Skip to main content
Top
Published in: Maxillofacial Plastic and Reconstructive Surgery 1/2019

Open Access 01-12-2019 | Guided Tissue Regeneration | Research

Retrospective comparative clinical study for silk mat application into extraction socket

Authors: Ju-Won Kim, You-Young Jo, Jwa-Young Kim, Ji-hyeon Oh, Byoung-Eun Yang, Seong-Gon Kim

Published in: Maxillofacial Plastic and Reconstructive Surgery | Issue 1/2019

Login to get access

Abstract

Background

Silk mats have been approved for clinical trials by the Korean Food and Drug Administration as membranes for guided tissue regeneration (GTR). In this study, silk mat application was compared to high-density polytetrafluoroethylene (dPTFE) membrane application or no membrane group.

Methods

To compare the silk mat group to the dPTFE group or the no membrane group, a retrospective sample collection was conducted. Bony defects were measured at the time of extraction (T0) and then at 3 months (T1) and 6 months after extraction (T2) on a digital panoramic view. Bone gain (BG) was calculated by subtracting from the bony defect at T0 to the bony defect at each follow-up.

Results

The BG at T2 was 2.44 ± 2.49 mm, 4.18 ± 1.80 mm, and 4.24 ± 2.05 mm in the no membrane group, silk mat group, and dPTFE group, respectively. Both membrane groups had significantly higher BG than BG in the no membrane group at T2 (P < 0.05).

Conclusions

Both membrane groups showed higher BG than the no membrane group.
Literature
1.
go back to reference Kim SY et al (2017) Extraction socket sealing using palatal gingival grafts and resorbable collagen membranes. Maxillofac Plast Reconstr Surg 39:39CrossRef Kim SY et al (2017) Extraction socket sealing using palatal gingival grafts and resorbable collagen membranes. Maxillofac Plast Reconstr Surg 39:39CrossRef
2.
go back to reference Nunn ME et al (2013) Retained asymptomatic third molars and risk for second molar pathology. J Dent Res 92:1095–1099CrossRef Nunn ME et al (2013) Retained asymptomatic third molars and risk for second molar pathology. J Dent Res 92:1095–1099CrossRef
3.
go back to reference Kim JC, Choi SS, Wang SJ, Kim SG (2006) Minor complications after mandibular third molar surgery: type, incidence, and possible prevention. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:e4–e11CrossRef Kim JC, Choi SS, Wang SJ, Kim SG (2006) Minor complications after mandibular third molar surgery: type, incidence, and possible prevention. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102:e4–e11CrossRef
4.
go back to reference Kugelberg CF, Ahlstrom U, Ericson S, Hugoson A, Kvint S (1991) Periodontal healing after impacted lower third molar surgery in adolescents and adults. A prospective study. Int J Oral Maxillofac Surg 20:18–24CrossRef Kugelberg CF, Ahlstrom U, Ericson S, Hugoson A, Kvint S (1991) Periodontal healing after impacted lower third molar surgery in adolescents and adults. A prospective study. Int J Oral Maxillofac Surg 20:18–24CrossRef
5.
go back to reference Karapataki S, Hugoson A, Kugelberg CF (2000) Healing following GTR treatment of bone defects distal to mandibular 2nd molars after surgical removal of impacted 3rd molars. J Clin Periodontol 27:325–332CrossRef Karapataki S, Hugoson A, Kugelberg CF (2000) Healing following GTR treatment of bone defects distal to mandibular 2nd molars after surgical removal of impacted 3rd molars. J Clin Periodontol 27:325–332CrossRef
6.
go back to reference Dodson TB (2005) Is there a role for reconstructive techniques to prevent periodontal defects after third molar surgery? J Oral Maxillofac Surg 63:891–896CrossRef Dodson TB (2005) Is there a role for reconstructive techniques to prevent periodontal defects after third molar surgery? J Oral Maxillofac Surg 63:891–896CrossRef
7.
go back to reference Kumar N et al (2015) Evaluation of treatment outcome after impacted mandibular third molar surgery with the use of autologous platelet-rich fibrin: a randomized controlled clinical study. J Oral Maxillofac Surg 73:1042–1049CrossRef Kumar N et al (2015) Evaluation of treatment outcome after impacted mandibular third molar surgery with the use of autologous platelet-rich fibrin: a randomized controlled clinical study. J Oral Maxillofac Surg 73:1042–1049CrossRef
8.
go back to reference Chen YW, Lee CT, Hum L, Chuang SK (2017) Effect of flap design on periodontal healing after impacted third molar extraction: a systematic review and meta-analysis. Int J Oral Maxillofac Surg 46:363–372CrossRef Chen YW, Lee CT, Hum L, Chuang SK (2017) Effect of flap design on periodontal healing after impacted third molar extraction: a systematic review and meta-analysis. Int J Oral Maxillofac Surg 46:363–372CrossRef
9.
go back to reference Lee CT, Hum L, Chen YW (2016) The effect of regenerative periodontal therapy in preventing periodontal defects after the extraction of third molars: a systematic review and meta-analysis. J Am Dent Assoc 147:709–719CrossRef Lee CT, Hum L, Chen YW (2016) The effect of regenerative periodontal therapy in preventing periodontal defects after the extraction of third molars: a systematic review and meta-analysis. J Am Dent Assoc 147:709–719CrossRef
10.
go back to reference Karapataki S, Hugoson A, Falk H, Laurell L, Kugelberg CF (2000) Healing following GTR treatment of intrabony defects distal to mandibular 2nd molars using resorbable and non-resorbable barriers. J Clin Periodontol 27:333–340CrossRef Karapataki S, Hugoson A, Falk H, Laurell L, Kugelberg CF (2000) Healing following GTR treatment of intrabony defects distal to mandibular 2nd molars using resorbable and non-resorbable barriers. J Clin Periodontol 27:333–340CrossRef
11.
go back to reference Barboza EP, Stutz B, Ferreira VF, Carvalho W (2010) Guided bone regeneration using nonexpanded polytetrafluoroethylene membranes in preparation for dental implant placements—a report of 420 cases. Implant Dent 19:2–7CrossRef Barboza EP, Stutz B, Ferreira VF, Carvalho W (2010) Guided bone regeneration using nonexpanded polytetrafluoroethylene membranes in preparation for dental implant placements—a report of 420 cases. Implant Dent 19:2–7CrossRef
12.
go back to reference Barber HD, Lignelli J, Smith BM, Bartee BK (2007) Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration. J Oral Maxillofac Surg 65:748–752CrossRef Barber HD, Lignelli J, Smith BM, Bartee BK (2007) Using a dense PTFE membrane without primary closure to achieve bone and tissue regeneration. J Oral Maxillofac Surg 65:748–752CrossRef
13.
go back to reference Kim SG et al (2016) Comparison of unprocessed silk cocoon and silk cocoon middle layer membranes for guided bone regeneration. Maxillofac Plast Reconstr Surg 38:11CrossRef Kim SG et al (2016) Comparison of unprocessed silk cocoon and silk cocoon middle layer membranes for guided bone regeneration. Maxillofac Plast Reconstr Surg 38:11CrossRef
14.
go back to reference Jo YY et al (2017) Bone regeneration is associated with the concentration of tumour necrosis factor-alpha induced by sericin released from a silk mat. Sci Rep 7:15589CrossRef Jo YY et al (2017) Bone regeneration is associated with the concentration of tumour necrosis factor-alpha induced by sericin released from a silk mat. Sci Rep 7:15589CrossRef
15.
go back to reference Kweon H et al (2017) In vivo bone regeneration ability of different layers of natural silk cocoon processed using an eco-friendly method. Macromol Res 25:806–816CrossRef Kweon H et al (2017) In vivo bone regeneration ability of different layers of natural silk cocoon processed using an eco-friendly method. Macromol Res 25:806–816CrossRef
16.
go back to reference Ha YY, Park YW, Kweon H, Jo YY, Kim SG (2014) Comparison of the physical properties and in vivo bioactivities of silkworm-cocoon-derived silk membrane, collagen membrane, and polytetrafluoroethylene membrane for guided bone regeneration. Macromol Res 22:1018–1023CrossRef Ha YY, Park YW, Kweon H, Jo YY, Kim SG (2014) Comparison of the physical properties and in vivo bioactivities of silkworm-cocoon-derived silk membrane, collagen membrane, and polytetrafluoroethylene membrane for guided bone regeneration. Macromol Res 22:1018–1023CrossRef
17.
go back to reference Corinaldesi G, Lizio G, Badiali G, Morselli-Labate AM, Marchetti C (2011) Treatment of intrabony defects after impacted mandibular third molar removal with bioabsorbable and non-resorbable membranes. J Periodontol 82:1404–1413CrossRef Corinaldesi G, Lizio G, Badiali G, Morselli-Labate AM, Marchetti C (2011) Treatment of intrabony defects after impacted mandibular third molar removal with bioabsorbable and non-resorbable membranes. J Periodontol 82:1404–1413CrossRef
18.
go back to reference Pecora G, Celletti R, Davarpanoh M, Covani U, Etienne D (1993) The effects of guided tissue regeneration on healing after impacted mandibular third-molar surgery: 1-year results. Int J Periodont Restor Dent 13:396–407 Pecora G, Celletti R, Davarpanoh M, Covani U, Etienne D (1993) The effects of guided tissue regeneration on healing after impacted mandibular third-molar surgery: 1-year results. Int J Periodont Restor Dent 13:396–407
19.
go back to reference Barbato L et al (2016) Effect of surgical intervention for removal of mandibular third molar on periodontal healing of adjacent mandibular second molar: a systematic review and Bayesian network meta-analysis. J Periodontol 87:291–302CrossRef Barbato L et al (2016) Effect of surgical intervention for removal of mandibular third molar on periodontal healing of adjacent mandibular second molar: a systematic review and Bayesian network meta-analysis. J Periodontol 87:291–302CrossRef
20.
go back to reference Nayak S, Dey T, Naskar D, Kundu SC (2013) The promotion of osseointegration of titanium surfaces by coating with silk protein sericin. Biomaterials 34:2855–2864CrossRef Nayak S, Dey T, Naskar D, Kundu SC (2013) The promotion of osseointegration of titanium surfaces by coating with silk protein sericin. Biomaterials 34:2855–2864CrossRef
21.
go back to reference Sahota J, Bhatia A, Gupta M, Singh V, Soni J, Soni R (2017) Reliability of orthopantomography and cone-beam computed tomography in presurgical implant planning: a clinical study. J Contemp Dent Pract 18:665–669CrossRef Sahota J, Bhatia A, Gupta M, Singh V, Soni J, Soni R (2017) Reliability of orthopantomography and cone-beam computed tomography in presurgical implant planning: a clinical study. J Contemp Dent Pract 18:665–669CrossRef
22.
go back to reference Shahidi S, Zamiri B, Abolvardi M, Akhlaghian M, Paknahad M (2018) Comparison of dental panoramic radiography and CBCT for measuring vertical bone height in different horizontal locations of posterior mandibular alveolar process. J Dent (Shiraz) 19:83–91 Shahidi S, Zamiri B, Abolvardi M, Akhlaghian M, Paknahad M (2018) Comparison of dental panoramic radiography and CBCT for measuring vertical bone height in different horizontal locations of posterior mandibular alveolar process. J Dent (Shiraz) 19:83–91
23.
go back to reference Luangchana P, Pornprasertsuk-Damrongsri S, Kiattavorncharoen S, Jirajariyavej B (2015) Accuracy of linear measurements using cone beam computed tomography and panoramic radiography in dental implant treatment planning. Int J Oral Maxillofac Implants 30:1287–1294CrossRef Luangchana P, Pornprasertsuk-Damrongsri S, Kiattavorncharoen S, Jirajariyavej B (2015) Accuracy of linear measurements using cone beam computed tomography and panoramic radiography in dental implant treatment planning. Int J Oral Maxillofac Implants 30:1287–1294CrossRef
Metadata
Title
Retrospective comparative clinical study for silk mat application into extraction socket
Authors
Ju-Won Kim
You-Young Jo
Jwa-Young Kim
Ji-hyeon Oh
Byoung-Eun Yang
Seong-Gon Kim
Publication date
01-12-2019
Publisher
Springer Berlin Heidelberg
Published in
Maxillofacial Plastic and Reconstructive Surgery / Issue 1/2019
Electronic ISSN: 2288-8586
DOI
https://doi.org/10.1186/s40902-019-0199-z

Other articles of this Issue 1/2019

Maxillofacial Plastic and Reconstructive Surgery 1/2019 Go to the issue