Skip to main content
Top
Published in: Annals of Surgical Oncology 8/2006

01-08-2006

Investigating the Combination of Trastuzumab and HER2/neu Peptide Vaccines for the Treatment of Breast Cancer

Authors: Elizabeth A. Mittendorf, MD, Catherine E. Storrer, BS, Craig D. Shriver, MD, Sathibalan Ponniah, PhD, George E. Peoples, MD

Published in: Annals of Surgical Oncology | Issue 8/2006

Login to get access

Abstract

Background

Trastuzumab, an anti-HER2/neu monoclonal antibody, is thought to promote HER2/neu receptor internalization and/or turnover. This study was designed to investigate the kinetics of trastuzumab treatment on tumor cells with varying levels of HER2/neu expression and to determine the effect of trastuzumab on HER2/neu-specific cytotoxic T lymphocyte–mediated lysis.

Methods

Three cell lines with varying levels of HER2/neu expression were incubated with varying doses of trastuzumab at multiple time points. Trastuzumab binding and HER2/neu expression were determined. Peripheral blood mononuclear cells from three HLA-A2+ healthy donors and four E75 peptide–vaccinated patients were stimulated with HER2/neu-derived peptides and tested in standard chromium release cytotoxicity assays with HER2/neu+ tumor cells pretreated with trastuzumab.

Results

Treatment of tumor cells with 10 μg/mL of trastuzumab in an overnight incubation resulted in saturation of cell-surface HER2/neu receptors. At higher doses, trastuzumab staining and HER2/neu expression decreased in a time-dependent manner. Pretreatment of tumor cells with trastuzumab resulted in increases in specific cytotoxicity by peptide-stimulated cytotoxic T lymphocytes from HLA-A2+ donors over untreated cells by an average of 5.6% and 15.3% (P = .0002) for doses of 10 and 50 μg/mL, respectively. In similar experiments involving peripheral blood mononuclear cells obtained from immunized patients, the average specific cytotoxicity for untreated cells was 34.2% ± 1.3% vs. 40.6% ± 2.5% (P = .035) and 40.7% ± 1.6% (P = .0005) for those treated with 10 and 50 μg/mL, respectively.

Conclusions

Our data suggest that pretreatment of breast cancer cells with trastuzumab induces turnover of the HER2/neu protein and enhanced killing by HER2/neu peptide–stimulated CTLs. This increased lysis occurs regardless of the degree of HER2/neu expression and seems more pronounced in vaccinated patients. These findings support further investigation into the use of combination immunotherapy with trastuzumab and HER2/neu peptide–based vaccines.
Literature
1.
go back to reference Lemoine NR, Staddon S, Dickson C, Barnes DM, Gullick WJ. Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene 1990;5:237–9PubMed Lemoine NR, Staddon S, Dickson C, Barnes DM, Gullick WJ. Absence of activating transmembrane mutations in the c-erbB-2 proto-oncogene in human breast cancer. Oncogene 1990;5:237–9PubMed
2.
go back to reference Natali PG, Nicotra MR, Bigotti A, et al. Expression of the p185 encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer 1990;45:457–61PubMed Natali PG, Nicotra MR, Bigotti A, et al. Expression of the p185 encoded by HER2 oncogene in normal and transformed human tissues. Int J Cancer 1990;45:457–61PubMed
3.
go back to reference Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235:177–82.PubMed Slamon DJ, Clark GM, Wong SG, et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987;235:177–82.PubMed
4.
go back to reference Disis ML, Grabstein KH, Sleath PR, Cheever MA. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 1999;5:1289–97PubMed Disis ML, Grabstein KH, Sleath PR, Cheever MA. Generation of immunity to the HER-2/neu oncogenic protein in patients with breast and ovarian cancer using a peptide-based vaccine. Clin Cancer Res 1999;5:1289–97PubMed
5.
go back to reference Disis ML, Schiffman K. Cancer vaccines targeting the HER-2/neu oncogenic protein. Semin Oncol 2001;28:12–20PubMedCrossRef Disis ML, Schiffman K. Cancer vaccines targeting the HER-2/neu oncogenic protein. Semin Oncol 2001;28:12–20PubMedCrossRef
6.
go back to reference Anderson BW, Peoples GE, Murray JL, Gillogly MA, Gershenson DM, Ioannides CG. Peptide priming of cytolytic activity to HER-2 epitope 369-377 in healthy individuals. Clin Cancer Res 2000;6:4192–200PubMed Anderson BW, Peoples GE, Murray JL, Gillogly MA, Gershenson DM, Ioannides CG. Peptide priming of cytolytic activity to HER-2 epitope 369-377 in healthy individuals. Clin Cancer Res 2000;6:4192–200PubMed
7.
go back to reference Ioannides CG, Fisk B, Fan D, Biddison WE, Wharton JT, O’Brian CA. Cytotoxic T cells isolated from ovarian malignant ascites recognize a peptide derived from the HER2/neu proto-oncogene. Cell Immunol 1993;151:225–34PubMedCrossRef Ioannides CG, Fisk B, Fan D, Biddison WE, Wharton JT, O’Brian CA. Cytotoxic T cells isolated from ovarian malignant ascites recognize a peptide derived from the HER2/neu proto-oncogene. Cell Immunol 1993;151:225–34PubMedCrossRef
8.
go back to reference Yoshino I, Goedegebuure PS, Peoples GE, et al. HER2/neu-derived peptide(s) are shared antigens among human non-small cell lung cancer and ovarian cancer. Cancer Res 1994;54:3387–90PubMed Yoshino I, Goedegebuure PS, Peoples GE, et al. HER2/neu-derived peptide(s) are shared antigens among human non-small cell lung cancer and ovarian cancer. Cancer Res 1994;54:3387–90PubMed
9.
go back to reference Disis ML, Smith JW, Murphy AE, Chen W, Cheever MA. In vitro generation of human cytolytic T cells specific for peptide derived from the HER-2/neu protooncogene protein. Cancer Res 1994;54:1071–6PubMed Disis ML, Smith JW, Murphy AE, Chen W, Cheever MA. In vitro generation of human cytolytic T cells specific for peptide derived from the HER-2/neu protooncogene protein. Cancer Res 1994;54:1071–6PubMed
10.
go back to reference Linehan DC, Goedegebuure PS, Peoples GE, Rogers SO, Eberlein T. Tumor-specific and HLA-A2 restricted cytolysis by tumor-associated lymphocytes in human metastatic breast cancer. J Immunol 1995;155:4486–91PubMed Linehan DC, Goedegebuure PS, Peoples GE, Rogers SO, Eberlein T. Tumor-specific and HLA-A2 restricted cytolysis by tumor-associated lymphocytes in human metastatic breast cancer. J Immunol 1995;155:4486–91PubMed
11.
go back to reference Woll MM, Hueman MT, Ryan GB, et al. Preclinical testing of a peptide-based, HER2/neu vaccine for prostate cancer. Int J Oncol 2004;25:1769–80PubMed Woll MM, Hueman MT, Ryan GB, et al. Preclinical testing of a peptide-based, HER2/neu vaccine for prostate cancer. Int J Oncol 2004;25:1769–80PubMed
12.
go back to reference Fisk B, Blevins TL, Wharton JT. Identification of an immunodominant peptide of the HER-2/neu proto-oncogene recognized by ovarian tumor specific CTL lines. J Exp Med 1995;181:2709–17CrossRef Fisk B, Blevins TL, Wharton JT. Identification of an immunodominant peptide of the HER-2/neu proto-oncogene recognized by ovarian tumor specific CTL lines. J Exp Med 1995;181:2709–17CrossRef
13.
go back to reference Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 1995;92:432–6PubMedCrossRef Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ. Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 1995;92:432–6PubMedCrossRef
14.
go back to reference Zaks TZ, Rosenberg SA. Immunization with a peptide epitope (P369-377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res 1998;58:4902–8.PubMed Zaks TZ, Rosenberg SA. Immunization with a peptide epitope (P369-377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res 1998;58:4902–8.PubMed
15.
go back to reference Knutson KL, Schiffman K, Cheever MA, Disis ML. Immunization of cancer patients with HER-2/neu, HLA-A2 peptide, p369-377, results in short-lived peptide-specific immunity. Clin Cancer Res 2002;8:1014–8PubMed Knutson KL, Schiffman K, Cheever MA, Disis ML. Immunization of cancer patients with HER-2/neu, HLA-A2 peptide, p369-377, results in short-lived peptide-specific immunity. Clin Cancer Res 2002;8:1014–8PubMed
16.
go back to reference Murray JL, Gillogly ME, Przepiorka D, et al. Toxicity, immunogenicity, and induction of E75-specific tumor lytic CTLs by HER-2 peptide E74 (369-377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin Cancer Res 2002;8:3407–18PubMed Murray JL, Gillogly ME, Przepiorka D, et al. Toxicity, immunogenicity, and induction of E75-specific tumor lytic CTLs by HER-2 peptide E74 (369-377) combined with granulocyte macrophage colony-stimulating factor in HLA-A2+ patients with metastatic breast and ovarian cancer. Clin Cancer Res 2002;8:3407–18PubMed
17.
go back to reference Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 2000;96:3102–8PubMed Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W. Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 2000;96:3102–8PubMed
18.
go back to reference Kono K, Takahashi A, Sugai H, et al. Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin Cancer Res 2002;8:3394–400PubMed Kono K, Takahashi A, Sugai H, et al. Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer. Clin Cancer Res 2002;8:3394–400PubMed
19.
go back to reference Disis ML, Gooley TA, Rinn K, et al. Generation of T-cell immunity to the HER-2/neu peptide-based vaccines. J Clin Oncol 2002;20:2624–32PubMedCrossRef Disis ML, Gooley TA, Rinn K, et al. Generation of T-cell immunity to the HER-2/neu peptide-based vaccines. J Clin Oncol 2002;20:2624–32PubMedCrossRef
20.
go back to reference Kono K, Halapi E, Hising C, et al. Mechanisms of escape from CD8+ T cell clones specific for the HER-2/neu proto-oncogene expressed in ovarian carcinomas: related and unrelated to decreased MHC class I expression. Int J Cancer 1997;70:112–9PubMedCrossRef Kono K, Halapi E, Hising C, et al. Mechanisms of escape from CD8+ T cell clones specific for the HER-2/neu proto-oncogene expressed in ovarian carcinomas: related and unrelated to decreased MHC class I expression. Int J Cancer 1997;70:112–9PubMedCrossRef
21.
go back to reference Maeurer MJ, Gollin SM, Martin D, et al. Tumor escape from immune recognition: lethal recurrent melanoma in a patients associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest 1996;98:1633–41PubMedCrossRef Maeurer MJ, Gollin SM, Martin D, et al. Tumor escape from immune recognition: lethal recurrent melanoma in a patients associated with downregulation of the peptide transporter protein TAP-1 and loss of expression of the immunodominant MART-1/Melan-A antigen. J Clin Invest 1996;98:1633–41PubMedCrossRef
22.
go back to reference Castilleja A, Ward NE, O’Brian CA, et al. Accelerated HER-2 degradation enhances ovarian tumor recognition by CTL: implications for tumor immunogenicity. Mol Cell Biochem 2001;217:21–33PubMedCrossRef Castilleja A, Ward NE, O’Brian CA, et al. Accelerated HER-2 degradation enhances ovarian tumor recognition by CTL: implications for tumor immunogenicity. Mol Cell Biochem 2001;217:21–33PubMedCrossRef
23.
go back to reference Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 1999;26:60–70PubMed Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA. Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 1999;26:60–70PubMed
24.
go back to reference Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185 HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996;14:737–44PubMed Baselga J, Tripathy D, Mendelsohn J, et al. Phase II study of weekly intravenous recombinant humanized anti-p185 HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. J Clin Oncol 1996;14:737–44PubMed
25.
go back to reference Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783–92PubMedCrossRef Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 2001;344:783–92PubMedCrossRef
26.
go back to reference Drebin JA, Link VC, Stern DF, Winberg RA, Greene M. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 1985;41:697–706PubMedCrossRef Drebin JA, Link VC, Stern DF, Winberg RA, Greene M. Down-modulation of an oncogene protein product and reversion of the transformed phenotype by monoclonal antibodies. Cell 1985;41:697–706PubMedCrossRef
27.
go back to reference Hurwitz E, Stancovski I, Sela M, Yarden Y. Suppression and promotion of tumor growth by monoclonal antibodies to ErbB-2 differentially correlate with cellular uptake. Proc Natl Acad Sci USA 1995;92:3352–7 Hurwitz E, Stancovski I, Sela M, Yarden Y. Suppression and promotion of tumor growth by monoclonal antibodies to ErbB-2 differentially correlate with cellular uptake. Proc Natl Acad Sci USA 1995;92:3352–7
28.
go back to reference Klapper LN, Waterman H, Sela M, Yarden Y. Tumor-inhibitory antibodies to HER-2/erbB-2 may act by recruiting c-cbl and enhancing ubiquitination of HER-2. Cancer Res 2000;60:3384–8PubMed Klapper LN, Waterman H, Sela M, Yarden Y. Tumor-inhibitory antibodies to HER-2/erbB-2 may act by recruiting c-cbl and enhancing ubiquitination of HER-2. Cancer Res 2000;60:3384–8PubMed
29.
go back to reference Meyer zum Buschenfelde C, Hermann C, Schmidt B, Peschel C, Bernhard H. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res 2002;62:2244–7 Meyer zum Buschenfelde C, Hermann C, Schmidt B, Peschel C, Bernhard H. Antihuman epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab enhances cytolytic activity of class I-restricted HER2-specific T lymphocytes against HER2-overexpressing tumor cells. Cancer Res 2002;62:2244–7
30.
go back to reference Clynes RS, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000;6:443–6PubMedCrossRef Clynes RS, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med 2000;6:443–6PubMedCrossRef
31.
go back to reference Gennari R, Menard S, Fagnoni F, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 2004;10:5650–5PubMedCrossRef Gennari R, Menard S, Fagnoni F, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res 2004;10:5650–5PubMedCrossRef
32.
go back to reference Lee TD. Distribution of HLA antigens in North American Caucasians, North American Blacks and Orientals. In: Lee J, ed. The HLA System. Secaucus, NJ: Springer-Verlag, 1990 Lee TD. Distribution of HLA antigens in North American Caucasians, North American Blacks and Orientals. In: Lee J, ed. The HLA System. Secaucus, NJ: Springer-Verlag, 1990
33.
go back to reference Brown RE, Bernath AM, Lewis GO. HER-2/neu protein-receptor-positive breast carcinoma: an immunologic perspective. Ann Clin Lab Sci 2000;30:249–58PubMed Brown RE, Bernath AM, Lewis GO. HER-2/neu protein-receptor-positive breast carcinoma: an immunologic perspective. Ann Clin Lab Sci 2000;30:249–58PubMed
34.
go back to reference Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennick JR. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000;404:770–3PubMedCrossRef Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennick JR. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000;404:770–3PubMedCrossRef
35.
go back to reference Woll MM, Fisher CM, Ryan GB, et al. Direct measurement of peptide-specific CD8+ T cells using HLA-A2:Ig dimer for monitoring the in vivo immune response to a HER2/neu vaccine in breast and prostate cancer patients. J Clin Immunol 2004;24:449–61PubMedCrossRef Woll MM, Fisher CM, Ryan GB, et al. Direct measurement of peptide-specific CD8+ T cells using HLA-A2:Ig dimer for monitoring the in vivo immune response to a HER2/neu vaccine in breast and prostate cancer patients. J Clin Immunol 2004;24:449–61PubMedCrossRef
Metadata
Title
Investigating the Combination of Trastuzumab and HER2/neu Peptide Vaccines for the Treatment of Breast Cancer
Authors
Elizabeth A. Mittendorf, MD
Catherine E. Storrer, BS
Craig D. Shriver, MD
Sathibalan Ponniah, PhD
George E. Peoples, MD
Publication date
01-08-2006
Publisher
Springer-Verlag
Published in
Annals of Surgical Oncology / Issue 8/2006
Print ISSN: 1068-9265
Electronic ISSN: 1534-4681
DOI
https://doi.org/10.1245/ASO.2006.03.069

Other articles of this Issue 8/2006

Annals of Surgical Oncology 8/2006 Go to the issue