Skip to main content
Top
Published in: Clinical Phytoscience 1/2022

Open Access 01-12-2022 | Metformin | Original contribution

Molecular interaction of bioactive compounds from Senecio biafrae leaf with α-amylase and α-glucosidase receptors

Author: Basiru Olaitan Ajiboye

Published in: Clinical Phytoscience | Issue 1/2022

Login to get access

Abstract

Background

Diabetes mellitus is one of the silent killer diseases affecting millions of people globally and some of the key enzymes in managing this disease are α-amylase and α-glucosidase This study was designed to investigate the possible molecular interactions between various bioactive compounds of Senecio biafrae leaf on α-amylase and α-glucosidase (enzymes) receptors an important target protein in Type 2 diabetes mellitus.

Methods

This study involved the investigation of the of gallic acid, chlorogenic, caffeic acid, rutin, quercetin, and kaempferol (ligands) for Lipinski’s rule of five using Molinspiration, ADMET profiles using admetSAR server and molecular docking of 3D structures of the six bioactive compounds and metformin against α-amylase and α-glucosidase were carried out using AutoDockVina.

Results

The results revealed that caffeic acid, quercetin, and kaempferol obey Lipinski’s rule of five. All the ligands demonstrated high gastrointestinal tract absorption except rutin and chlorogenic acid, only one can serve as a P-glycoprotein substrate and three of the ligands used can act as cytochrome P450 inhibitors isoforms. All the ligands had a high binding affinity than metformin (the standard drug used).

Conclusion

In can be concluded that some of the bioactive compounds (especially caffeic acid) in Senecio biafrae leaf have antidiabetic activity, which they may serve as a potential antidiabetic drug in the management of diabetes mellitus than metformin.
Literature
2.
go back to reference Agarwal P, Gupta R. Alpha-amylase inhibition can treat diabetes mellitus. Res Rev J Med Health Sci. 2016;5:1–8. Agarwal P, Gupta R. Alpha-amylase inhibition can treat diabetes mellitus. Res Rev J Med Health Sci. 2016;5:1–8.
3.
go back to reference Ajiboye BO, Edobor G, Ojo AO, Onikanni SA, Olaranwaju OI, Muhammad NO. Effect of aqueous leaf extract of Senecio biafrae on hyperglycaemic and serum lipid profile of alloxan-induced diabetic rats. Inter J Dis Disord. 2014;2(11):059–64. Ajiboye BO, Edobor G, Ojo AO, Onikanni SA, Olaranwaju OI, Muhammad NO. Effect of aqueous leaf extract of Senecio biafrae on hyperglycaemic and serum lipid profile of alloxan-induced diabetic rats. Inter J Dis Disord. 2014;2(11):059–64.
4.
go back to reference Ajiboye BO, Ibukun EO, Edobor G, Ojo OA, Onikanni SA. Qualitative and quantitative analysis of phytochemicals in Senecio biafrae leaf. Inter J Pharma Sci and Res. 2013;1(5):428–32. Ajiboye BO, Ibukun EO, Edobor G, Ojo OA, Onikanni SA. Qualitative and quantitative analysis of phytochemicals in Senecio biafrae leaf. Inter J Pharma Sci and Res. 2013;1(5):428–32.
5.
go back to reference Ajiboye BO, Ojo OA, Okesola MA, Akinyemi AJ, Talabi JY, Idowu OT, et al. In vitro antioxidant activities and inhibitory effects of phenolic extract of Senecio biafrae (Oliv and Hiern) against key enzymes linked with type II diabetes mellitus and Alzheimer's disease. Food Sci Nut. 2018;6(7):1803–10. https://doi.org/10.1002/fsn3.749.CrossRef Ajiboye BO, Ojo OA, Okesola MA, Akinyemi AJ, Talabi JY, Idowu OT, et al. In vitro antioxidant activities and inhibitory effects of phenolic extract of Senecio biafrae (Oliv and Hiern) against key enzymes linked with type II diabetes mellitus and Alzheimer's disease. Food Sci Nut. 2018;6(7):1803–10. https://​doi.​org/​10.​1002/​fsn3.​749.CrossRef
7.
go back to reference Alqahtani AS, Hidayathulla S, Rehman MT, ElGamal AA, Al-Massarani S, Razmovski-Naumovski V, et al. Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxolupenaland Katononic Acid Isolated from Nuxia oppositifolia. Biom. 2020;10(1):61. https://doi.org/10.3390/biom10010061.CrossRef Alqahtani AS, Hidayathulla S, Rehman MT, ElGamal AA, Al-Massarani S, Razmovski-Naumovski V, et al. Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxolupenaland Katononic Acid Isolated from Nuxia oppositifolia. Biom. 2020;10(1):61. https://​doi.​org/​10.​3390/​biom10010061.CrossRef
9.
go back to reference Daneman R, Prat A. The Blood–Brain Barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412.CrossRef Daneman R, Prat A. The Blood–Brain Barrier. Cold Spring Harb Perspect Biol. 2015;7(1):a020412.CrossRef
15.
go back to reference Johnson OO, Adeyemi DK, Adeusi O, Ayoola GA. Evaluation of the phytochemical constituents and antioxidant activity of the stem of Senecio biafrae (Asteraceae). Niger J Pharma Appl Sci Res. 2017;6(2):19–23. Johnson OO, Adeyemi DK, Adeusi O, Ayoola GA. Evaluation of the phytochemical constituents and antioxidant activity of the stem of Senecio biafrae (Asteraceae). Niger J Pharma Appl Sci Res. 2017;6(2):19–23.
Metadata
Title
Molecular interaction of bioactive compounds from Senecio biafrae leaf with α-amylase and α-glucosidase receptors
Author
Basiru Olaitan Ajiboye
Publication date
01-12-2022
Publisher
Springer Berlin Heidelberg
Published in
Clinical Phytoscience / Issue 1/2022
Electronic ISSN: 2199-1197
DOI
https://doi.org/10.1186/s40816-021-00335-8

Other articles of this Issue 1/2022

Clinical Phytoscience 1/2022 Go to the issue