Skip to main content
Top
Published in: Annals of Surgical Oncology 4/2011

01-04-2011 | Translational Research and Biomarkers

Identification of Differentially Expressed MicroRNA in Parathyroid Tumors

Authors: Reza Rahbari, MD, Alisha K. Holloway, PhD, Mei He, MD, Elham Khanafshar, MD, Orlo H. Clark, MD, Electron Kebebew, MD

Published in: Annals of Surgical Oncology | Issue 4/2011

Login to get access

Abstract

Background

The molecular factors that control parathyroid tumorigenesis are poorly understood. In the absence of local invasion or metastasis, distinguishing benign from malignant parathyroid neoplasm is difficult on histologic examination. We studied the microRNA (miRNA) profile in normal, hyperplastic, and benign and malignant parathyroid tumors to better understand the molecular factors that may play a role in parathyroid tumorigenesis and that may serve as diagnostic markers for parathyroid carcinoma.

Methods

miRNA arrays containing 825 human microRNAs with four duplicate probes per miRNA were used to profile parathyroid tumor (12 adenomas, 9 carcinomas, and 15 hyperplastic) samples normalized to four reference normal parathyroid glands. Differentially expressed miRNA were validated by real-time quantitative TaqMan polymerase chain reaction (PCR).

Results

One hundred fifty-six miRNAs in parathyroid hyperplasia, 277 microRNAs in parathyroid adenoma, and 167 microRNAs in parathyroid carcinomas were significantly dysregulated as compared with normal parathyroid glands [false discovery rate (FDR) < 0.05]. By supervised clustering analysis, all parathyroid carcinomas clustered together. Three miRNAs (miR-26b, miR-30b, and miR-126*) were significantly dysregulated between parathyroid carcinoma and parathyroid adenoma. Receiver-operating characteristic curve analysis showed mir-126* was the best diagnostic marker, with area under the curve of 0.776.

Conclusions

Most miRNAs are downregulated in parathyroid carcinoma, while in parathyroid hyperplasia most miRNAs are upregulated. miRNA profiling shows distinct differentially expressed miRNAs by tumor type which may serve as helpful adjunct to distinguish parathyroid adenoma from carcinoma.
Literature
1.
go back to reference Kebebew E, Clark OH. Parathyroid adenoma, hyperplasia, and carcinoma: localization, technical details of primary neck exploration, and treatment of hypercalcemic crisis. Surg Oncol Clin North Am. 1998;7(4):721–48. Kebebew E, Clark OH. Parathyroid adenoma, hyperplasia, and carcinoma: localization, technical details of primary neck exploration, and treatment of hypercalcemic crisis. Surg Oncol Clin North Am. 1998;7(4):721–48.
2.
go back to reference Carpten JD, Robbins CM, Villablanca A, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet. 2002;32(4):676–80. Carpten JD, Robbins CM, Villablanca A, et al. HRPT2, encoding parafibromin, is mutated in hyperparathyroidism-jaw tumor syndrome. Nat Genet. 2002;32(4):676–80.
3.
go back to reference Fernandez-Ranvier GG, Khanafshar E, Tacha D, et al. Defining a molecular phenotype for benign and malignant parathyroid tumors. Cancer. 2009;115(2):334–44.PubMedCrossRef Fernandez-Ranvier GG, Khanafshar E, Tacha D, et al. Defining a molecular phenotype for benign and malignant parathyroid tumors. Cancer. 2009;115(2):334–44.PubMedCrossRef
4.
go back to reference Haven CJ, Howell VM, Eilers PH, et al. Gene expression of parathyroid tumors: molecular subclassification and identification of the potential malignant phenotype. Cancer Res. 2004;64(20):7405–11.PubMedCrossRef Haven CJ, Howell VM, Eilers PH, et al. Gene expression of parathyroid tumors: molecular subclassification and identification of the potential malignant phenotype. Cancer Res. 2004;64(20):7405–11.PubMedCrossRef
5.
go back to reference Fujimoto Y, Obara T. How to recognize and treat parathyroid carcinoma. Surg Clin North Am. 1987;67(2):343–57.PubMed Fujimoto Y, Obara T. How to recognize and treat parathyroid carcinoma. Surg Clin North Am. 1987;67(2):343–57.PubMed
6.
7.
go back to reference Shattuck TM, Valimaki S, Obara T, et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med. 2003;349(18):1722–9.PubMedCrossRef Shattuck TM, Valimaki S, Obara T, et al. Somatic and germ-line mutations of the HRPT2 gene in sporadic parathyroid carcinoma. N Engl J Med. 2003;349(18):1722–9.PubMedCrossRef
9.
go back to reference Yano S, Sugimoto T, Tsukamoto T, et al. Decrease in vitamin D receptor and calcium-sensing receptor in highly proliferative parathyroid adenomas. Eur J Endocrinol. 2003;148(4):403–11.PubMedCrossRef Yano S, Sugimoto T, Tsukamoto T, et al. Decrease in vitamin D receptor and calcium-sensing receptor in highly proliferative parathyroid adenomas. Eur J Endocrinol. 2003;148(4):403–11.PubMedCrossRef
10.
go back to reference Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol. 2009;27(34):5848–56.PubMedCrossRef Iorio MV, Croce CM. MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol. 2009;27(34):5848–56.PubMedCrossRef
11.
go back to reference Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.PubMedCrossRef Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.PubMedCrossRef
12.
13.
go back to reference Lagana A, Forte S, Giudice A, et al. miRo: a miRNA knowledge base. Database (Oxford). 2009; 2009:bap008. Lagana A, Forte S, Giudice A, et al. miRo: a miRNA knowledge base. Database (Oxford). 2009; 2009:bap008.
14.
15.
go back to reference Yang YH, Dudoit S, Luu P, et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002;30(4):e15.PubMedCrossRef Yang YH, Dudoit S, Luu P, et al. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002;30(4):e15.PubMedCrossRef
16.
go back to reference Smyth G. limma: linear models for microarray data. In: Gentleman R, Irizarry RA, Dudoit S, editors. Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p 397–420.CrossRef Smyth G. limma: linear models for microarray data. In: Gentleman R, Irizarry RA, Dudoit S, editors. Bioinformatics and computational biology solutions using R and Bioconductor. New York: Springer; 2005. p 397–420.CrossRef
17.
go back to reference Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004; 3:Article3. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004; 3:Article3.
18.
go back to reference Lee PK, Jarosek SL, Virnig BA, et al. Trends in the incidence and treatment of parathyroid cancer in the United States. Cancer. 2007;109(9):1736–41.PubMedCrossRef Lee PK, Jarosek SL, Virnig BA, et al. Trends in the incidence and treatment of parathyroid cancer in the United States. Cancer. 2007;109(9):1736–41.PubMedCrossRef
19.
go back to reference Kebebew E, Arici C, Duh QY, Clark OH. Localization and reoperation results for persistent and recurrent parathyroid carcinoma. Arch Surg. 2001;136(8):878–85.PubMedCrossRef Kebebew E, Arici C, Duh QY, Clark OH. Localization and reoperation results for persistent and recurrent parathyroid carcinoma. Arch Surg. 2001;136(8):878–85.PubMedCrossRef
20.
go back to reference Howell VM, Gill A, Clarkson A, et al. Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. J Clin Endocrinol Metab. 2009;94(2):434–41. Howell VM, Gill A, Clarkson A, et al. Accuracy of combined protein gene product 9.5 and parafibromin markers for immunohistochemical diagnosis of parathyroid carcinoma. J Clin Endocrinol Metab. 2009;94(2):434–41.
21.
go back to reference Cetani F, Ambrogini E, Viacava P, et al. Should parafibromin staining replace HRTP2 gene analysis as an additional tool for histologic diagnosis of parathyroid carcinoma? Eur J Endocrinol. 2007;156(5):547–54.PubMedCrossRef Cetani F, Ambrogini E, Viacava P, et al. Should parafibromin staining replace HRTP2 gene analysis as an additional tool for histologic diagnosis of parathyroid carcinoma? Eur J Endocrinol. 2007;156(5):547–54.PubMedCrossRef
22.
go back to reference Corbetta S, Vaira V, Guarnieri V, et al. Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr Relat Cancer. 2010;17(1):135–46.PubMedCrossRef Corbetta S, Vaira V, Guarnieri V, et al. Differential expression of microRNAs in human parathyroid carcinomas compared with normal parathyroid tissue. Endocr Relat Cancer. 2010;17(1):135–46.PubMedCrossRef
23.
go back to reference Kytola S, Farnebo F, Obara T, et al. Patterns of chromosomal imbalances in parathyroid carcinomas. Am J Pathol. 2000;157(2):579–86.PubMedCrossRef Kytola S, Farnebo F, Obara T, et al. Patterns of chromosomal imbalances in parathyroid carcinomas. Am J Pathol. 2000;157(2):579–86.PubMedCrossRef
24.
go back to reference Lu Y, Ryan SL, Elliott DJ, et al. Amplification and overexpression of Hsa-miR-30b, Hsa-miR-30d and KHDRBS3 at 8q24.22-q24.23 in medulloblastoma. PLoS One. 2009;4(7):e6159. Lu Y, Ryan SL, Elliott DJ, et al. Amplification and overexpression of Hsa-miR-30b, Hsa-miR-30d and KHDRBS3 at 8q24.22-q24.23 in medulloblastoma. PLoS One. 2009;4(7):e6159.
25.
go back to reference Guled M, Lahti L, Lindholm PM, et al. CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma -A miRNA microarray analysis. Genes Chromosomes Cancer. 2009;48(7):615–23.PubMedCrossRef Guled M, Lahti L, Lindholm PM, et al. CDKN2A, NF2, and JUN are dysregulated among other genes by miRNAs in malignant mesothelioma -A miRNA microarray analysis. Genes Chromosomes Cancer. 2009;48(7):615–23.PubMedCrossRef
26.
go back to reference Jardin F, Callanan M, Penther D, et al. Recurrent genomic aberrations combined with deletions of various tumour suppressor genes may deregulate the G1/S transition in CD4 + CD56 + haematodermic neoplasms and contribute to the aggressiveness of the disease. Leukemia. 2009;23(4):698–707.PubMedCrossRef Jardin F, Callanan M, Penther D, et al. Recurrent genomic aberrations combined with deletions of various tumour suppressor genes may deregulate the G1/S transition in CD4 + CD56 + haematodermic neoplasms and contribute to the aggressiveness of the disease. Leukemia. 2009;23(4):698–707.PubMedCrossRef
27.
go back to reference Zanette DL, Rivadavia F, Molfetta GA, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res. 2007;40(11):1435–40.PubMedCrossRef Zanette DL, Rivadavia F, Molfetta GA, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res. 2007;40(11):1435–40.PubMedCrossRef
28.
go back to reference Ji J, Shi J, Budhu A, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009;361(15):1437–47.PubMedCrossRef Ji J, Shi J, Budhu A, et al. MicroRNA expression, survival, and response to interferon in liver cancer. N Engl J Med. 2009;361(15):1437–47.PubMedCrossRef
29.
go back to reference Liu X, Chen Z, Yu J, et al. MicroRNA Profiling and head and neck cancer. Comp Funct Genomics. 2009:837514. Liu X, Chen Z, Yu J, et al. MicroRNA Profiling and head and neck cancer. Comp Funct Genomics. 2009:837514.
30.
go back to reference Liu B, Peng XC, Zheng XL, et al. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. 2009;66(2):169–75.PubMedCrossRef Liu B, Peng XC, Zheng XL, et al. MiR-126 restoration down-regulate VEGF and inhibit the growth of lung cancer cell lines in vitro and in vivo. Lung Cancer. 2009;66(2):169–75.PubMedCrossRef
31.
go back to reference Sun Y, Bai Y, Zhang F, et al. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun. 2010;391(3):1483–9.PubMedCrossRef Sun Y, Bai Y, Zhang F, et al. miR-126 inhibits non-small cell lung cancer cells proliferation by targeting EGFL7. Biochem Biophys Res Commun. 2010;391(3):1483–9.PubMedCrossRef
32.
go back to reference Guo C, Sah JF, Beard L, et al. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer. 2008;47(11):939–46.PubMedCrossRef Guo C, Sah JF, Beard L, et al. The noncoding RNA, miR-126, suppresses the growth of neoplastic cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers. Genes Chromosomes Cancer. 2008;47(11):939–46.PubMedCrossRef
33.
go back to reference Hussein K, Dralle W, Theophile K, et al. Megakaryocytic expression of miRNA 10a, 17-5p, 20a and 126 in Philadelphia chromosome-negative myeloproliferative neoplasm. Ann Hematol. 2009;88(4):325–32.PubMedCrossRef Hussein K, Dralle W, Theophile K, et al. Megakaryocytic expression of miRNA 10a, 17-5p, 20a and 126 in Philadelphia chromosome-negative myeloproliferative neoplasm. Ann Hematol. 2009;88(4):325–32.PubMedCrossRef
Metadata
Title
Identification of Differentially Expressed MicroRNA in Parathyroid Tumors
Authors
Reza Rahbari, MD
Alisha K. Holloway, PhD
Mei He, MD
Elham Khanafshar, MD
Orlo H. Clark, MD
Electron Kebebew, MD
Publication date
01-04-2011
Publisher
Springer-Verlag
Published in
Annals of Surgical Oncology / Issue 4/2011
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-010-1359-7

Other articles of this Issue 4/2011

Annals of Surgical Oncology 4/2011 Go to the issue