Skip to main content
Top
Published in: Acta Epileptologica 1/2021

Open Access 01-12-2021 | Febrile Seizure | Research

Association between GABRG2 rs211037 polymorphism and febrile seizures: a meta-analysis

Authors: Xiaohui Yang, Jing Chi, Xiaomeng Wang, Hongyun Wei, Xueping Zheng, Yi Hu, Song Hu, Yongjun Mao, Xiaosa Chi

Published in: Acta Epileptologica | Issue 1/2021

Login to get access

Abstract

Background

Emerging evidence has implied that the GABRG2 gene play a role in the mechanism of febrile seizure (FS), however, the relationship between GABRG2 rs211037 polymorphism and the risk of FS remains controversial. This meta-analysis was conducted to investigate the relationship of GABRG2 rs211037 polymorphism with the susceptibility to FS.

Methods

MEDLINE, Embase, Cochrane Library and CNKI databases were searched (until April 6, 2019) for eligible studies on the relationship between GABRG2 rs211037 polymorphism and FS. We calculated the odds ratios (ORs) by a fixed or random model with the STATA 15.0 software. Subgroup analyses for the ethnicity, the source of the control, and age and sex matching of controls were conducted.

Results

A total of 8 studies consisting of 775 FS patients and 5162 controls were included in this study. Based on the overall data, he GABRG2 rs211037 polymorphism was not significantly associated with the risk of FS (TT + CT vs CC: OR = 0.95, 95%CI 0.64–1.41, P = 0.80). Notably, the GABRG2 rs211037 variant was significantly associated with decreased risk of FS in Asian populations (TT vs CT + CC: OR = 0.63, 95%CI 0.45–0.88, P = 0.006), but increased risk in Caucasian populations (CT vs CC: OR = 1.56, 95%CI 1.14–2.15, P = 0.006). Significant associations were also detected when healthy controls out of the whole controls were employed for comparison (TT vs CT + CC: OR = 0.59, 95% CI 0.45–0.77, P < 0.001) and when data from studies with age- and sex-matched controls were used (TT + CT vs CC: OR = 0.60, 95% CI 0.43–0.86, P = 0.001).

Conclusion

The GABRG2 rs211037 polymorphism may decrease the risk of FS in Asian populations, while increasing the risk in Caucasian populations. Further well-designed studies with large sample sizes are essential to verify the conclusions in other ethnicities.
Literature
1.
go back to reference Baumann RJ, Duffner PK. Treatment of children with simple febrile seizures: the AAP practice parameter. Pediatr Neurol. 2000;23:11–7.CrossRef Baumann RJ, Duffner PK. Treatment of children with simple febrile seizures: the AAP practice parameter. Pediatr Neurol. 2000;23:11–7.CrossRef
2.
go back to reference Dube CM, Brewster AL, Baram TZ. Febrile seizures: mechanisms and relationship to epilepsy. Brain and Development. 2009;31:366–71.CrossRef Dube CM, Brewster AL, Baram TZ. Febrile seizures: mechanisms and relationship to epilepsy. Brain and Development. 2009;31:366–71.CrossRef
3.
go back to reference Guan Z, Saraswati S, Adolfsen B, Littleton JT. Genome-wide transcriptional changes associated with enhanced activity in the Drosophila nervous system. Neuron. 2005;48:91–107.CrossRef Guan Z, Saraswati S, Adolfsen B, Littleton JT. Genome-wide transcriptional changes associated with enhanced activity in the Drosophila nervous system. Neuron. 2005;48:91–107.CrossRef
4.
go back to reference Benarroch EE. GABAA receptor heterogeneity, function, and implications for epilepsy. Neurology. 2007;68:612–4.CrossRef Benarroch EE. GABAA receptor heterogeneity, function, and implications for epilepsy. Neurology. 2007;68:612–4.CrossRef
5.
go back to reference Günther U, Benson J, Benke D, Fritschy J-M, Reyes G, Knoflach F, et al. Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type a receptors. Proc Natl Acad Sci. 1995;92:7749–53.CrossRef Günther U, Benson J, Benke D, Fritschy J-M, Reyes G, Knoflach F, et al. Benzodiazepine-insensitive mice generated by targeted disruption of the gamma 2 subunit gene of gamma-aminobutyric acid type a receptors. Proc Natl Acad Sci. 1995;92:7749–53.CrossRef
6.
go back to reference Essrich C, Lorez M, Benson JA, Fritschy J-M, Lüscher B. Postsynaptic clustering of major GABA a receptor subtypes requires the γ2 subunit and gephyrin. Nat Neurosci. 1998;1:563.CrossRef Essrich C, Lorez M, Benson JA, Fritschy J-M, Lüscher B. Postsynaptic clustering of major GABA a receptor subtypes requires the γ2 subunit and gephyrin. Nat Neurosci. 1998;1:563.CrossRef
7.
go back to reference Schweizer C, Balsiger S, Bluethmann H, Mansuy IM, Fritschy J-M, Mohler H, et al. The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses. Mol Cell Neurosci. 2003;24:442–50.CrossRef Schweizer C, Balsiger S, Bluethmann H, Mansuy IM, Fritschy J-M, Mohler H, et al. The γ2 subunit of GABAA receptors is required for maintenance of receptors at mature synapses. Mol Cell Neurosci. 2003;24:442–50.CrossRef
8.
go back to reference Hirose S. Mutant GABA(a) receptor subunits in genetic (idiopathic) epilepsy. Prog Brain Res. 2014;213:55–85.CrossRef Hirose S. Mutant GABA(a) receptor subunits in genetic (idiopathic) epilepsy. Prog Brain Res. 2014;213:55–85.CrossRef
9.
go back to reference Mulligan MK, Wang X, Adler AL, Mozhui K, Lu L, Williams RW. Complex control of GABA(a) receptor subunit mRNA expression: variation, covariation, and genetic regulation. PLoS One. 2012;7:e34586.CrossRef Mulligan MK, Wang X, Adler AL, Mozhui K, Lu L, Williams RW. Complex control of GABA(a) receptor subunit mRNA expression: variation, covariation, and genetic regulation. PLoS One. 2012;7:e34586.CrossRef
10.
go back to reference Wang DD, Kriegstein AR. Defining the role of GABA in cortical development. J Physiol. 2009;587:1873–9.CrossRef Wang DD, Kriegstein AR. Defining the role of GABA in cortical development. J Physiol. 2009;587:1873–9.CrossRef
11.
go back to reference Abdel SS, Raham H, Karam R. GABRG2 gene polymorphisms in Egyptian children with simple febrile seizures. Indian J Pediatr. 2012;79:1514–6.CrossRef Abdel SS, Raham H, Karam R. GABRG2 gene polymorphisms in Egyptian children with simple febrile seizures. Indian J Pediatr. 2012;79:1514–6.CrossRef
12.
go back to reference Butila AT, Zazgyva A, Sin AI, Szabo ER, Tilinca MC. GABRG2 C588T gene polymorphisms might be a predictive genetic marker of febrile seizures and generalized recurrent seizures: a case-control study in a Romanian pediatric population. Arch Med Sci. 2018;14:157–66.CrossRef Butila AT, Zazgyva A, Sin AI, Szabo ER, Tilinca MC. GABRG2 C588T gene polymorphisms might be a predictive genetic marker of febrile seizures and generalized recurrent seizures: a case-control study in a Romanian pediatric population. Arch Med Sci. 2018;14:157–66.CrossRef
13.
go back to reference Nakayama J, Hamano K, Noguchi E, Horiuchi Y, Iwasaki N, Ohta M, et al. Failure to find causal mutations in the GABA(a)-receptor gamma2 subunit (GABRG2) gene in Japanese febrile seizure patients. Neurosci Lett. 2003;343:117–20.CrossRef Nakayama J, Hamano K, Noguchi E, Horiuchi Y, Iwasaki N, Ohta M, et al. Failure to find causal mutations in the GABA(a)-receptor gamma2 subunit (GABRG2) gene in Japanese febrile seizure patients. Neurosci Lett. 2003;343:117–20.CrossRef
14.
go back to reference Ponnala S, Chaudhari JR, Jaleel MA, Bhiladvala D, Kaipa PR, Das UN, et al. Role of MDR1 C3435T and GABRG2 C588T gene polymorphisms in seizure occurrence and MDR1 effect on anti-epileptic drug (phenytoin) absorption. Genet Test Mol Biomarkers. 2012;16:550–7.CrossRef Ponnala S, Chaudhari JR, Jaleel MA, Bhiladvala D, Kaipa PR, Das UN, et al. Role of MDR1 C3435T and GABRG2 C588T gene polymorphisms in seizure occurrence and MDR1 effect on anti-epileptic drug (phenytoin) absorption. Genet Test Mol Biomarkers. 2012;16:550–7.CrossRef
15.
go back to reference Balan S, Sathyan S, Radha SK, Joseph V, Radhakrishnan K, Banerjee M. GABRG2, rs211037 is associated with epilepsy susceptibility, but not with antiepileptic drug resistance and febrile seizures. Pharmacogenet Genomics. 2013;23:605–10.CrossRef Balan S, Sathyan S, Radha SK, Joseph V, Radhakrishnan K, Banerjee M. GABRG2, rs211037 is associated with epilepsy susceptibility, but not with antiepileptic drug resistance and febrile seizures. Pharmacogenet Genomics. 2013;23:605–10.CrossRef
16.
go back to reference Chou IC, Peng CT, Huang CC, Tsai JJ, Tsai FJ, Tsai CH. Association analysis of gamma 2 subunit of gamma- aminobutyric acid type a receptor polymorphisms with febrile seizures. Pediatr Res. 2003;54:26–9.CrossRef Chou IC, Peng CT, Huang CC, Tsai JJ, Tsai FJ, Tsai CH. Association analysis of gamma 2 subunit of gamma- aminobutyric acid type a receptor polymorphisms with febrile seizures. Pediatr Res. 2003;54:26–9.CrossRef
17.
go back to reference Haerian BS, Baum L, Kwan P, Cherny SS, Shin JG, Kim SE, et al. Contribution of GABRG2 polymorphisms to risk of epilepsy and febrile seizure: a Multicenter cohort study and meta-analysis. Mol Neurobiol. 2015;53:5457–67. Haerian BS, Baum L, Kwan P, Cherny SS, Shin JG, Kim SE, et al. Contribution of GABRG2 polymorphisms to risk of epilepsy and febrile seizure: a Multicenter cohort study and meta-analysis. Mol Neurobiol. 2015;53:5457–67.
18.
go back to reference Kinirons P, Cavalleri GL, Shahwan A, Wood NW, Goldstein DB, Sisodiya SM, et al. Examining the role of common genetic variation in the gamma2 subunit of the GABA(a) receptor in epilepsy using tagging SNPs. Epilepsy Res. 2006;70:229–38.CrossRef Kinirons P, Cavalleri GL, Shahwan A, Wood NW, Goldstein DB, Sisodiya SM, et al. Examining the role of common genetic variation in the gamma2 subunit of the GABA(a) receptor in epilepsy using tagging SNPs. Epilepsy Res. 2006;70:229–38.CrossRef
19.
go back to reference Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(a) receptors. Nat Rev Neurosci. 2005;6:215–29.CrossRef Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(a) receptors. Nat Rev Neurosci. 2005;6:215–29.CrossRef
20.
go back to reference Olsen RW, Sieghart W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(a) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev. 2008;60:243–60.CrossRef Olsen RW, Sieghart W. International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(a) receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol Rev. 2008;60:243–60.CrossRef
21.
go back to reference Sieghart W, Sperk G. Subunit composition, distribution and function of GABA-A receptor subtypes. Curr Top Med Chem. 2002;2:795–816.CrossRef Sieghart W, Sperk G. Subunit composition, distribution and function of GABA-A receptor subtypes. Curr Top Med Chem. 2002;2:795–816.CrossRef
22.
go back to reference Whiting PJ. GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today. 2003;8:445–50.CrossRef Whiting PJ. GABA-A receptor subtypes in the brain: a paradigm for CNS drug discovery? Drug Discov Today. 2003;8:445–50.CrossRef
23.
go back to reference Kang JQ, Shen W, Macdonald RL. Why does fever trigger febrile seizures? GABAA receptor gamma2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J Neurosci. 2006;26:2590–7.CrossRef Kang JQ, Shen W, Macdonald RL. Why does fever trigger febrile seizures? GABAA receptor gamma2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J Neurosci. 2006;26:2590–7.CrossRef
24.
go back to reference Pedersen M, Kowalczyk M, Omidvarnia A, Perucca P, Gooley S, Petrou S, Scheffer IE, Berkovic SF, Jackson GD. Human GABRG2 generalized epilepsy: increased somatosensory and striatothalamic connectivity. Neurol Genet. 2019;5:e340.CrossRef Pedersen M, Kowalczyk M, Omidvarnia A, Perucca P, Gooley S, Petrou S, Scheffer IE, Berkovic SF, Jackson GD. Human GABRG2 generalized epilepsy: increased somatosensory and striatothalamic connectivity. Neurol Genet. 2019;5:e340.CrossRef
25.
go back to reference Li XX, Guo SN, Liu KM, Zhang C, Chang HG, Yang WL, Rong SK, et al. GABRG2 deletion linked to genetic epilepsy with febrile seizures plus affects the expression of GABA a receptor subunits and other genes at different temperatures. Neuroscience. 2020;438:116–36.CrossRef Li XX, Guo SN, Liu KM, Zhang C, Chang HG, Yang WL, Rong SK, et al. GABRG2 deletion linked to genetic epilepsy with febrile seizures plus affects the expression of GABA a receptor subunits and other genes at different temperatures. Neuroscience. 2020;438:116–36.CrossRef
26.
go back to reference Naylor DE, Liu H, Wasterlain CG. Trafficking of GABA(a) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci. 2005;25:7724–33.CrossRef Naylor DE, Liu H, Wasterlain CG. Trafficking of GABA(a) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci. 2005;25:7724–33.CrossRef
27.
go back to reference Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12:683–91.CrossRef Sauna ZE, Kimchi-Sarfaty C. Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet. 2011;12:683–91.CrossRef
Metadata
Title
Association between GABRG2 rs211037 polymorphism and febrile seizures: a meta-analysis
Authors
Xiaohui Yang
Jing Chi
Xiaomeng Wang
Hongyun Wei
Xueping Zheng
Yi Hu
Song Hu
Yongjun Mao
Xiaosa Chi
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Febrile Seizure
Published in
Acta Epileptologica / Issue 1/2021
Print ISSN: 2096-9384
Electronic ISSN: 2524-4434
DOI
https://doi.org/10.1186/s42494-021-00038-0

Other articles of this Issue 1/2021

Acta Epileptologica 1/2021 Go to the issue