Skip to main content
Top
Published in: Annals of Surgical Oncology 11/2023

Open Access 31-07-2023 | Colorectal Cancer | Translational Research

Cancer Stem Cells Persist Despite Cellular Damage, Emergence of the Refractory Cell Population

Authors: Ayumi Nagae, MD, Norikatsu Miyoshi, MD, PhD, Shiki Fujino, MD, PhD, Masafumi Horie, MD, PhD, Shinichi Yachida, MD, PhD, Masaru Sasaki, MD, PhD, Yuki Sekido, MD, PhD, Tsuyoshi Hata, MD, PhD, Atsushi Hamabe, MD, PhD, Takayuki Ogino, MD, PhD, Hidekazu Takahashi, MD, PhD, Mamoru Uemura, MD, PhD, Hirofumi Yamamoto, MD, PhD, Yuichiro Doki, MD, PhD, Hidetoshi Eguchi, MD, PhD

Published in: Annals of Surgical Oncology | Issue 11/2023

Login to get access

Abstract

Purpose

Cancer stem cells (CSCs) are responsible for chemotherapy resistance and have unique properties that protect them from chemotherapy. Investigating CSCs may help to identify the population that is more resistant to treatments, leading to recurrence. We evaluated persisting CSCs, emerging after chemotherapy that cause tumor recurrence.

Methods

Using human colorectal cancer organoids prepared from surgical specimens, we looked at changes in CSCs, the emergence and changes in the original population, which single-cell analysis identified.

Results

With regards to changes in cancer stem cell markers, CD44 showed low levels after 5-fluorouracil administration. Once the CD44-ve population was sorted and cultured, the CD44+ve population gradually emerged, and the CD44-ve population decreased. Compared with the CD44-ve population of an organoid parent, the CD44-ve population proliferated after chemotherapeutic agent stimulation. The CD44-ve population was derived from the CD44+ve population before chemotherapeutic agents. In addition, when the CD44 variants were evaluated, the CD44v9 population remained. In single-cell analysis, we found that POU5F1 was highly expressed in the CD44low population. Velocity analysis showed that the CD44-ve population was induced after chemotherapy and expressed POU5F1. POU5F1-EGFP-Casp9 transfected organoids resulted in the appearance of a CD44-ve population after administration of a chemotherapeutic reagent. Both in vivo and in vitro, the dimerizer administration inhibited tumor growth significantly.

Conclusions

POU5F1 is involved in chemotherapy resistance in relation to stemness. For the treatment against refractory tumors, such as the recurrence after chemotherapy, the treatment should target the emerging specific population such as CD44 (or CD44v9) and proliferative cancer cells.
Appendix
Available only for authorised users
Literature
1.
go back to reference Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.CrossRefPubMed
2.
go back to reference Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447.CrossRefPubMed Vodenkova S, Buchler T, Cervena K, Veskrnova V, Vodicka P, Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: past, present and future. Pharmacol Ther. 2020;206:107447.CrossRefPubMed
3.
go back to reference Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.CrossRefPubMed Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645–8.CrossRefPubMed
4.
go back to reference Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T. Cancer stem cells in colorectal cancer: a review. J Clin Pathol. 2018;71(2):110–6.CrossRefPubMed Munro MJ, Wickremesekera SK, Peng L, Tan ST, Itinteang T. Cancer stem cells in colorectal cancer: a review. J Clin Pathol. 2018;71(2):110–6.CrossRefPubMed
5.
go back to reference Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–11.CrossRefPubMed
7.
8.
go back to reference Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.CrossRefPubMed Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.CrossRefPubMed
9.
go back to reference Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.CrossRefPubMed Clarke MF, Dick JE, Dirks PB, et al. Cancer stem cells–perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006;66(19):9339–44.CrossRefPubMed
10.
go back to reference Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–45.CrossRefPubMed Eyler CE, Rich JN. Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol. 2008;26(17):2839–45.CrossRefPubMed
11.
go back to reference Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.CrossRefPubMed Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–60.CrossRefPubMed
12.
go back to reference Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.CrossRefPubMedPubMedCentral Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 2009;458(7239):780–3.CrossRefPubMedPubMedCentral
14.
go back to reference Morath I, Hartmann TN, Orian-Rousseau V. CD44: More than a mere stem cell marker. Int J Biochem Cell Biol. 2016;81(Pt A):166–73.CrossRefPubMed Morath I, Hartmann TN, Orian-Rousseau V. CD44: More than a mere stem cell marker. Int J Biochem Cell Biol. 2016;81(Pt A):166–73.CrossRefPubMed
16.
go back to reference Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007;104(24):10158–63.CrossRefPubMedPubMedCentral Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 2007;104(24):10158–63.CrossRefPubMedPubMedCentral
17.
go back to reference Wielenga VJ, Smits R, Korinek V, et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol. 1999;154(2):515–23.CrossRefPubMedPubMedCentral Wielenga VJ, Smits R, Korinek V, et al. Expression of CD44 in Apc and Tcf mutant mice implies regulation by the WNT pathway. Am J Pathol. 1999;154(2):515–23.CrossRefPubMedPubMedCentral
18.
go back to reference Du L, Wang H, He L, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14(21):6751–60.CrossRefPubMed Du L, Wang H, He L, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14(21):6751–60.CrossRefPubMed
19.
go back to reference Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci U S A. 2010;107:3722–7.CrossRefPubMedPubMedCentral Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci U S A. 2010;107:3722–7.CrossRefPubMedPubMedCentral
20.
go back to reference Hayashi H, Miyamoto Y, Higashi T, et al. CD44 expression enhances chemoresistance and implies occult micrometastases after conversion hepatectomy for initially unresectable colorectal liver metastases. Am J Transl Res. 2020;12(9):5955–66.PubMedPubMedCentral Hayashi H, Miyamoto Y, Higashi T, et al. CD44 expression enhances chemoresistance and implies occult micrometastases after conversion hepatectomy for initially unresectable colorectal liver metastases. Am J Transl Res. 2020;12(9):5955–66.PubMedPubMedCentral
21.
go back to reference Fujino S, Ito A, Ohue M. Phenotypic heterogeneity of 2D organoid reflects clinical tumor characteristics. Biochem Biophys Res Commun. 2019;513(2):332–9.CrossRefPubMed Fujino S, Ito A, Ohue M. Phenotypic heterogeneity of 2D organoid reflects clinical tumor characteristics. Biochem Biophys Res Commun. 2019;513(2):332–9.CrossRefPubMed
22.
go back to reference Fujino S, Miyoshi N, Ito A, et al. Crenolanib regulates ERK and AKT/mTOR signaling pathways in RAS/BRAF-mutated colorectal cancer cells and organoids. Mol Cancer Res. 2021;19(5):812–22.CrossRefPubMed Fujino S, Miyoshi N, Ito A, et al. Crenolanib regulates ERK and AKT/mTOR signaling pathways in RAS/BRAF-mutated colorectal cancer cells and organoids. Mol Cancer Res. 2021;19(5):812–22.CrossRefPubMed
23.
go back to reference Hott A, Cheung AYL, Farra N, et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods. 2009;6(5):370–6.CrossRef Hott A, Cheung AYL, Farra N, et al. Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nat Methods. 2009;6(5):370–6.CrossRef
25.
go back to reference van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.CrossRefPubMedPubMedCentral van de Wetering M, Francies HE, Francis JM, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.CrossRefPubMedPubMedCentral
26.
go back to reference Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18:827–38.CrossRefPubMed Fujii M, Shimokawa M, Date S, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18:827–38.CrossRefPubMed
27.
go back to reference Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920–6.CrossRefPubMedPubMedCentral Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359:920–6.CrossRefPubMedPubMedCentral
28.
go back to reference Du L, Wang H, He L, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14:6751–60.CrossRefPubMed Du L, Wang H, He L, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14:6751–60.CrossRefPubMed
29.
go back to reference Du L, Rao G, Wang H, et al. CD44-vepositive cancer stem cells expressing cellular prion protein contribute to metastatic capacity in colorectal cancer. Cancer Res. 2013;73:2682–94.CrossRefPubMed Du L, Rao G, Wang H, et al. CD44-vepositive cancer stem cells expressing cellular prion protein contribute to metastatic capacity in colorectal cancer. Cancer Res. 2013;73:2682–94.CrossRefPubMed
30.
go back to reference Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Natl Acad Sci USA. 1992;89(24):12160–4.CrossRef Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, Bell JI. Genomic structure of DNA encoding the lymphocyte homing receptor CD44 reveals at least 12 alternatively spliced exons. Natl Acad Sci USA. 1992;89(24):12160–4.CrossRef
31.
go back to reference Cain JW, Hauptschein RS, Stewart JK, et al. Identification of CD44 as a surface biomarker for drug resistance by surface proteome signature technology. Mol Cancer Res. 2011;9:637–47.CrossRefPubMedPubMedCentral Cain JW, Hauptschein RS, Stewart JK, et al. Identification of CD44 as a surface biomarker for drug resistance by surface proteome signature technology. Mol Cancer Res. 2011;9:637–47.CrossRefPubMedPubMedCentral
Metadata
Title
Cancer Stem Cells Persist Despite Cellular Damage, Emergence of the Refractory Cell Population
Authors
Ayumi Nagae, MD
Norikatsu Miyoshi, MD, PhD
Shiki Fujino, MD, PhD
Masafumi Horie, MD, PhD
Shinichi Yachida, MD, PhD
Masaru Sasaki, MD, PhD
Yuki Sekido, MD, PhD
Tsuyoshi Hata, MD, PhD
Atsushi Hamabe, MD, PhD
Takayuki Ogino, MD, PhD
Hidekazu Takahashi, MD, PhD
Mamoru Uemura, MD, PhD
Hirofumi Yamamoto, MD, PhD
Yuichiro Doki, MD, PhD
Hidetoshi Eguchi, MD, PhD
Publication date
31-07-2023
Publisher
Springer International Publishing
Published in
Annals of Surgical Oncology / Issue 11/2023
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-023-13849-x

Other articles of this Issue 11/2023

Annals of Surgical Oncology 11/2023 Go to the issue