Skip to main content
Top
Published in: Clinical Phytoscience 1/2022

Open Access 01-12-2022 | Original contribution

Flavonoid profile and antioxidant properties of Algerian common yew (Taxus baccata L.)

Authors: Mohamed Bekhouche, Roukia Benyammi, Majda Khelifi Slaoui, Soumia Krimat, Cedric Paris, Lakhdar Khelifi, Abdelkader Morsli

Published in: Clinical Phytoscience | Issue 1/2022

Login to get access

Abstract

Background

In humans, various diseases are associated with the accumulation of free radicals. The antioxidants can scavenge free radicals and reduce their impact; thus, the search for effective natural antioxidants of plant origin is indispensable. The present study aims to determine, for the first time, the flavonoid compounds profile and to investigate the free radical scavenging and antioxidant properties of the methanolic extract of Taxus baccata L. from Algeria.

Methods

The determination of the flavonoid compound profile of the methanolic extract of Taxus baccata L. was established using high-performance liquid chromatography with diode-array detection coupled to electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI–MS/MS). The total flavonoid content (TFC) was performed according to the aluminum chloride colorimetric method, while the free radical scavenging and antioxidant activities were carried out using three methods, namely 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical assay, 2,2'-azino-bis3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical assay and ferric reducing antioxidant power (FRAP) Assay.

Results

A total of 26 compounds including flavon-3-ols, flavanonols, flavones, flavonols and bioflavonoids were characterized and identifiedusing HPLC–DAD–ESI–MS/MS analysis, five were reported for the first time such as taxifolin, apigenin, apigenin 7-O-glucoside, isorhamnetin 3-O-rutinoside and robustaflavone. The plant extract exhibited high total flavonoid content (TFC = 204.26 ± 6.02 mg RE/g dry extract) which corresponded to its strong radical scavenging activities [(DPPH IC50 = 35.31 ± 0.29 µg/ml and ABTS IC50 = 8.27 ± 0.52 µg/ml)] as compared to the synthetic antioxidant BHT [(DPPH IC50 = 78.96 ± 5.70 µg/ml and ABTS IC50 = 13.56 ± 0.06 µg/ml)]. However, the methanolic extract of T. baccata showed the lowest ferric reducing ability as compared to the positive controls (BHT, BHA, ascorbic acid, trolox and quercetin).

Conclusion

Our results imply that the Taxus Baccata L. might be a potential source for the isolation of natural antioxidant compounds.
Literature
2.
go back to reference García JC. Biogeografía del tejo (Taxus baccata L.) en el norte de África. In: Generalitat Valenciana, Conselleria de Territori i Habitatge, editors. El tejo en el Mediterráneo occidental: Jornadas Internacionales sobre el tejo y las tejeras en el Mediterráneo occidental; 2007. p. 177–183. García JC. Biogeografía del tejo (Taxus baccata L.) en el norte de África. In: Generalitat Valenciana, Conselleria de Territori i Habitatge, editors. El tejo en el Mediterráneo occidental: Jornadas Internacionales sobre el tejo y las tejeras en el Mediterráneo occidental; 2007. p. 177–183.
4.
go back to reference Durak ZE, Büber S, Devrim E, Kocaoğlu H, Durak İ. Aqueous extract from Taxus baccata inhibits adenosine deaminase activity significantly in cancerous and non cancerous human gastric and colon tissues. Pharmacogn Mag. 2014;10:214–6.CrossRef Durak ZE, Büber S, Devrim E, Kocaoğlu H, Durak İ. Aqueous extract from Taxus baccata inhibits adenosine deaminase activity significantly in cancerous and non cancerous human gastric and colon tissues. Pharmacogn Mag. 2014;10:214–6.CrossRef
5.
go back to reference Milutinović MG, Stanković MS, Cvetković DM, Topuzović MD, Mihailović VB, Marković SD. Antioxidant and anticancer properties of leaves and seed cones from European yew (Taxus baccata L). Arch Biol Sci. 2015;67:525–34.CrossRef Milutinović MG, Stanković MS, Cvetković DM, Topuzović MD, Mihailović VB, Marković SD. Antioxidant and anticancer properties of leaves and seed cones from European yew (Taxus baccata L). Arch Biol Sci. 2015;67:525–34.CrossRef
6.
go back to reference Epifanio NMdeM, Cavalcanti LRI, Santos KF dos, Duarte PSC, Kachlicki P, Ożarowski M, et al. Chemical characterization and in vivo antioxidant activity of parsley (Petroselinum crispum). aqueous extract Food Funct. 2020;11:5346–56.CrossRef Epifanio NMdeM, Cavalcanti LRI, Santos KF dos, Duarte PSC, Kachlicki P, Ożarowski M, et al. Chemical characterization and in vivo antioxidant activity of parsley (Petroselinum crispum). aqueous extract Food Funct. 2020;11:5346–56.CrossRef
7.
go back to reference Gülçin İ. Antioxidant activity of food constituents: an overview. Arch Toxicol. 2012;86:345–91.CrossRef Gülçin İ. Antioxidant activity of food constituents: an overview. Arch Toxicol. 2012;86:345–91.CrossRef
9.
go back to reference Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1066–77.CrossRef Bhatti JS, Bhatti GK, Reddy PH. Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 2017;1863:1066–77.CrossRef
13.
go back to reference Luo S, Zhang X, Zhang X, Zhang L. Extraction, identification and antioxidant activity of proanthocyanidins from Larix gmelinii Bark. Nat Prod Res. 2014;28:1116–20.CrossRef Luo S, Zhang X, Zhang X, Zhang L. Extraction, identification and antioxidant activity of proanthocyanidins from Larix gmelinii Bark. Nat Prod Res. 2014;28:1116–20.CrossRef
14.
go back to reference Karak P. Biological activities of flavonoids: an overview. Int J Pharm Sci Res. 2019;10:1567–74. Karak P. Biological activities of flavonoids: an overview. Int J Pharm Sci Res. 2019;10:1567–74.
17.
19.
go back to reference Verma ML, Sharma S, Saini R, Rani V, Kushwaha R. Bioflavonoids: Synthesis, functions and biotechnological applications. In: Verma ML, Chandel AK, editors. Biotechnological Production of Bioactive Compounds. Elsevier; 2020. p. 69–105. Verma ML, Sharma S, Saini R, Rani V, Kushwaha R. Bioflavonoids: Synthesis, functions and biotechnological applications. In: Verma ML, Chandel AK, editors. Biotechnological Production of Bioactive Compounds. Elsevier; 2020. p. 69–105.
21.
go back to reference Erdemoglu N, Sener B, Choudhary MI. Bioactivity of lignans from Taxus baccata. Z Naturforsch C J Biosci. 2004;59:494–8.CrossRef Erdemoglu N, Sener B, Choudhary MI. Bioactivity of lignans from Taxus baccata. Z Naturforsch C J Biosci. 2004;59:494–8.CrossRef
24.
go back to reference Larbat R, Paris C, Le Bot J, Adamowicz S. Phenolic characterization and variability in leaves, stems and roots of Micro-Tom and patio tomatoes, in response to nitrogen limitation. Plant Sci. 2014;224:62–73.CrossRef Larbat R, Paris C, Le Bot J, Adamowicz S. Phenolic characterization and variability in leaves, stems and roots of Micro-Tom and patio tomatoes, in response to nitrogen limitation. Plant Sci. 2014;224:62–73.CrossRef
26.
go back to reference Patra JK, Kim SH, Baek K-H. Antioxidant and free radical-scavenging potential of essential oil from Enteromorpha linza L prepared by microwave-assisted hydrodistillation. J Food Biochem. 2015;39:80–90.CrossRef Patra JK, Kim SH, Baek K-H. Antioxidant and free radical-scavenging potential of essential oil from Enteromorpha linza L prepared by microwave-assisted hydrodistillation. J Food Biochem. 2015;39:80–90.CrossRef
28.
go back to reference Niroula A, Khatri S, Khadka D, Timilsina R. Total phenolic contents and antioxidant activity profile of selected cereal sprouts and grasses. Int J Food Pro. 2019;22:427–37.CrossRef Niroula A, Khatri S, Khadka D, Timilsina R. Total phenolic contents and antioxidant activity profile of selected cereal sprouts and grasses. Int J Food Pro. 2019;22:427–37.CrossRef
29.
go back to reference Le Grandois J, Guffond D, Hamon E, Marchioni E, Werner D. Combined microplate-ABTS and HPLC-ABTS analysis of tomato and pepper extracts reveals synergetic and antagonist effects of their lipophilic antioxidative components. Food Chem. 2017;223:62–71.CrossRef Le Grandois J, Guffond D, Hamon E, Marchioni E, Werner D. Combined microplate-ABTS and HPLC-ABTS analysis of tomato and pepper extracts reveals synergetic and antagonist effects of their lipophilic antioxidative components. Food Chem. 2017;223:62–71.CrossRef
30.
go back to reference Aguiar J, Gonçalves JL, Alves VL, Câmara JS. Chemical fingerprint of free polyphenols and antioxidant activity in dietary fruits and vegetables using a non-targeted approach based on QuEChERS ultrasound-assisted extraction combined with UHPLC-PDA. Antioxid. 2020;9:305. https://doi.org/10.3390/antiox9040305.CrossRef Aguiar J, Gonçalves JL, Alves VL, Câmara JS. Chemical fingerprint of free polyphenols and antioxidant activity in dietary fruits and vegetables using a non-targeted approach based on QuEChERS ultrasound-assisted extraction combined with UHPLC-PDA. Antioxid. 2020;9:305. https://​doi.​org/​10.​3390/​antiox9040305.CrossRef
31.
go back to reference Youn JS, Kim Y-J, Na HJ, Jung HR, Song CK, Kang SY, et al. Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera LEV are dependent on the collecting season and extraction conditions. Food Sci Biotechnol. 2018;28:201–7.CrossRef Youn JS, Kim Y-J, Na HJ, Jung HR, Song CK, Kang SY, et al. Antioxidant activity and contents of leaf extracts obtained from Dendropanax morbifera LEV are dependent on the collecting season and extraction conditions. Food Sci Biotechnol. 2018;28:201–7.CrossRef
32.
go back to reference Jaiswal R, Karar MGE, Gadir HA, Kuhnert N. Identification and characterisation of phenolics from Ixora coccinea L (Rubiaceae) by liquid chromatography multi-stage mass spectrometry. Phytochem Anal. 2014;25:567–76.CrossRef Jaiswal R, Karar MGE, Gadir HA, Kuhnert N. Identification and characterisation of phenolics from Ixora coccinea L (Rubiaceae) by liquid chromatography multi-stage mass spectrometry. Phytochem Anal. 2014;25:567–76.CrossRef
33.
go back to reference Jaiswal R, Jayasinghe L, Kuhnert N. Identification and characterization of proanthocyanidins of 16 members of the Rhododendron genus (Ericaceae) by tandem LC-MS. J Mass Spectrom. 2012;47:502–15.CrossRef Jaiswal R, Jayasinghe L, Kuhnert N. Identification and characterization of proanthocyanidins of 16 members of the Rhododendron genus (Ericaceae) by tandem LC-MS. J Mass Spectrom. 2012;47:502–15.CrossRef
35.
go back to reference Lee S-H, Kim H-W, Lee M-K, Kim YJ, Asamenew G, Cha Y-S, et al. Phenolic profiling and quantitative determination of common sage (Salvia plebeia R. Br.) by UPLC-DAD-QTOF/MS. Eur Food Res Technol. 2018;244:1637–46.CrossRef Lee S-H, Kim H-W, Lee M-K, Kim YJ, Asamenew G, Cha Y-S, et al. Phenolic profiling and quantitative determination of common sage (Salvia plebeia R. Br.) by UPLC-DAD-QTOF/MS. Eur Food Res Technol. 2018;244:1637–46.CrossRef
36.
go back to reference Marengo A, Maxia A, Sanna C, Mandrone M, Bertea CM, Bicchi C, et al. Intra-specific variation in the little-known Mediterranean plant Ptilostemon casabonae (L.) Greuter analysed through phytochemical and biomolecular markers. Phytochemistry. 2019;161:21–7.CrossRef Marengo A, Maxia A, Sanna C, Mandrone M, Bertea CM, Bicchi C, et al. Intra-specific variation in the little-known Mediterranean plant Ptilostemon casabonae (L.) Greuter analysed through phytochemical and biomolecular markers. Phytochemistry. 2019;161:21–7.CrossRef
37.
go back to reference Vignolini P, Gehrmann B, Melzig MF, Borsacchi L, Scardigli A, Romani A. Quality control and analytical test method for Taxus baccata tincture preparation. Nat Prod Commun. 2012;7:875–7.PubMed Vignolini P, Gehrmann B, Melzig MF, Borsacchi L, Scardigli A, Romani A. Quality control and analytical test method for Taxus baccata tincture preparation. Nat Prod Commun. 2012;7:875–7.PubMed
38.
go back to reference Krauze-Baranowska M. Flavonoids from the genus Taxus. Z Naturforsch C J Biosci. 2004;59:43–7.CrossRef Krauze-Baranowska M. Flavonoids from the genus Taxus. Z Naturforsch C J Biosci. 2004;59:43–7.CrossRef
39.
go back to reference Davis BD, Brodbelt JS. Determination of the glycosylation site of flavonoid monoglucosides by metal complexation and tandem mass spectrometry. J Am Soc Mass Spectrom. 2004;15:1287–99.CrossRef Davis BD, Brodbelt JS. Determination of the glycosylation site of flavonoid monoglucosides by metal complexation and tandem mass spectrometry. J Am Soc Mass Spectrom. 2004;15:1287–99.CrossRef
40.
go back to reference Jang GH, Kim HW, Lee MK, Jeong SY, Bak AR, Lee DJ, et al. Characterization and quantification of flavonoid glycosides in the Prunus genus by UPLC-DAD-QTOF/MS. Saudi J Biol Sci. 2018;25:1622–31.CrossRef Jang GH, Kim HW, Lee MK, Jeong SY, Bak AR, Lee DJ, et al. Characterization and quantification of flavonoid glycosides in the Prunus genus by UPLC-DAD-QTOF/MS. Saudi J Biol Sci. 2018;25:1622–31.CrossRef
41.
go back to reference Lin L-Z, Harnly JM. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. J Agric Food Chem. 2007;55:1084–96.CrossRef Lin L-Z, Harnly JM. A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. J Agric Food Chem. 2007;55:1084–96.CrossRef
43.
go back to reference Senol FS, Orhan IE, Ustun O. In vitro cholinesterase inhibitory and antioxidant effect of selected coniferous tree species. Asian Pac J Trop Med. 2015;8:269–75.CrossRef Senol FS, Orhan IE, Ustun O. In vitro cholinesterase inhibitory and antioxidant effect of selected coniferous tree species. Asian Pac J Trop Med. 2015;8:269–75.CrossRef
44.
go back to reference Becker MM, Nunes GS, Ribeiro DB, Silva FEPS, Catanante G, Marty J-L, et al. Determination of the antioxidant capacity of red fruits by miniaturized spectrophotometry assays. J Braz Chem Soc. 2019;30:1108–14. Becker MM, Nunes GS, Ribeiro DB, Silva FEPS, Catanante G, Marty J-L, et al. Determination of the antioxidant capacity of red fruits by miniaturized spectrophotometry assays. J Braz Chem Soc. 2019;30:1108–14.
45.
go back to reference Ilyasov IR, Beloborodov VL, Selivanova IA. Three ABTS•+ radical cation-based approaches for the evaluation of antioxidant activity: fast- and slow-reacting antioxidant behavior. Chem Pap. 2018;72:1917–25.CrossRef Ilyasov IR, Beloborodov VL, Selivanova IA. Three ABTS•+ radical cation-based approaches for the evaluation of antioxidant activity: fast- and slow-reacting antioxidant behavior. Chem Pap. 2018;72:1917–25.CrossRef
47.
go back to reference Guleria S, Tiku AK, Singh G, Koul A, Gupta S, Rana S. In vitro antioxidant activity and phenolic contents in methanol extracts from medicinal plants. J Plant Biochem Biotechnol. 2013;22:9–15.CrossRef Guleria S, Tiku AK, Singh G, Koul A, Gupta S, Rana S. In vitro antioxidant activity and phenolic contents in methanol extracts from medicinal plants. J Plant Biochem Biotechnol. 2013;22:9–15.CrossRef
48.
go back to reference Al-Laith AA, Alkhuzai J, Freije A. Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arab J Chem. 2019;12:2365–71.CrossRef Al-Laith AA, Alkhuzai J, Freije A. Assessment of antioxidant activities of three wild medicinal plants from Bahrain. Arab J Chem. 2019;12:2365–71.CrossRef
49.
go back to reference Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, et al. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC Assay. Mol. 2007;12:1496–547.CrossRef Apak R, Güçlü K, Demirata B, Özyürek M, Çelik SE, Bektaşoğlu B, et al. Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC Assay. Mol. 2007;12:1496–547.CrossRef
53.
go back to reference Topal F, Nar M, Gocer H, Kalin P, Kocyigit UM, Gülçin İ, et al. Antioxidant activity of taxifolin: an activity–structure relationship. J Enzyme Inhib Med Chem. 2016;31:674–83.CrossRef Topal F, Nar M, Gocer H, Kalin P, Kocyigit UM, Gülçin İ, et al. Antioxidant activity of taxifolin: an activity–structure relationship. J Enzyme Inhib Med Chem. 2016;31:674–83.CrossRef
55.
go back to reference Pengfei L, Tiansheng D, Xianglin H, Jianguo W. Antioxidant properties of isolated isorhamnetin from the sea buckthorn marc. Plant Foods Hum Nutr. 2009;64:141–5.CrossRef Pengfei L, Tiansheng D, Xianglin H, Jianguo W. Antioxidant properties of isolated isorhamnetin from the sea buckthorn marc. Plant Foods Hum Nutr. 2009;64:141–5.CrossRef
57.
go back to reference Bonesi M, Loizzo MR, Menichini F, Tundis R. Flavonoids in treating psoriasis. In: Chatterjee S, Jungraithmayr W, Bagchi D, editors. Immunity and inflammation in health and disease. Academic Press; 2018. p. 281–94.CrossRef Bonesi M, Loizzo MR, Menichini F, Tundis R. Flavonoids in treating psoriasis. In: Chatterjee S, Jungraithmayr W, Bagchi D, editors. Immunity and inflammation in health and disease. Academic Press; 2018. p. 281–94.CrossRef
Metadata
Title
Flavonoid profile and antioxidant properties of Algerian common yew (Taxus baccata L.)
Authors
Mohamed Bekhouche
Roukia Benyammi
Majda Khelifi Slaoui
Soumia Krimat
Cedric Paris
Lakhdar Khelifi
Abdelkader Morsli
Publication date
01-12-2022
Publisher
Springer Berlin Heidelberg
Published in
Clinical Phytoscience / Issue 1/2022
Electronic ISSN: 2199-1197
DOI
https://doi.org/10.1186/s40816-022-00348-x

Other articles of this Issue 1/2022

Clinical Phytoscience 1/2022 Go to the issue