Skip to main content
Top
Published in: Annals of Surgical Oncology 7/2012

01-07-2012 | Neuro-Oncology

Integration of Global Spectral Karyotyping, CGH Arrays, and Expression Arrays Reveals Important Genes in the Pathogenesis of Glioblastoma Multiforme

Authors: Paola E. Leone, PhD, M. Belén González, PhD, Carolina Elosua, BS, Juan A. Gómez-Moreta, MD, Eva Lumbreras, BS, Cristina Robledo, PhD, Angel Santos-Briz, MD, José Maria Valero, MD, PhD, Rafael Díaz de la Guardia, PhD, Norma C. Gutiérrez, MD, PhD, Jesús M. Hernández, MD, PhD, Juan L. García, PhD

Published in: Annals of Surgical Oncology | Issue 7/2012

Login to get access

Abstract

Background

Glioblastoma multiforme (GBM) is the most common primary tumor of the central nervous system in adults. Patients with GBM have few treatment options, and their disease is invariably fatal. Molecularly targeted agents offer the potential to improve patient treatment; however, the use of these will require a fuller understanding of the genetic changes in this complex tumor.

Methods

We analyzed a series of 32 patients with GBM with array comparative genomic hybridization in combination with gene expression analysis. We focused on the recurrent breakpoints found by spectral karyotyping (SKY).

Results

By SKY we identified 23 recurrent breakpoints of the 202 translocations found in GBM cases. Gains and losses were identified in chromosomal regions close to the breakpoints by array comparative genomic hybridization. We evaluated the genes located in the regions involved in the breakpoints in depth. A list of 406 genes that showed a level of expression significantly different between patients and control subjects was selected to determine their effect on survival. Genes CACNA2D3, PPP2R2B, SIK, MAST3, PROM1, and PPP6C were significantly associated with shorter survival (median 200 days vs. 450 days, P ≤ 0.03).

Conclusions

We present a list of genes located in regions of breakpoints that could be grounds for future studies to determine whether they are crucial in the pathogenesis of this type of tumor, and we provide a list of six genes associated with the clinical outcome of patients with GBM.
Literature
1.
go back to reference Luois DN, Ohgaki H, Wiestler OD, Cavenee WK, editors. World Health Organization classification of tumours of the central nervous system. 4th ed. Lyon: IARC/WHO, 2007. Luois DN, Ohgaki H, Wiestler OD, Cavenee WK, editors. World Health Organization classification of tumours of the central nervous system. 4th ed. Lyon: IARC/WHO, 2007.
3.
go back to reference Koschny R, Koschny T, Froster UG, Krupp W, Zuber MA. Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet Cytogenet. 2002;135:147–59.PubMedCrossRef Koschny R, Koschny T, Froster UG, Krupp W, Zuber MA. Comparative genomic hybridization in glioma: a meta-analysis of 509 cases. Cancer Genet Cytogenet. 2002;135:147–59.PubMedCrossRef
4.
go back to reference Krex D, Mohr B, Hauses M, Ehninger G, Schackert HK, Schackert G. Identification of uncommon chromosomal aberrations in the neuroglioma cell line H4 by spectral karyotyping. J Neurooncol. 2001;52:119–28.PubMedCrossRef Krex D, Mohr B, Hauses M, Ehninger G, Schackert HK, Schackert G. Identification of uncommon chromosomal aberrations in the neuroglioma cell line H4 by spectral karyotyping. J Neurooncol. 2001;52:119–28.PubMedCrossRef
5.
go back to reference Krex D, Mohr B, Appelt H, Schackert HK, Schackert G. Gene analysis of a multifocal glioblastoma multiforme: a suitable tool to gain new aspects in glioma development. Neurosurgery. 2003;53:1377–84.PubMedCrossRef Krex D, Mohr B, Appelt H, Schackert HK, Schackert G. Gene analysis of a multifocal glioblastoma multiforme: a suitable tool to gain new aspects in glioma development. Neurosurgery. 2003;53:1377–84.PubMedCrossRef
6.
go back to reference Kubota H, Nishizaki T, Harada K, et al. Identification of recurrent chromosomal rearrangements and the unique relationship between low-level amplification and translocation in glioblastoma. Genes Chromosomes Cancer. 2001;31:125–33.PubMedCrossRef Kubota H, Nishizaki T, Harada K, et al. Identification of recurrent chromosomal rearrangements and the unique relationship between low-level amplification and translocation in glioblastoma. Genes Chromosomes Cancer. 2001;31:125–33.PubMedCrossRef
7.
go back to reference Squire JA, Arab S, Marrano P, et al. Molecular cytogenetic analysis of glial tumors using spectral karyotyping and comparative genomic hybridization. Mol Diagn. 2001;6:93–108.PubMedCrossRef Squire JA, Arab S, Marrano P, et al. Molecular cytogenetic analysis of glial tumors using spectral karyotyping and comparative genomic hybridization. Mol Diagn. 2001;6:93–108.PubMedCrossRef
8.
go back to reference Cowell JK, Matsui S, Wang YD, et al. Application of bacterial artificial chromosome array-based comparative genomic hybridization and spectral karyotyping to the analysis of glioblastoma multiforme. Cancer Genet Cytogenet. 2004;151:36–51.PubMedCrossRef Cowell JK, Matsui S, Wang YD, et al. Application of bacterial artificial chromosome array-based comparative genomic hybridization and spectral karyotyping to the analysis of glioblastoma multiforme. Cancer Genet Cytogenet. 2004;151:36–51.PubMedCrossRef
9.
go back to reference Loja T, Chlapek P, Kuglik P, et al. Characterization of a GM7 glioblastoma cell line showing CD133 positivity and both cytoplasmic and nuclear localization of nestin. Oncol Rep. 2009;21:119–27.PubMed Loja T, Chlapek P, Kuglik P, et al. Characterization of a GM7 glioblastoma cell line showing CD133 positivity and both cytoplasmic and nuclear localization of nestin. Oncol Rep. 2009;21:119–27.PubMed
10.
go back to reference Zuber MA, Krupp W, Holland H, Froster UG. Characterization of chromosomal aberrations in a case of glioblastoma multiforme combining cytogenetic and molecular cytogenetic techniques. Cancer Genet Cytogenet. 2002;138:111–15.PubMedCrossRef Zuber MA, Krupp W, Holland H, Froster UG. Characterization of chromosomal aberrations in a case of glioblastoma multiforme combining cytogenetic and molecular cytogenetic techniques. Cancer Genet Cytogenet. 2002;138:111–15.PubMedCrossRef
11.
go back to reference Nord H, Hartmann C, Andersson R, et al. Characterization of novel and complex genomic aberrations in glioblastoma using a 32 K BAC array. Neurooncology. 2009;11:803–18. Nord H, Hartmann C, Andersson R, et al. Characterization of novel and complex genomic aberrations in glioblastoma using a 32 K BAC array. Neurooncology. 2009;11:803–18.
12.
go back to reference Yin D, Ogawa S, Kawamata N, et al. High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res. 2009;7:665–77.PubMedCrossRef Yin D, Ogawa S, Kawamata N, et al. High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res. 2009;7:665–77.PubMedCrossRef
13.
go back to reference Rao SK, Edwards J, Joshi AD, Siu IM, Riggins GJ. A survey of glioblastoma genomic amplifications and deletions. J Neurooncol. 2010;96:169–79.PubMedCrossRef Rao SK, Edwards J, Joshi AD, Siu IM, Riggins GJ. A survey of glioblastoma genomic amplifications and deletions. J Neurooncol. 2010;96:169–79.PubMedCrossRef
14.
go back to reference Idbaih A, Criniere E, Ligon KL, Delattre O, Delattre JY. Array-based genomics in glioma research. Brain Pathol. 2010;20:28–38.PubMedCrossRef Idbaih A, Criniere E, Ligon KL, Delattre O, Delattre JY. Array-based genomics in glioma research. Brain Pathol. 2010;20:28–38.PubMedCrossRef
15.
go back to reference Misra A, Pellarin M, Nigro J, et al. Array comparative genomic hybridization identifies genetic subgroups in grade 4 human astrocytoma. Clin Cancer Res. 2005;11:2907–18.PubMedCrossRef Misra A, Pellarin M, Nigro J, et al. Array comparative genomic hybridization identifies genetic subgroups in grade 4 human astrocytoma. Clin Cancer Res. 2005;11:2907–18.PubMedCrossRef
16.
go back to reference Nigro JM, Misra A, Zhang L, et al. Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res. 2005;65:1678–86.PubMedCrossRef Nigro JM, Misra A, Zhang L, et al. Integrated array-comparative genomic hybridization and expression array profiles identify clinically relevant molecular subtypes of glioblastoma. Cancer Res. 2005;65:1678–86.PubMedCrossRef
17.
go back to reference Korshunov A, Sycheva R, Golanov A. Genetically distinct and clinically relevant subtypes of glioblastoma defined by array-based comparative genomic hybridization (array-CGH). Acta Neuropathol. 2006;111:465–74.PubMedCrossRef Korshunov A, Sycheva R, Golanov A. Genetically distinct and clinically relevant subtypes of glioblastoma defined by array-based comparative genomic hybridization (array-CGH). Acta Neuropathol. 2006;111:465–74.PubMedCrossRef
18.
go back to reference Maher EA, Brennan C, Wen PY, et al. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res. 2006;66:11502–13.PubMedCrossRef Maher EA, Brennan C, Wen PY, et al. Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res. 2006;66:11502–13.PubMedCrossRef
19.
go back to reference Idbaih A, Marie Y, Lucchesi C, et al. BAC array CGH distingishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas. Int J Cancer. 2008;122:1778–86.PubMedCrossRef Idbaih A, Marie Y, Lucchesi C, et al. BAC array CGH distingishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas. Int J Cancer. 2008;122:1778–86.PubMedCrossRef
20.
go back to reference Mulholland PJ, Fiegler H, Mazzanti C, et al. Genomic profiling identifies discrete deletions associated with translocations in glioblastoma multiforme. Cell Cycle. 2006;5:783–91.PubMedCrossRef Mulholland PJ, Fiegler H, Mazzanti C, et al. Genomic profiling identifies discrete deletions associated with translocations in glioblastoma multiforme. Cell Cycle. 2006;5:783–91.PubMedCrossRef
21.
go back to reference Ruano Y, Mollejo M, Ribalta T, et al. Identification of novel candidate target genes in amplicons of glioblastoma multiforme tumors detected by expression and CGH microarray profiling. Mol Cancer. 2006;26:39.CrossRef Ruano Y, Mollejo M, Ribalta T, et al. Identification of novel candidate target genes in amplicons of glioblastoma multiforme tumors detected by expression and CGH microarray profiling. Mol Cancer. 2006;26:39.CrossRef
22.
go back to reference de Tayrac M, Etcheverry A, Aubry M, et al. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression. Genes Chromosomes Cancer. 2009;48:55–68.PubMedCrossRef de Tayrac M, Etcheverry A, Aubry M, et al. Integrative genome-wide analysis reveals a robust genomic glioblastoma signature associated with copy number driving changes in gene expression. Genes Chromosomes Cancer. 2009;48:55–68.PubMedCrossRef
23.
go back to reference Hodgson JG, Yeh RF, Ray A, et al. Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumors and xenografts. Neurooncology. 2009;11:477–87. Hodgson JG, Yeh RF, Ray A, et al. Comparative analyses of gene copy number and mRNA expression in glioblastoma multiforme tumors and xenografts. Neurooncology. 2009;11:477–87.
24.
go back to reference Ernst A, Hofmann S, Ahmadi R, et al. Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin Cancer Res. 2009;15:6541–50.PubMedCrossRef Ernst A, Hofmann S, Ahmadi R, et al. Genomic and expression profiling of glioblastoma stem cell-like spheroid cultures identifies novel tumor-relevant genes associated with survival. Clin Cancer Res. 2009;15:6541–50.PubMedCrossRef
25.
go back to reference Lo KC, Rossi MR, LaDuca J, et al. Candidate glioblastoma development gene identification using concordance between copy number abnormalities and gene expression level changes. Genes Chromosomes Cancer. 2007;46:875–94.PubMedCrossRef Lo KC, Rossi MR, LaDuca J, et al. Candidate glioblastoma development gene identification using concordance between copy number abnormalities and gene expression level changes. Genes Chromosomes Cancer. 2007;46:875–94.PubMedCrossRef
26.
go back to reference Wiedemeyer R, Brennan C, Heffernan TP, et al. Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development. Cancer Cell. 2008, 13:355–64.PubMedCrossRef Wiedemeyer R, Brennan C, Heffernan TP, et al. Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development. Cancer Cell. 2008, 13:355–64.PubMedCrossRef
27.
go back to reference Gardina PJ, Lo KC, Lee W, Cowell JK, Turpaz Y. Ploidy status and copy number aberrations in primary glioblastomas defined by integrated analysis of allelic ratios, signal ratios and loss of heterozygosity using 500 K SNP mapping arrays. BMC Genomics. 2008;17:489.CrossRef Gardina PJ, Lo KC, Lee W, Cowell JK, Turpaz Y. Ploidy status and copy number aberrations in primary glioblastomas defined by integrated analysis of allelic ratios, signal ratios and loss of heterozygosity using 500 K SNP mapping arrays. BMC Genomics. 2008;17:489.CrossRef
28.
go back to reference TCGA: The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–68.CrossRef TCGA: The Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–68.CrossRef
29.
go back to reference Ducray F, Idbaih A, de Reyniès A, et al. Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol Cancer. 2008;20:41.CrossRef Ducray F, Idbaih A, de Reyniès A, et al. Anaplastic oligodendrogliomas with 1p19q codeletion have a proneural gene expression profile. Mol Cancer. 2008;20:41.CrossRef
30.
go back to reference Verhaak RG, Hoadley KA, Purdom E, et al. Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.PubMedCrossRef Verhaak RG, Hoadley KA, Purdom E, et al. Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17:98–110.PubMedCrossRef
31.
go back to reference Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol. 1993;3:255–68.PubMedCrossRef Kleihues P, Burger PC, Scheithauer BW. The new WHO classification of brain tumours. Brain Pathol. 1993;3:255–68.PubMedCrossRef
32.
go back to reference Qi H, Dal Cin P, Hernandez JM, et al. Trisomies 8 and 20 in desmoid tumors. Cancer Genet Cytogenet. 1996;92:147–9.PubMedCrossRef Qi H, Dal Cin P, Hernandez JM, et al. Trisomies 8 and 20 in desmoid tumors. Cancer Genet Cytogenet. 1996;92:147–9.PubMedCrossRef
33.
go back to reference Robledo C, García JL, Caballero D, et al; Spanish Lymphoma/Autologous Bone Marrow Transplant Study Group (GEL-TAMO). Array comparative genomic hybridization identifies genetic regions associated with outcome in aggressive diffuse large B-cell lymphomas. Cancer. 2009;115:3728–37.PubMedCrossRef Robledo C, García JL, Caballero D, et al; Spanish Lymphoma/Autologous Bone Marrow Transplant Study Group (GEL-TAMO). Array comparative genomic hybridization identifies genetic regions associated with outcome in aggressive diffuse large B-cell lymphomas. Cancer. 2009;115:3728–37.PubMedCrossRef
34.
go back to reference Hermsen M, Snijders A, Alonso Guervós M, et al. Centromeric chromosomal translocations show tissue-specific differences between squamous cell carcinomas and adenocarcinomas. Oncogene. 2005;24:1571–9.PubMedCrossRef Hermsen M, Snijders A, Alonso Guervós M, et al. Centromeric chromosomal translocations show tissue-specific differences between squamous cell carcinomas and adenocarcinomas. Oncogene. 2005;24:1571–9.PubMedCrossRef
35.
go back to reference Qin YR, Fu L, Sham PC, et al. Single-nucleotide polymorphism–mass array reveals commonly deleted regions at 3p22 and 3p14.2 associate with poor clinical outcome in esophageal squamous cell carcinoma. Int J Cancer. 2008;123:826–30.PubMedCrossRef Qin YR, Fu L, Sham PC, et al. Single-nucleotide polymorphism–mass array reveals commonly deleted regions at 3p22 and 3p14.2 associate with poor clinical outcome in esophageal squamous cell carcinoma. Int J Cancer. 2008;123:826–30.PubMedCrossRef
36.
go back to reference Tai AL, Mak W, Ng PK, et al. High-throughput loss-of-heterozygosity study of chromosome 3p in lung cancer using single-nucleotide polymorphism markers. Cancer Res. 2006;66:4133–8.PubMedCrossRef Tai AL, Mak W, Ng PK, et al. High-throughput loss-of-heterozygosity study of chromosome 3p in lung cancer using single-nucleotide polymorphism markers. Cancer Res. 2006;66:4133–8.PubMedCrossRef
37.
go back to reference Hanke S, Bugert P, Chudek J, Kovacs G. Cloning a calcium channel α2δ-3 subunit gene from a putative tumor suppressor gene region at chromosome 3p21.1 in conventional renal cell carcinoma. Gene. 2001;264:69–75.PubMedCrossRef Hanke S, Bugert P, Chudek J, Kovacs G. Cloning a calcium channel α2δ-3 subunit gene from a putative tumor suppressor gene region at chromosome 3p21.1 in conventional renal cell carcinoma. Gene. 2001;264:69–75.PubMedCrossRef
38.
go back to reference Wanajo A, Sasaki A, Nagasaki H, et al. Methylation of the calcium channel–related gene, CACNA2D3, is frequent and a poor prognostic factor in gastric cancer. Gastroenterology. 2008;135:580–90.PubMedCrossRef Wanajo A, Sasaki A, Nagasaki H, et al. Methylation of the calcium channel–related gene, CACNA2D3, is frequent and a poor prognostic factor in gastric cancer. Gastroenterology. 2008;135:580–90.PubMedCrossRef
39.
go back to reference Thorell K, Bergman A, Carén H, et al. Verification of genes differentially expressed in neuroblastoma tumours: a study of potential tumour suppressor genes. BMC Med Genomics. 2009;2:53.PubMedCrossRef Thorell K, Bergman A, Carén H, et al. Verification of genes differentially expressed in neuroblastoma tumours: a study of potential tumour suppressor genes. BMC Med Genomics. 2009;2:53.PubMedCrossRef
40.
go back to reference Johannsdottir HK, Jonsson G, Johannesdottir G, et al. Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer. 2006;119:1052–60.PubMedCrossRef Johannsdottir HK, Jonsson G, Johannesdottir G, et al. Chromosome 5 imbalance mapping in breast tumors from BRCA1 and BRCA2 mutation carriers and sporadic breast tumors. Int J Cancer. 2006;119:1052–60.PubMedCrossRef
41.
go back to reference Hashimoto YK, Satoh T, Okamoto M, Takemori H. Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity. J Cell Biochem. 2008;104:1724–39.PubMedCrossRef Hashimoto YK, Satoh T, Okamoto M, Takemori H. Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity. J Cell Biochem. 2008;104:1724–39.PubMedCrossRef
42.
go back to reference Garland P, Quraishe S, French P, O’Connor V. Expression of the MAST family of serine/threonine kinases. Brain Res. 2008;1195:12–9.PubMedCrossRef Garland P, Quraishe S, French P, O’Connor V. Expression of the MAST family of serine/threonine kinases. Brain Res. 2008;1195:12–9.PubMedCrossRef
43.
go back to reference Bastians H, Ponstingl H. The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation. J Cell Sci. 1996;109:2865–74.PubMed Bastians H, Ponstingl H. The novel human protein serine/threonine phosphatase 6 is a functional homologue of budding yeast Sit4p and fission yeast ppe1, which are involved in cell cycle regulation. J Cell Sci. 1996;109:2865–74.PubMed
45.
go back to reference Looijenga LH, Hersmus R, Gillis AJ, et al. Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Res. 2006;66:290–302.PubMedCrossRef Looijenga LH, Hersmus R, Gillis AJ, et al. Genomic and expression profiling of human spermatocytic seminomas: primary spermatocyte as tumorigenic precursor and DMRT1 as candidate chromosome 9 gene. Cancer Res. 2006;66:290–302.PubMedCrossRef
46.
go back to reference Gashaw I, Dushaj O, Behr R, et al. Novel germ cell markers characterize testicular seminoma and fetal testis. Mol Hum Reprod. 2007;13:721–7.PubMedCrossRef Gashaw I, Dushaj O, Behr R, et al. Novel germ cell markers characterize testicular seminoma and fetal testis. Mol Hum Reprod. 2007;13:721–7.PubMedCrossRef
47.
go back to reference Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.PubMedCrossRef Hermann PC, Huber SL, Herrler T, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1:313–23.PubMedCrossRef
48.
go back to reference Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120:1444–50.PubMedCrossRef Yin S, Li J, Hu C, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer. 2007;120:1444–50.PubMedCrossRef
49.
go back to reference O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.PubMedCrossRef O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106–10.PubMedCrossRef
50.
go back to reference Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.PubMedCrossRef Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111–5.PubMedCrossRef
51.
go back to reference Ieta K, Tanaka F, Haraguchi N, et al. Biological and genetic characteristics of tumor-initiating cells in colon cancer. Ann Surg Oncol. 2008;15:638–48.PubMedCrossRef Ieta K, Tanaka F, Haraguchi N, et al. Biological and genetic characteristics of tumor-initiating cells in colon cancer. Ann Surg Oncol. 2008;15:638–48.PubMedCrossRef
52.
go back to reference Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15:504–14.PubMedCrossRef Eramo A, Lotti F, Sette G, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008;15:504–14.PubMedCrossRef
53.
go back to reference Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003;100:15178–83.PubMedCrossRef Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA. 2003;100:15178–83.PubMedCrossRef
54.
go back to reference Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed Singh SK, Clarke ID, Terasaki M, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63:5821–8.PubMed
55.
go back to reference Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.PubMedCrossRef Singh SK, Hawkins C, Clarke ID, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.PubMedCrossRef
56.
go back to reference Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23:9392–400.PubMedCrossRef Yuan X, Curtin J, Xiong Y, et al. Isolation of cancer stem cells from adult glioblastoma multiforme. Oncogene. 2004;23:9392–400.PubMedCrossRef
57.
go back to reference Nishide K, Nakatani Y, Kiyonari H, Kondo T. Glioblastoma formation from cell population depleted of Prominin1-expressing cells. PLoS ONE. 2009;4:e6869.PubMedCrossRef Nishide K, Nakatani Y, Kiyonari H, Kondo T. Glioblastoma formation from cell population depleted of Prominin1-expressing cells. PLoS ONE. 2009;4:e6869.PubMedCrossRef
58.
go back to reference Garcia JL, Perez-Caro M, Gomez-Moreta JA, et al. Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas. BMC Cancer. 2010;10:454.PubMedCrossRef Garcia JL, Perez-Caro M, Gomez-Moreta JA, et al. Molecular analysis of ex-vivo CD133+ GBM cells revealed a common invasive and angiogenic profile but different proliferative signatures among high grade gliomas. BMC Cancer. 2010;10:454.PubMedCrossRef
59.
go back to reference Pallini R, Ricci-Vitiani L, Banna GL, et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14:8205–12.PubMedCrossRef Pallini R, Ricci-Vitiani L, Banna GL, et al. Cancer stem cell analysis and clinical outcome in patients with glioblastoma multiforme. Clin Cancer Res. 2008;14:8205–12.PubMedCrossRef
60.
go back to reference Zhang M, Song T, Yang L, et al. Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res. 2008;27:85.PubMedCrossRef Zhang M, Song T, Yang L, et al. Nestin and CD133: valuable stem cell-specific markers for determining clinical outcome of glioma patients. J Exp Clin Cancer Res. 2008;27:85.PubMedCrossRef
61.
go back to reference Kappadakunnel M, Eskin A, Dong J, et al. Stem cell associated gene expression in glioblastoma multiforme: relationship to survival and the subventricular zone. J Neurooncol. 2010;96:359–67.PubMedCrossRef Kappadakunnel M, Eskin A, Dong J, et al. Stem cell associated gene expression in glioblastoma multiforme: relationship to survival and the subventricular zone. J Neurooncol. 2010;96:359–67.PubMedCrossRef
Metadata
Title
Integration of Global Spectral Karyotyping, CGH Arrays, and Expression Arrays Reveals Important Genes in the Pathogenesis of Glioblastoma Multiforme
Authors
Paola E. Leone, PhD
M. Belén González, PhD
Carolina Elosua, BS
Juan A. Gómez-Moreta, MD
Eva Lumbreras, BS
Cristina Robledo, PhD
Angel Santos-Briz, MD
José Maria Valero, MD, PhD
Rafael Díaz de la Guardia, PhD
Norma C. Gutiérrez, MD, PhD
Jesús M. Hernández, MD, PhD
Juan L. García, PhD
Publication date
01-07-2012
Publisher
Springer-Verlag
Published in
Annals of Surgical Oncology / Issue 7/2012
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-011-2202-5

Other articles of this Issue 7/2012

Annals of Surgical Oncology 7/2012 Go to the issue