Skip to main content
Top
Published in: Annals of Surgical Oncology 9/2012

01-09-2012 | Translational Research and Biomarkers

Bioluminescence Imaging Serves as a Dynamic Marker for Guiding and Assessing Thermal Treatment of Cancer in a Preclinical Model

Authors: Joyce T. Au, MD, Lorena Gonzalez, MD, Chun-Hao Chen, MD, Inna Serganova, PhD, Yuman Fong, MD

Published in: Annals of Surgical Oncology | Issue 9/2012

Login to get access

Abstract

Background

Bioluminescence has been harnessed as a dynamic imaging technique in research. This is a proof of principle study examining feasibility of using bioluminescent proteins as a marker to guide therapeutic ablation.

Methods

Mesothelioma cancer cells (MSTO-Td) were transfected with a retroviral vector bearing firefly luciferase gene, plated in serial dilutions, and imaged to compare bioluminescence signal to cell number, determining threshold of bioluminescence detection. MSTO-Td cells were subjected to thermal treatment in a heated chamber; the bioluminescence signal and number of remaining live cancer cells were determined. Mice with MSTO-Td xenografts underwent electrocautery tumor ablation guided by bioluminescence imaging; bioluminescence signal and tumor size were monitored for 3 weeks.

Results

MSTO-Td cells emitted a bright, clear, bioluminescence signal that amplified with the cell number (P < .001) and was detectable with as few as 10 cells in cell culture. Bioluminescence decreased in a dose-dependent fashion upon thermal treatment as temperature increased from 37 to 70 °C (P < .001) and as treatment duration increased from 5 to 20 min (P < .001). This correlated with the number of remaining live MSTO-Td cells (Pearson coefficient = 0.865; P < .001). In mice, the bioluminescence signal correlated with tumor size posttreatment and effectively guided the ablation procedure to completion, achieving 0 % tumor recurrence.

Conclusions

Bioluminescence imaging is a sensitive, real-time imaging approach; bioluminescence reporters such as firefly luciferase can assess and guide thermal treatment of cancer. This encourages research into bioluminescence imaging as a molecular technique with potential to target tumors via biomarkers and optimize thermal treatment procedures in a clinical setting.
Literature
1.
go back to reference Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol. 2000;174:323–31.PubMed Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. AJR Am J Roentgenol. 2000;174:323–31.PubMed
2.
go back to reference Lau WY, Leung TW, Yu SC, Ho SK. Percutaneous local ablative therapy for hepatocellular carcinoma: a review and look into the future. Ann Surg. 2003;237:171–9.PubMed Lau WY, Leung TW, Yu SC, Ho SK. Percutaneous local ablative therapy for hepatocellular carcinoma: a review and look into the future. Ann Surg. 2003;237:171–9.PubMed
3.
go back to reference Timmerman RD, Bizekis CS, Pass HI, Fong Y, Dupuy DE, Dawson LA, et al. Local surgical, ablative, and radiation treatment of metastases. CA Cancer J Clin. 2009;59:145–70.PubMedCrossRef Timmerman RD, Bizekis CS, Pass HI, Fong Y, Dupuy DE, Dawson LA, et al. Local surgical, ablative, and radiation treatment of metastases. CA Cancer J Clin. 2009;59:145–70.PubMedCrossRef
4.
go back to reference de Wet JR, Wood KV, Helinski DR, DeLuca M. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA. 1985;82:7870–3.PubMedCrossRef de Wet JR, Wood KV, Helinski DR, DeLuca M. Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proc Natl Acad Sci USA. 1985;82:7870–3.PubMedCrossRef
5.
go back to reference Dothager RS, Flentie K, Moss B, Pan MH, Kesarwala A, Piwnica-Worms D. Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol. 2009;20:45–53.PubMedCrossRef Dothager RS, Flentie K, Moss B, Pan MH, Kesarwala A, Piwnica-Worms D. Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol. 2009;20:45–53.PubMedCrossRef
6.
go back to reference Serganova I, Moroz E, Vider J, Gogiberidze G, Moroz M, Pillarsetty N, et al. Multimodality imaging of TGFbeta signaling in breast cancer metastases. FASEB J. 2009;23:2662–72.PubMedCrossRef Serganova I, Moroz E, Vider J, Gogiberidze G, Moroz M, Pillarsetty N, et al. Multimodality imaging of TGFbeta signaling in breast cancer metastases. FASEB J. 2009;23:2662–72.PubMedCrossRef
7.
go back to reference Silberhumer GR, Brader P, Wong J, Serganova IS, Gönen M, Gonzalez SJ, et al. Genetically engineered oncolytic Newcastle disease virus effectively induces sustained remission of malignant pleural mesothelioma. Mol Cancer Ther. 2010;9:2761–9.PubMedCrossRef Silberhumer GR, Brader P, Wong J, Serganova IS, Gönen M, Gonzalez SJ, et al. Genetically engineered oncolytic Newcastle disease virus effectively induces sustained remission of malignant pleural mesothelioma. Mol Cancer Ther. 2010;9:2761–9.PubMedCrossRef
8.
go back to reference El Hilali N, Rubio N, Martinez-Villacampa M, Blanco J. Combined noninvasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases. Lab Invest. 2002;82:1563–71.PubMed El Hilali N, Rubio N, Martinez-Villacampa M, Blanco J. Combined noninvasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases. Lab Invest. 2002;82:1563–71.PubMed
9.
go back to reference Klerk CP, Overmeer RM, Niers TM, Versteeg HH, Richel DJ, Buckle T, et al. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques. 2007;43:7–13, 30. Klerk CP, Overmeer RM, Niers TM, Versteeg HH, Richel DJ, Buckle T, et al. Validity of bioluminescence measurements for noninvasive in vivo imaging of tumor load in small animals. Biotechniques. 2007;43:7–13, 30.
10.
go back to reference Sweeney TJ, Mailander V, Tucker AA, Olomu AB, Zhang W, Cao Y, et al. Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA. 1999;96:12044–9.PubMedCrossRef Sweeney TJ, Mailander V, Tucker AA, Olomu AB, Zhang W, Cao Y, et al. Visualizing the kinetics of tumor-cell clearance in living animals. Proc Natl Acad Sci USA. 1999;96:12044–9.PubMedCrossRef
11.
go back to reference Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging. 2004;3:9–23.PubMedCrossRef Troy T, Jekic-McMullen D, Sambucetti L, Rice B. Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging. 2004;3:9–23.PubMedCrossRef
12.
go back to reference Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH. Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia. 1999;1:303–10.PubMedCrossRef Edinger M, Sweeney TJ, Tucker AA, Olomu AB, Negrin RS, Contag CH. Noninvasive assessment of tumor cell proliferation in animal models. Neoplasia. 1999;1:303–10.PubMedCrossRef
13.
go back to reference Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, et al. Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol. 2002;160:1143–53.PubMedCrossRef Wetterwald A, van der Pluijm G, Que I, Sijmons B, Buijs J, Karperien M, et al. Optical imaging of cancer metastasis to bone marrow: a mouse model of minimal residual disease. Am J Pathol. 2002;160:1143–53.PubMedCrossRef
14.
go back to reference Brader P, Stritzker J, Riedl CC, Zanzonico P, Cai S, Burnazi EM, et al. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin Cancer Res. 2008;14:2295–302.PubMedCrossRef Brader P, Stritzker J, Riedl CC, Zanzonico P, Cai S, Burnazi EM, et al. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clin Cancer Res. 2008;14:2295–302.PubMedCrossRef
15.
go back to reference Kelly KJ, Brader P, Woo Y, Li S, Chen N, Yu YA, et al. Real-time intraoperative detection of melanoma lymph node metastases using recombinant vaccinia virus GLV-1h68 in an immunocompetent animal model. Int J Cancer. 2009;124:911–8.PubMedCrossRef Kelly KJ, Brader P, Woo Y, Li S, Chen N, Yu YA, et al. Real-time intraoperative detection of melanoma lymph node metastases using recombinant vaccinia virus GLV-1h68 in an immunocompetent animal model. Int J Cancer. 2009;124:911–8.PubMedCrossRef
16.
go back to reference Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 2005;115:44–55.PubMed Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest. 2005;115:44–55.PubMed
17.
go back to reference Goldman SJ, Chen E, Taylor R, Zhang S, Petrosky W, Reiss M, et al. Use of the ODD-luciferase transgene for the non-invasive imaging of spontaneous tumors in mice. PLoS One. 2011;6:e18269.PubMedCrossRef Goldman SJ, Chen E, Taylor R, Zhang S, Petrosky W, Reiss M, et al. Use of the ODD-luciferase transgene for the non-invasive imaging of spontaneous tumors in mice. PLoS One. 2011;6:e18269.PubMedCrossRef
18.
go back to reference Lyons SK, Lim E, Clermont AO, Dusich J, Zhu L, Campbell KD, et al. Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice. Cancer Res. 2006;66:4701–7.PubMedCrossRef Lyons SK, Lim E, Clermont AO, Dusich J, Zhu L, Campbell KD, et al. Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice. Cancer Res. 2006;66:4701–7.PubMedCrossRef
19.
go back to reference Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS, et al. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood. 2003;101:640–8.PubMedCrossRef Edinger M, Cao YA, Verneris MR, Bachmann MH, Contag CH, Negrin RS, et al. Revealing lymphoma growth and the efficacy of immune cell therapies using in vivo bioluminescence imaging. Blood. 2003;101:640–8.PubMedCrossRef
20.
go back to reference Galkin AV, Melnick JS, Kim S, Hood TL, Li N, Li L, et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA. 2007;104:270–5.PubMedCrossRef Galkin AV, Melnick JS, Kim S, Hood TL, Li N, Li L, et al. Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci USA. 2007;104:270–5.PubMedCrossRef
21.
go back to reference Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki H, Hirai K, et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA. 2005;102:12177–82.PubMedCrossRef Takeshita F, Minakuchi Y, Nagahara S, Honma K, Sasaki H, Hirai K, et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc Natl Acad Sci USA. 2005;102:12177–82.PubMedCrossRef
22.
go back to reference Shah K. Current advances in molecular imaging of gene and cell therapy for cancer. Cancer Biol Ther. 2005;4:518–23.PubMedCrossRef Shah K. Current advances in molecular imaging of gene and cell therapy for cancer. Cancer Biol Ther. 2005;4:518–23.PubMedCrossRef
23.
go back to reference Liu J, Wang Y, Qu X, Li X, Ma X, Han R, et al. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models. Opt Express. 2010;18:13102–13.PubMedCrossRef Liu J, Wang Y, Qu X, Li X, Ma X, Han R, et al. In vivo quantitative bioluminescence tomography using heterogeneous and homogeneous mouse models. Opt Express. 2010;18:13102–13.PubMedCrossRef
24.
go back to reference Wang G, Cong W, Durairaj K, Qian X, Shen H, Sinn P, et al. In vivo mouse studies with bioluminescence tomography. Opt Express. 2006;14:7801–9.PubMedCrossRef Wang G, Cong W, Durairaj K, Qian X, Shen H, Sinn P, et al. In vivo mouse studies with bioluminescence tomography. Opt Express. 2006;14:7801–9.PubMedCrossRef
25.
go back to reference Brader P, Riedl CC, Woo Y, Ponomarev V, Zanzonico P, Wen B, et al. Imaging of hypoxia-driven gene expression in an orthotopic liver tumor model. Mol Cancer Ther. 2007;6:2900–8.PubMedCrossRef Brader P, Riedl CC, Woo Y, Ponomarev V, Zanzonico P, Wen B, et al. Imaging of hypoxia-driven gene expression in an orthotopic liver tumor model. Mol Cancer Ther. 2007;6:2900–8.PubMedCrossRef
26.
go back to reference Sogawa C, Tsuji AB, Sudo H, Sugyo A, Yoshida C, Odaka K, et al. C-kit-targeted imaging of gastrointestinal stromal tumor using radiolabeled anti-c-kit monoclonal antibody in a mouse tumor model. Nucl Med Biol. 2010;37:179–87.PubMedCrossRef Sogawa C, Tsuji AB, Sudo H, Sugyo A, Yoshida C, Odaka K, et al. C-kit-targeted imaging of gastrointestinal stromal tumor using radiolabeled anti-c-kit monoclonal antibody in a mouse tumor model. Nucl Med Biol. 2010;37:179–87.PubMedCrossRef
27.
go back to reference Oude Munnink TH, Nagengast WB, Brouwers AH, Schröder CP, Hospers GA, Lub-de Hooge MN, et al. Molecular imaging of breast cancer. Breast. 2009;18 Suppl 3:S66–73. Oude Munnink TH, Nagengast WB, Brouwers AH, Schröder CP, Hospers GA, Lub-de Hooge MN, et al. Molecular imaging of breast cancer. Breast. 2009;18 Suppl 3:S66–73.
28.
go back to reference Smith TA. Towards detecting the HER-2 receptor and metabolic changes induced by HER-2-targeted therapies using medical imaging. Br J Radiol. 2010;83:638–44.PubMedCrossRef Smith TA. Towards detecting the HER-2 receptor and metabolic changes induced by HER-2-targeted therapies using medical imaging. Br J Radiol. 2010;83:638–44.PubMedCrossRef
29.
go back to reference Glunde K, Jacobs MA, Bhujwalla ZM. Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagn. 2006;6:821–9.PubMedCrossRef Glunde K, Jacobs MA, Bhujwalla ZM. Choline metabolism in cancer: implications for diagnosis and therapy. Expert Rev Mol Diagn. 2006;6:821–9.PubMedCrossRef
30.
go back to reference Sega EI, Low PS. Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev. 2008;27:655–64.PubMedCrossRef Sega EI, Low PS. Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev. 2008;27:655–64.PubMedCrossRef
31.
go back to reference Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 2011;38:55–69.PubMedCrossRef Zhu A, Lee D, Shim H. Metabolic positron emission tomography imaging in cancer detection and therapy response. Semin Oncol. 2011;38:55–69.PubMedCrossRef
32.
go back to reference Lindner U, Lawrentschuk N, Trachtenberg J. Image guidance for focal therapy of prostate cancer. World J Urol. 2010;28:727–34.PubMedCrossRef Lindner U, Lawrentschuk N, Trachtenberg J. Image guidance for focal therapy of prostate cancer. World J Urol. 2010;28:727–34.PubMedCrossRef
Metadata
Title
Bioluminescence Imaging Serves as a Dynamic Marker for Guiding and Assessing Thermal Treatment of Cancer in a Preclinical Model
Authors
Joyce T. Au, MD
Lorena Gonzalez, MD
Chun-Hao Chen, MD
Inna Serganova, PhD
Yuman Fong, MD
Publication date
01-09-2012
Publisher
Springer-Verlag
Published in
Annals of Surgical Oncology / Issue 9/2012
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/s10434-012-2313-7

Other articles of this Issue 9/2012

Annals of Surgical Oncology 9/2012 Go to the issue