Skip to main content
Top
Published in: Clinical Phytoscience 1/2017

Open Access 01-12-2017 | Original Contribution

Improved micropropagation of Bacopa monnieri (L.) Wettst. (Plantaginaceae) and antimicrobial activity of in vitro and ex vitro raised plants against multidrug-resistant clinical isolates of urinary tract infecting (UTI) and respiratory tract infecting (RTI) bacteria

Authors: Sk Moquammel Haque, Avijit Chakraborty, Diganta Dey, Swapna Mukherjee, Sanghamitra Nayak, Biswajit Ghosh

Published in: Clinical Phytoscience | Issue 1/2017

Login to get access

Abstract

Background

Nowadays the multidrug-resistant (MDR) bacterial pathogens are a major concern of the medical science. Medicinal plants may be considered as new sources for producing antibacterial agents. The present study aimed to standardize an improved method for micropropagation and in vitro biomass production of Bacopa monnieri. Second aim is to evaluate the antimicrobial potency of in vitro cultured and ex vitro field grown micropropagated plants against different MDR clinical isolates of human urinary tract infecting (UTI) and respiratory tract infecting (RTI) pathogens.

Methods

Micropropagation of B. monnieri were performed following standard tissue culture method. The role of 6-benzylaminopurine (BAP), kinetin and spermidine on multiple shoot induction were evaluated. Antimicrobial activity of ethanol, methanol and acetone extract of in vitro and ex vitro plants of B. monnieri were screened by agar cup method against five MDR-UTI bacteria, four MDR-RTI bacteria and three microbial type culture collection (MTCC) bacteria and two fungi. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum fungicidal concentration (MFC) were also determined.

Results

Synergistic effect of BAP and spermidine had improved shoot induction with a maximum of 123.8 shoot-buds per explant. Optimum micropropagation with 34.9 elongated shoots per explant was recorded in Murashige and Skoog medium containing 1.5 mg/L BAP and 2.0 mM spermidine. Methanolic extract of ex vitro plants showed maximum activity against MDR-UTI strain of Escherichia coli (sample-9) [ZI 18 ± 0.68 mm, MIC 2.5 μg/mL, MBC 5.0 μg/mL]. Acetone extract of ex vitro plant exhibited maximum inhibition against MDR-RTI strain of Klebsiella pneumoniae (sample-38) [ZI 14 ± 0.22 mm, MIC 5.0 μg/mL, MBC 7.5 μg/mL]. The extracts of B. monnieri were bactericidal rather than bacteriostatic against all UTI and RTI bacteria tested.

Conclusions

The present manuscript demonstrated an efficient in vitro method for large scale biomass production of B. monnieri. Furthermore, the methanolic extract of B. monnieri have potential antimicrobial activity against clinical isolates of MDR-UTI and MDR-RTI bacterial strains. Hence this plant may further use to treat these infectious diseases. The comparative results show ex vitro grown plants have slightly better antimicrobial activities as compared to the in vitro plants.
Literature
1.
go back to reference Gobalakrishnan R, Kulandaivelu M, Bhuvaneswari R, Kandavel D, Kannan L. Screening of wild plant species for antibacterial activity and phytochemical analysis of Tragia involucrata L. J Pharm Anal. 2013;3:460–5.CrossRef Gobalakrishnan R, Kulandaivelu M, Bhuvaneswari R, Kandavel D, Kannan L. Screening of wild plant species for antibacterial activity and phytochemical analysis of Tragia involucrata L. J Pharm Anal. 2013;3:460–5.CrossRef
2.
go back to reference Tiwari V, Tiwari KN, Singh BD. Shoot bud regeneration from different explants of Bacopa monniera (L.) Wettst by trimethoprim and bavistin. Plant Cell Rep. 2006;25:629–35.CrossRefPubMed Tiwari V, Tiwari KN, Singh BD. Shoot bud regeneration from different explants of Bacopa monniera (L.) Wettst by trimethoprim and bavistin. Plant Cell Rep. 2006;25:629–35.CrossRefPubMed
3.
go back to reference Ramesh M, Vijayakumar KP, Karthikeyan A, Pandian SK. RAPD based genetic stability analysis among micropropagated, synthetic seed derived and hardened plants of Bacopa monnieri (L.): a threatened Indian medicinal herb. Acta Physiol Plant. 2011;33:163–71.CrossRef Ramesh M, Vijayakumar KP, Karthikeyan A, Pandian SK. RAPD based genetic stability analysis among micropropagated, synthetic seed derived and hardened plants of Bacopa monnieri (L.): a threatened Indian medicinal herb. Acta Physiol Plant. 2011;33:163–71.CrossRef
4.
go back to reference Zhou Y, Shen YH, Zhang C, Zhang WD. Chemical constituents of Bacopa monnieri. Chem Nat Compd. 2007;43:355–7.CrossRef Zhou Y, Shen YH, Zhang C, Zhang WD. Chemical constituents of Bacopa monnieri. Chem Nat Compd. 2007;43:355–7.CrossRef
5.
go back to reference Rajani M. Bacopa monnieri, a nootropic drug. In: Ramawat KG, Mérillon JM, editors. Bioactive molecules and medicinal plants. New York: Springer; 2008. p. 175–95.CrossRef Rajani M. Bacopa monnieri, a nootropic drug. In: Ramawat KG, Mérillon JM, editors. Bioactive molecules and medicinal plants. New York: Springer; 2008. p. 175–95.CrossRef
6.
go back to reference Kishore K. Brahmi: a complete herbal medicine. J Pharm Res. 2012;5:3139–42. Kishore K. Brahmi: a complete herbal medicine. J Pharm Res. 2012;5:3139–42.
7.
go back to reference Al-Snafi AE. The pharmacology of Bacopa monniera. A review, Int J Pharma Sci Res. 2013;4:154–9.CrossRef Al-Snafi AE. The pharmacology of Bacopa monniera. A review, Int J Pharma Sci Res. 2013;4:154–9.CrossRef
9.
go back to reference Ohta T, Nakamura S, Nakashima S, Oda Y, Matsumoto T, Fukaya M, Yano M, Yoshikawa M, Matsuda H. Chemical structures of constituents from the whole plant of Bacopa monniera. J Nat Med. 2016;70:404–11.CrossRefPubMed Ohta T, Nakamura S, Nakashima S, Oda Y, Matsumoto T, Fukaya M, Yano M, Yoshikawa M, Matsuda H. Chemical structures of constituents from the whole plant of Bacopa monniera. J Nat Med. 2016;70:404–11.CrossRefPubMed
10.
go back to reference Sampathkumar P, Dheeba B, Venkatasubramanian V, Arulprakash T, Vinothkannan R. Potential antimicrobial activity of various extracts of Bacopa monnieri (Linn.). Int J of Pharmacol. 2008;4:230–2.CrossRef Sampathkumar P, Dheeba B, Venkatasubramanian V, Arulprakash T, Vinothkannan R. Potential antimicrobial activity of various extracts of Bacopa monnieri (Linn.). Int J of Pharmacol. 2008;4:230–2.CrossRef
11.
go back to reference Alam K, Parvez N, Yadav S, Molvi K, Hwisa N, Sharif SMA, Pathak D, Murti Y, Zafar R. Antimicrobial activity of leaf callus of Bacopa monnieri L. Pharm Lett. 2011;3:287–91. Alam K, Parvez N, Yadav S, Molvi K, Hwisa N, Sharif SMA, Pathak D, Murti Y, Zafar R. Antimicrobial activity of leaf callus of Bacopa monnieri L. Pharm Lett. 2011;3:287–91.
12.
go back to reference Joshi BB, Patel MGH, Dabhi B, Mistry KN. In vitro phytochemical analysis and anti-microbial activity of crude extract of Bacopa monniera. Bull Pharma Med Sci. 2013;1:128–31. Joshi BB, Patel MGH, Dabhi B, Mistry KN. In vitro phytochemical analysis and anti-microbial activity of crude extract of Bacopa monniera. Bull Pharma Med Sci. 2013;1:128–31.
13.
go back to reference Hema TA, Arya AS, Subha S, John CRK, Divya PV. Antimicrobial activity of five South Indian medicinal plants against clinical pathogens. Int J Pharm Bio Sci. 2013;4:70–80. Hema TA, Arya AS, Subha S, John CRK, Divya PV. Antimicrobial activity of five South Indian medicinal plants against clinical pathogens. Int J Pharm Bio Sci. 2013;4:70–80.
14.
go back to reference Dey D, Ray R, Hazra B. Antimicrobial activity of pomegranate fruit constituents against drug-resistant Mycobacterium tuberculosis and β-lactamase producing Klebsiella pneumoniae. Pharm Biol. 2015;53:1474–80.CrossRefPubMed Dey D, Ray R, Hazra B. Antimicrobial activity of pomegranate fruit constituents against drug-resistant Mycobacterium tuberculosis and β-lactamase producing Klebsiella pneumoniae. Pharm Biol. 2015;53:1474–80.CrossRefPubMed
15.
go back to reference Dey D, Ray R, Hazra B. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phytother Res. 2014;28:1014–21.CrossRefPubMed Dey D, Ray R, Hazra B. Antitubercular and antibacterial activity of quinonoid natural products against multi-drug resistant clinical isolates. Phytother Res. 2014;28:1014–21.CrossRefPubMed
16.
go back to reference Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity:A review. J Pharm Anal. 2016;6:71–9.CrossRef Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity:A review. J Pharm Anal. 2016;6:71–9.CrossRef
17.
go back to reference National Medicinal Plants Board. Thirty two prioritized medicinal plants, National Informatics Centre, Ministry of Health and Family Welfare, Department of Ayush, Government of India. 2004. National Medicinal Plants Board. Thirty two prioritized medicinal plants, National Informatics Centre, Ministry of Health and Family Welfare, Department of Ayush, Government of India. 2004.
18.
go back to reference Karthikeyan A, Madhanraj A, Pandian SK, et al. Genetic variation among highly endangered Bacopa monnieri (L.) Pennell from Southern India as detected using RAPD analysis. Genet Resour Crop Evol. 2011;58:769–82.CrossRef Karthikeyan A, Madhanraj A, Pandian SK, et al. Genetic variation among highly endangered Bacopa monnieri (L.) Pennell from Southern India as detected using RAPD analysis. Genet Resour Crop Evol. 2011;58:769–82.CrossRef
19.
go back to reference Haque SM, Ghosh B. Field evaluation and genetic stability assessment of regenerated plants produced via direct shoot organogenesis from leaf explant of an endangered “Asthma plant” (Tylophora indica) along with their in vitro conservation. Natl Acad Sci Lett. 2013;36:551–62.CrossRef Haque SM, Ghosh B. Field evaluation and genetic stability assessment of regenerated plants produced via direct shoot organogenesis from leaf explant of an endangered “Asthma plant” (Tylophora indica) along with their in vitro conservation. Natl Acad Sci Lett. 2013;36:551–62.CrossRef
20.
go back to reference Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant. 1962;15:473–97.CrossRef Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant. 1962;15:473–97.CrossRef
21.
go back to reference Haque SM, Ghosh B. Micropropagation, in vitro flowering and cytological studies of Bacopa chamaedryoides, an ethno-medicinal plant. Environ Exp Biol. 2013;11:59–68. Haque SM, Ghosh B. Micropropagation, in vitro flowering and cytological studies of Bacopa chamaedryoides, an ethno-medicinal plant. Environ Exp Biol. 2013;11:59–68.
22.
go back to reference Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–75.CrossRefPubMed Wiegand I, Hilpert K, Hancock REW. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat Protoc. 2008;3:163–75.CrossRefPubMed
23.
go back to reference Toda M, Okubo S, Hiyoshi R, Shimamura T. The bactericidal activity of tea and coffee. Lett Appl Microbiol. 1989;8:123–5.CrossRef Toda M, Okubo S, Hiyoshi R, Shimamura T. The bactericidal activity of tea and coffee. Lett Appl Microbiol. 1989;8:123–5.CrossRef
24.
go back to reference Haynes W, Tukey’s test, In: Encyclopedia of systems biology. Dubitzky W, Wolkenhauer O, Cho K-H, et al. editors. New York: Springer; 2013. p. 2303–2304. Haynes W, Tukey’s test, In: Encyclopedia of systems biology. Dubitzky W, Wolkenhauer O, Cho K-H, et al. editors. New York: Springer; 2013. p. 2303–2304.
25.
go back to reference Kumar V, Sharma A, Prasad BCN, Gururaj HB, Giridhar P, Ravishankar GA. Direct shoot bud induction and plant regeneration in Capsicum frutescens Mill.: influence of polyamines and polarity. Acta Physiol Plant. 2007;29:11–8.CrossRef Kumar V, Sharma A, Prasad BCN, Gururaj HB, Giridhar P, Ravishankar GA. Direct shoot bud induction and plant regeneration in Capsicum frutescens Mill.: influence of polyamines and polarity. Acta Physiol Plant. 2007;29:11–8.CrossRef
26.
go back to reference Thakur S, Ganpathy PS, Johri BN. Differentiation of abnormal plantlets in Bacopa monnieri. Phytomorphology. 1976;26:422–4. Thakur S, Ganpathy PS, Johri BN. Differentiation of abnormal plantlets in Bacopa monnieri. Phytomorphology. 1976;26:422–4.
27.
go back to reference Banerjee M, Shrivastava S. An improved protocol for in vitro multiplication of Bacopa monnieri (L.). World J Microbiol Biotechnol. 2008;24:1355–9.CrossRef Banerjee M, Shrivastava S. An improved protocol for in vitro multiplication of Bacopa monnieri (L.). World J Microbiol Biotechnol. 2008;24:1355–9.CrossRef
28.
go back to reference Ceasar SA, Maxwell SLPKB, Karthigan M, Ignacimuthu S. Highly efficient shoot regeneration of Bacopa monnieri (L.) using a two-stage culture procedure and assessment of genetic integrity of micropropagated plants by RAPD. Acta Physiol Plant. 2010;32:443–52.CrossRef Ceasar SA, Maxwell SLPKB, Karthigan M, Ignacimuthu S. Highly efficient shoot regeneration of Bacopa monnieri (L.) using a two-stage culture procedure and assessment of genetic integrity of micropropagated plants by RAPD. Acta Physiol Plant. 2010;32:443–52.CrossRef
29.
go back to reference Kumari U, Vishwakarma RK, Gupta N, Ruby SMV, Khan BM. Efficient shoots regeneration and genetic transformation of Bacopa monniera. Physiol Mol Biol Plants. 2015;21:261–7.CrossRefPubMedPubMedCentral Kumari U, Vishwakarma RK, Gupta N, Ruby SMV, Khan BM. Efficient shoots regeneration and genetic transformation of Bacopa monniera. Physiol Mol Biol Plants. 2015;21:261–7.CrossRefPubMedPubMedCentral
30.
go back to reference Largia MJV, Shilpha J, Pothiraj G, Ramesh M. Analysis of nuclear DNA content, genetic stability, Bacoside A quantity and antioxidant potential of long term in vitro grown germplasm lines of Bacopa monnieri (L.). Plant Cell Tissue Organ Cult. 2015;120:399–406.CrossRef Largia MJV, Shilpha J, Pothiraj G, Ramesh M. Analysis of nuclear DNA content, genetic stability, Bacoside A quantity and antioxidant potential of long term in vitro grown germplasm lines of Bacopa monnieri (L.). Plant Cell Tissue Organ Cult. 2015;120:399–406.CrossRef
31.
go back to reference Chi CL, Lin WS, Lee JEE, Pua EC. Role of polyamines on de novo shoot morphogenesis from cotyledons of Brassica campestris ssp. pekinensis (Lour) Olsson in vitro. Plant Cell Rep. 1994;13:323–9.CrossRefPubMed Chi CL, Lin WS, Lee JEE, Pua EC. Role of polyamines on de novo shoot morphogenesis from cotyledons of Brassica campestris ssp. pekinensis (Lour) Olsson in vitro. Plant Cell Rep. 1994;13:323–9.CrossRefPubMed
32.
go back to reference Moshkov IE, Novikova GV, Hall MA, George EF. Plant growth regulators III: ethylene, abscisic acid, their analogues and inhibitors, miscellaneous compounds. In: George EF, Hall MA, de Klerk GJ, editors. Plant propagation by tissue culture. 3rd ed. Netherlands: Springer; 2008. p. 227–82. Moshkov IE, Novikova GV, Hall MA, George EF. Plant growth regulators III: ethylene, abscisic acid, their analogues and inhibitors, miscellaneous compounds. In: George EF, Hall MA, de Klerk GJ, editors. Plant propagation by tissue culture. 3rd ed. Netherlands: Springer; 2008. p. 227–82.
33.
go back to reference Podwyszyn’ ska M, Kosson R, Treder J. Polyamines and methyl jasmonate in bulb formation of in vitro propagated tulips. Plant Cell Tissue Organ Cult. 2015;123:591–605.CrossRef Podwyszyn’ ska M, Kosson R, Treder J. Polyamines and methyl jasmonate in bulb formation of in vitro propagated tulips. Plant Cell Tissue Organ Cult. 2015;123:591–605.CrossRef
34.
go back to reference Satish L, Rency AS, Rathinapriya P, Ceasar SA, Pandian S, Rameshkumar R, Rao TB, Balachandran SM, Ramesh M. Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusine coracana L. Gaertn). Plant Cell Tissue Organ Cult. 2016;124:15–31.CrossRef Satish L, Rency AS, Rathinapriya P, Ceasar SA, Pandian S, Rameshkumar R, Rao TB, Balachandran SM, Ramesh M. Influence of plant growth regulators and spermidine on somatic embryogenesis and plant regeneration in four Indian genotypes of finger millet (Eleusine coracana L. Gaertn). Plant Cell Tissue Organ Cult. 2016;124:15–31.CrossRef
35.
go back to reference Ghosh T, Maity TK, Bose A, Dash GK, Das M. Antimicrobial activity of various fractions of ethanol extract of Bacopa monnieri Linn. aerial parts. Indian J Pharm Sci. 2007;69:312–4.CrossRef Ghosh T, Maity TK, Bose A, Dash GK, Das M. Antimicrobial activity of various fractions of ethanol extract of Bacopa monnieri Linn. aerial parts. Indian J Pharm Sci. 2007;69:312–4.CrossRef
36.
go back to reference Banasiuk R, Kawiak A, Krolicka A. In vitro cultures of carnivorous plants from the Drosera and Dionaea genus for the production of biologically active secondary metabolites. Bio Technologia. 2012;93:87–96. Banasiuk R, Kawiak A, Krolicka A. In vitro cultures of carnivorous plants from the Drosera and Dionaea genus for the production of biologically active secondary metabolites. Bio Technologia. 2012;93:87–96.
37.
go back to reference Hossain MS, Rahman MS, Imon AHMR, Zaman S, ASMBA S, Mondal M, SarwarA HTB, Adhikary BC, Begum T, Tabassum A, Alam S, Begum MM. Ethnopharmacological investigations of methanolic extract of Pouzolzia Zeylanica (L.) Benn. Clin Phytosci. 2016;2:10.CrossRef Hossain MS, Rahman MS, Imon AHMR, Zaman S, ASMBA S, Mondal M, SarwarA HTB, Adhikary BC, Begum T, Tabassum A, Alam S, Begum MM. Ethnopharmacological investigations of methanolic extract of Pouzolzia Zeylanica (L.) Benn. Clin Phytosci. 2016;2:10.CrossRef
38.
go back to reference Rajashekharappa S, Krishna V, Sathyanarayana BN, Gowdar HB. Antibacterial activity of bacoside-A- an active constituent isolated of Bacopa monnieri (L.) Wettest. Pharmacologyonline. 2008;2:517–28. Rajashekharappa S, Krishna V, Sathyanarayana BN, Gowdar HB. Antibacterial activity of bacoside-A- an active constituent isolated of Bacopa monnieri (L.) Wettest. Pharmacologyonline. 2008;2:517–28.
39.
go back to reference Mathur A, Verma SK, Purohit R, Singh SK, Mathur D, Prasad GBKS, Dua VK. Pharmacological investigation of Bacopa monnieri on the basis of antioxidant, antimicrobial and anti-inflammatory properties. J Chem Pharm Res. 2010;2:191–8. Mathur A, Verma SK, Purohit R, Singh SK, Mathur D, Prasad GBKS, Dua VK. Pharmacological investigation of Bacopa monnieri on the basis of antioxidant, antimicrobial and anti-inflammatory properties. J Chem Pharm Res. 2010;2:191–8.
40.
go back to reference Canli K, Altuner EM, Akata I, Turkmen Y, Uzek U. In vitro antimicrobial screening of Lycoperdon lividum and determination of the ethanol extract composition by gas chromatography/mass spectrometry. Bangladesh J Pharmacol. 2016;11:389–94.CrossRef Canli K, Altuner EM, Akata I, Turkmen Y, Uzek U. In vitro antimicrobial screening of Lycoperdon lividum and determination of the ethanol extract composition by gas chromatography/mass spectrometry. Bangladesh J Pharmacol. 2016;11:389–94.CrossRef
41.
go back to reference Ncube B, Ngunge VNP, Finnie JF, Van Staden J. A comparative study of the antimicrobial and phytochemical properties between outdoor grown and micropropagated Tulbaghia violacea Harv. plants. J Ethnopharmacol. 2011;134:775–80.CrossRefPubMed Ncube B, Ngunge VNP, Finnie JF, Van Staden J. A comparative study of the antimicrobial and phytochemical properties between outdoor grown and micropropagated Tulbaghia violacea Harv. plants. J Ethnopharmacol. 2011;134:775–80.CrossRefPubMed
42.
go back to reference Kumari A, Baskaran P, Van Staden J. In vitro propagation and antibacterial activity in Cotyledon orbiculata: a valuable medicinal plant. Plant Cell Tissue Organ Cult. 2016;124:97–104.CrossRef Kumari A, Baskaran P, Van Staden J. In vitro propagation and antibacterial activity in Cotyledon orbiculata: a valuable medicinal plant. Plant Cell Tissue Organ Cult. 2016;124:97–104.CrossRef
43.
go back to reference Baskaran P, Singh S, Van Staden J. In vitro propagation, proscillaridin A production and antibacterial activity in Drimia robusta. Plant Cell Tissue Organ Cult. 2013;114:259–67.CrossRef Baskaran P, Singh S, Van Staden J. In vitro propagation, proscillaridin A production and antibacterial activity in Drimia robusta. Plant Cell Tissue Organ Cult. 2013;114:259–67.CrossRef
44.
go back to reference Khateeb WA, Hussein E, Qouta L, Datt MA, Shara BA, Abu-zaiton A. In vitro propagation and characterization of phenolic content along with antioxidant and antimicrobial activities of Cichorium pumilum Jacq. Plant Cell Tissue Organ Cult. 2012;110:103–110. Khateeb WA, Hussein E, Qouta L, Datt MA, Shara BA, Abu-zaiton A. In vitro propagation and characterization of phenolic content along with antioxidant and antimicrobial activities of Cichorium pumilum Jacq. Plant Cell Tissue Organ Cult. 2012;110:103–110.
45.
go back to reference Phull A-R, Abbas Q, Ali A, Raza H, Kim S-J, Zia M, Haq IU. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliate. Future J Pharma Sci. 2016;2:31–6.CrossRef Phull A-R, Abbas Q, Ali A, Raza H, Kim S-J, Zia M, Haq IU. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliate. Future J Pharma Sci. 2016;2:31–6.CrossRef
46.
go back to reference Emran TB, Rahman MA, Uddin MMN, Dash R, Hossen MF, Mohiuddin M, Alam MR. Molecular docking and inhibition studies on the interactions of Bacopa monnieri’s potent phytochemicals against pathogenic Staphylococcus aureus. DARU J Pharma Sci. 2015;23:26.CrossRef Emran TB, Rahman MA, Uddin MMN, Dash R, Hossen MF, Mohiuddin M, Alam MR. Molecular docking and inhibition studies on the interactions of Bacopa monnieri’s potent phytochemicals against pathogenic Staphylococcus aureus. DARU J Pharma Sci. 2015;23:26.CrossRef
47.
go back to reference Cockerill FR. Conventional and genetic laboratory tests used to guide antimicrobial therapy. Mayo Clin Proc. 1998;73:1007–21.CrossRefPubMed Cockerill FR. Conventional and genetic laboratory tests used to guide antimicrobial therapy. Mayo Clin Proc. 1998;73:1007–21.CrossRefPubMed
Metadata
Title
Improved micropropagation of Bacopa monnieri (L.) Wettst. (Plantaginaceae) and antimicrobial activity of in vitro and ex vitro raised plants against multidrug-resistant clinical isolates of urinary tract infecting (UTI) and respiratory tract infecting (RTI) bacteria
Authors
Sk Moquammel Haque
Avijit Chakraborty
Diganta Dey
Swapna Mukherjee
Sanghamitra Nayak
Biswajit Ghosh
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical Phytoscience / Issue 1/2017
Electronic ISSN: 2199-1197
DOI
https://doi.org/10.1186/s40816-017-0055-6

Other articles of this Issue 1/2017

Clinical Phytoscience 1/2017 Go to the issue