacorti-Passerini C. BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol Cancer Res. 2008;6:751–9.PubMedCrossRef Sala E, Mologni L, Truffa S, Gactano C, Bollag GE, Gambacorti-Passerini C. BRAF silencing by short hairpin RNA or chemical blockade by PLX4032 leads to different responses in melanoma and thyroid carcinoma cells. Mol Cancer Res. 2008;6:751–9.PubMedCrossRef
Metadata
Title
BRAF V600E Mutation Analysis in Papillary Thyroid Carcinomas by Peptide Nucleic Acid Clamp Real-time PCR
Authors
Dongjun Jeong, PhD
Yujun Jeong, MS
Ji Hye Park, MD
Sun Wook Han, MD
Sung Yong Kim, MD, PhD
Yeo Joo Kim, MD, PhD
Sang Jin Kim, MD, PhD
Young Hwangbo, MD, PhD
Soyoung Park, MS
Hyun Deuk Cho, MD, PhD
Mee Hye Oh, MD, PhD
Seung Ha Yang, MD, PhD
Chang Jin Kim, MD, PhD
Publication date
01-03-2013
Publisher
Springer-Verlag
Published in
Annals of Surgical Oncology / Issue 3/2013
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-012-2494-0

Other articles of this Issue 3/2013

Annals of Surgical Oncology 3/2013 Go to the issue