Skip to main content
Top
Published in: Annals of Surgical Oncology 12/2023

13-08-2023 | Artificial Intelligence | ASO Perspectives

Rethinking Risk Modeling with Machine Learning

Authors: Adam Yala, PhD, Kevin S. Hughes, MD

Published in: Annals of Surgical Oncology | Issue 12/2023

Login to get access

Excerpt

Accurate risk assessment is essential for the early detection and prevention of breast cancer. With the foresight offered by risk models, high-risk patients can benefit from supplemental imaging, more frequent screening, and chemoprevention to improve their outcomes. Similarly, low-risk patients can be guided toward longer screening intervals and avoid overtreatment. As such, there have been considerable investments in the development of risk-based guidelines for supplemental imaging, personalized screening frequency, and chemoprevention.14 However, the risk models underlying these national efforts give gross, generalized risk estimates that are inaccurate at the individual level, limiting the efficacy of existing guidelines. For instance, current National Comprehensive Cancer Network (NCCN) guidelines recommend supplemental magnetic resonance imaging (MRI) for patients with 20% or greater lifetime risk of breast cancer.5 However, under these guidelines, more than 97% of supplemental screening MRIs will not detect cancer,6 indicating that most of these patients did not need MRIs. Conversely, only 25% of patients with breast cancer will be eligible for MRI before their diagnosis, indicating a missed opportunity for 75% of patients with cancer.7 Guidelines for chemoprevention and screening frequency are similarly inefficient. These challenges stem from the limitations of the guideline’s underlying risk models. Improving predictors of individual cancer risk remains essential to improving the systematic early detection and prevention of breast cancer. …
Literature
3.
go back to reference Pashayan N, Antoniou AC, Ivanus U, Esserman LJ, Easton DF, French D, Sroczynski G, Hall P, Cuzick J, Evans DG, Simard J, Garcia-Closas M, Schmutzler R, Wegwarth O, Pharoah P, Moorthie S, De Montgolfier S, Baron C, Herceg Z, Turnbull C, Balleyguier C, Rossi PG, Wesseling J, Ritchie D, Tischkowitz M, Broeders M, Reisel D, Metspalu A, Callender T, de Koning H, Devilee P, Delaloge S, Schmidt MK, Widschwendter M. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol. 2020;17(11):687–705. https://doi.org/10.1038/s41571-020-0388-9.CrossRefPubMedPubMedCentral Pashayan N, Antoniou AC, Ivanus U, Esserman LJ, Easton DF, French D, Sroczynski G, Hall P, Cuzick J, Evans DG, Simard J, Garcia-Closas M, Schmutzler R, Wegwarth O, Pharoah P, Moorthie S, De Montgolfier S, Baron C, Herceg Z, Turnbull C, Balleyguier C, Rossi PG, Wesseling J, Ritchie D, Tischkowitz M, Broeders M, Reisel D, Metspalu A, Callender T, de Koning H, Devilee P, Delaloge S, Schmidt MK, Widschwendter M. Personalized early detection and prevention of breast cancer: ENVISION consensus statement. Nat Rev Clin Oncol. 2020;17(11):687–705. https://​doi.​org/​10.​1038/​s41571-020-0388-9.CrossRefPubMedPubMedCentral
6.
go back to reference Vreemann S, Gubern-Mérida A, Schlooz-Vries MS, Bult P, van Gils CH, Hoogerbrugge N, Karssemeijer N, Mann RM. Influence of risk category and screening round on the performance of an MR imaging and mammography screening program in carriers of the brca mutation and other women at increased risk. Radiology. 2018;286(2):443–51. https://doi.org/10.1148/radiol.2017170458.CrossRefPubMed Vreemann S, Gubern-Mérida A, Schlooz-Vries MS, Bult P, van Gils CH, Hoogerbrugge N, Karssemeijer N, Mann RM. Influence of risk category and screening round on the performance of an MR imaging and mammography screening program in carriers of the brca mutation and other women at increased risk. Radiology. 2018;286(2):443–51. https://​doi.​org/​10.​1148/​radiol.​2017170458.CrossRefPubMed
8.
go back to reference Eriksson M, Czene K, Vachon C, Conant EF, Hall P. Long-term performance of an image-based short-term risk model for breast cancer. J Clin Oncol. 2023;41(14):2536–45.CrossRefPubMedPubMedCentral Eriksson M, Czene K, Vachon C, Conant EF, Hall P. Long-term performance of an image-based short-term risk model for breast cancer. J Clin Oncol. 2023;41(14):2536–45.CrossRefPubMedPubMedCentral
9.
go back to reference Eriksson M, Czene K, Strand F, et al. Identification of women at high risk of breast cancer who need supplemental screening. Radiology. 2020;297:327–33.CrossRefPubMed Eriksson M, Czene K, Strand F, et al. Identification of women at high risk of breast cancer who need supplemental screening. Radiology. 2020;297:327–33.CrossRefPubMed
10.
go back to reference Mikhael PG, Wohlwend J, Yala A, Karstens L, Xiang J, Takigami AK, Bourgouin PP, Chan P, Mrah S, Amayri W, Juan YH, Yang CT, Wan YL, Lin G, Sequist LV, Fintelmann FJ, Sybil Barzilay R. A validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography. J Clin Oncol. 2023;41(12):2191–200. https://doi.org/10.1200/JCO.22.01345.CrossRefPubMedPubMedCentral Mikhael PG, Wohlwend J, Yala A, Karstens L, Xiang J, Takigami AK, Bourgouin PP, Chan P, Mrah S, Amayri W, Juan YH, Yang CT, Wan YL, Lin G, Sequist LV, Fintelmann FJ, Sybil Barzilay R. A validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography. J Clin Oncol. 2023;41(12):2191–200. https://​doi.​org/​10.​1200/​JCO.​22.​01345.CrossRefPubMedPubMedCentral
11.
go back to reference Yala A, Mikhael PG, Strand F, Lin G, Satuluru S, Kim T, Banerjee I, Gichoya J, Trivedi H, Lehman CD, Hughes K, Sheedy DJ, Matthis LM, Karunakaran B, Hegarty KE, Sabino S, Silva TB, Evangelista MC, Caron RF, Souza B, Mauad EC, Patalon T, Handelman-Gotlib S, Guindy M, Barzilay R. Multi-institutional validation of a mammography-based breast cancer risk model. J Clin Oncol. 2022;40(16):1732–40. https://doi.org/10.1200/JCO.21.01337.CrossRefPubMed Yala A, Mikhael PG, Strand F, Lin G, Satuluru S, Kim T, Banerjee I, Gichoya J, Trivedi H, Lehman CD, Hughes K, Sheedy DJ, Matthis LM, Karunakaran B, Hegarty KE, Sabino S, Silva TB, Evangelista MC, Caron RF, Souza B, Mauad EC, Patalon T, Handelman-Gotlib S, Guindy M, Barzilay R. Multi-institutional validation of a mammography-based breast cancer risk model. J Clin Oncol. 2022;40(16):1732–40. https://​doi.​org/​10.​1200/​JCO.​21.​01337.CrossRefPubMed
12.
go back to reference Dembrower K, Liu Y, Azizpour H, Eklund M, Smith K, Lindholm P, Strand F. Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction. Radiology. 2020;294(2):265–72.CrossRefPubMed Dembrower K, Liu Y, Azizpour H, Eklund M, Smith K, Lindholm P, Strand F. Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction. Radiology. 2020;294(2):265–72.CrossRefPubMed
13.
go back to reference Zhu X, Wolfgruber TK, Leong L, Jensen M, Scott C, Winham S, Shepherd JA. Deep learning predicts interval and screening-detected cancer from screening mammograms: a case-case-control study in 6369 women. Radiology. 2021;301(3):550–8.CrossRefPubMed Zhu X, Wolfgruber TK, Leong L, Jensen M, Scott C, Winham S, Shepherd JA. Deep learning predicts interval and screening-detected cancer from screening mammograms: a case-case-control study in 6369 women. Radiology. 2021;301(3):550–8.CrossRefPubMed
14.
go back to reference Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology. 2019;292(1):60–6.CrossRefPubMed Yala A, Lehman C, Schuster T, Portnoi T, Barzilay R. A deep learning mammography-based model for improved breast cancer risk prediction. Radiology. 2019;292(1):60–6.CrossRefPubMed
15.
go back to reference Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23(7):1111–30.CrossRefPubMed Tyrer J, Duffy SW, Cuzick J. A breast cancer prediction model incorporating familial and personal risk factors. Stat Med. 2004;23(7):1111–30.CrossRefPubMed
16.
go back to reference Brentnall AR, Harkness EF, Astley SM, Donnelly LS, Stavrinos P, Sampson S, Fox L, Sergeant JC, Harvie MN, Wilson M, Beetles U, Gadde S, Lim Y, Jain A, Bundred S, Barr N, Reece V, Howell A, Cuzick J, Evans DG. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015;17(1):147.CrossRefPubMedPubMedCentral Brentnall AR, Harkness EF, Astley SM, Donnelly LS, Stavrinos P, Sampson S, Fox L, Sergeant JC, Harvie MN, Wilson M, Beetles U, Gadde S, Lim Y, Jain A, Bundred S, Barr N, Reece V, Howell A, Cuzick J, Evans DG. Mammographic density adds accuracy to both the Tyrer-Cuzick and Gail breast cancer risk models in a prospective UK screening cohort. Breast Cancer Res. 2015;17(1):147.CrossRefPubMedPubMedCentral
18.
go back to reference Yu Y, Tan Y, Xie C, Hu Q, Ouyang J, Chen Y, Gu Y, Li A, Lu N, He Z, Yang Y, Chen K, Ma J, Li C, Ma M, Li X, Zhang R, Zhong H, Ou Q, Zhang Y, He Y, Li G, Wu Z, Su F, Song E, Yao H. Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer. JAMA Netw Open. 2020;3(12):e2028086. https://doi.org/10.1001/jamanetworkopen.2020.28086.CrossRefPubMedPubMedCentral Yu Y, Tan Y, Xie C, Hu Q, Ouyang J, Chen Y, Gu Y, Li A, Lu N, He Z, Yang Y, Chen K, Ma J, Li C, Ma M, Li X, Zhang R, Zhong H, Ou Q, Zhang Y, He Y, Li G, Wu Z, Su F, Song E, Yao H. Development and validation of a preoperative magnetic resonance imaging radiomics-based signature to predict axillary lymph node metastasis and disease-free survival in patients with early-stage breast cancer. JAMA Netw Open. 2020;3(12):e2028086. https://​doi.​org/​10.​1001/​jamanetworkopen.​2020.​28086.CrossRefPubMedPubMedCentral
19.
go back to reference Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Staudt LM. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47.CrossRefPubMed Rosenwald A, Wright G, Chan WC, Connors JM, Campo E, Fisher RI, Staudt LM. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346(25):1937–47.CrossRefPubMed
20.
go back to reference Jeong JJ, Vey BL, Bhimireddy A, Kim T, Santos T, Correa R, Dutt R, Mosunjac M, Oprea-Ilies G, Smith G, Woo M, McAdams CR, Newell MS, Banerjee I, Gichoya J, Trivedi H. The EMory Br East imaging Dataset (EMBED): a racially diverse, granular dataset of 3.4 million screening and diagnostic mammographic images. Radiol Artif Intell. 2023;5(1):e220047. https://doi.org/10.1148/ryai.220047.CrossRefPubMedPubMedCentral Jeong JJ, Vey BL, Bhimireddy A, Kim T, Santos T, Correa R, Dutt R, Mosunjac M, Oprea-Ilies G, Smith G, Woo M, McAdams CR, Newell MS, Banerjee I, Gichoya J, Trivedi H. The EMory Br East imaging Dataset (EMBED): a racially diverse, granular dataset of 3.4 million screening and diagnostic mammographic images. Radiol Artif Intell. 2023;5(1):e220047. https://​doi.​org/​10.​1148/​ryai.​220047.CrossRefPubMedPubMedCentral
21.
go back to reference Coopey SB, Acar A, Griffin M, Cintolo-Gonzalez J, Semine A, Hughes KS. The impact of patient age on breast cancer risk prediction models. Breast J. 2018;24(4):592–8.CrossRefPubMed Coopey SB, Acar A, Griffin M, Cintolo-Gonzalez J, Semine A, Hughes KS. The impact of patient age on breast cancer risk prediction models. Breast J. 2018;24(4):592–8.CrossRefPubMed
23.
go back to reference Topol Eric J. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.CrossRefPubMed Topol Eric J. High-performance medicine: the convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.CrossRefPubMed
24.
go back to reference Rajpurkar Pranav, Chen Emma, Banerjee Oishi, Topol Eric J. AI in health and medicine. Nat Med. 2022;28(1):31–8.CrossRefPubMed Rajpurkar Pranav, Chen Emma, Banerjee Oishi, Topol Eric J. AI in health and medicine. Nat Med. 2022;28(1):31–8.CrossRefPubMed
Metadata
Title
Rethinking Risk Modeling with Machine Learning
Authors
Adam Yala, PhD
Kevin S. Hughes, MD
Publication date
13-08-2023
Publisher
Springer International Publishing
Published in
Annals of Surgical Oncology / Issue 12/2023
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-023-14144-5

Other articles of this Issue 12/2023

Annals of Surgical Oncology 12/2023 Go to the issue