Skip to main content
Top
Published in: Clinical Phytoscience 1/2017

Open Access 01-12-2017 | Original contribution

Antibacterial, antioxidant and anticancer properties of Turbinaria conoides (J. Agardh) Kuetz

Authors: Arumugama Ponnan, Kavipriya Ramu, Murugan Marudhamuthu, Ramar Marimuthu, Kamalakannan Siva, Murugan Kadarkarai

Published in: Clinical Phytoscience | Issue 1/2017

Login to get access

Abstract

Background

Cancer causes leading death in the world population due to exposure of various carcinogenic/mutagenic agents, radiation and life style. There are 2.6 million new cases diagnosed each year. Therefore, the objective is aimed to study the antibacterial and antioxidant activities of solvent fractions of ethanolic extract of T. conoides and its anticancer activity also evaluated by analyzing cytotoxicity, cell cycle arrest and apoptosis in HepG2 cell line.

Methods

Antibacterial activity was done by disc diffusion method and expressed as in millimeter diameter of zone inhibition. Antioxidant activity was done by ABTS radical assay, superoxide radical assay, iron chelation and uric acid formation inhibitory assays. The cytotoxicity efficacy was estimated using MTT assay. Annexin-V FITC kit was used to estimate the apoptosis and cell cycle arrest by flowcytometer. Morphological changes of cell through alteration of nuclear content and mitochondrial membrane potential were also examined using Hoechst and JC1 stains under fluorescence microscopy, respectively.

Results

Highest antibacterial activity, TAA and RAA were found in EAF followed by DMF, HF and AF. Cytotoxicity of EAF was found to be 67% at 24 h and 83% at 48 h over the standard of quercetin (86% at 48 h). The cancer cells were found to be significantly (p < 0.05) higher in the proliferative G0/G1 phase where as significantly decreased in the S phase. Hence, treatment with T. conoides fraction showed statistically (p < 0.05) significant increase of apoptotic cells than that of quercetin standard (32%, 80 μg/mL). The apoptotic cell formation might be due to the change of nuclear content and mitochondrial membrane potential were further confirmed in HepG2 cells under fluorescence microscopy.

Conclusion

Ethyl acetate fraction of T. conoides showed highest antibacterial, antioxidant and anticancer activity through exhibiting synergistic effects over the respective standard compounds.
Literature
1.
go back to reference Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol. 2011;22:315–26.CrossRef Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol. 2011;22:315–26.CrossRef
2.
go back to reference Ananthi S, Rao H, Raghavendran B, Sunil AG, Gayathri V, Ramakrishnan G, et al. In-vitro antioxidant and in-vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornate (Marine Brown Alga). Food Chem Toxicol. 2010;48:187–92.CrossRefPubMed Ananthi S, Rao H, Raghavendran B, Sunil AG, Gayathri V, Ramakrishnan G, et al. In-vitro antioxidant and in-vivo anti-inflammatory potential of crude polysaccharide from Turbinaria ornate (Marine Brown Alga). Food Chem Toxicol. 2010;48:187–92.CrossRefPubMed
3.
go back to reference Liu L, Heinrich M, Myers S, Dworjanyn SA. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. J Ethnopharmacol. 2012;142:591–619.CrossRefPubMed Liu L, Heinrich M, Myers S, Dworjanyn SA. Towards a better understanding of medicinal uses of the brown seaweed Sargassum in Traditional Chinese Medicine: a phytochemical and pharmacological review. J Ethnopharmacol. 2012;142:591–619.CrossRefPubMed
4.
go back to reference Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, et al. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Inter. 2013;13:55.CrossRef Lee JC, Hou MF, Huang HW, Chang FR, Yeh CC, Tang JY, et al. Marine algal natural products with anti-oxidative, anti-inflammatory, and anti-cancer properties. Cancer Cell Inter. 2013;13:55.CrossRef
5.
go back to reference Gamze Y, Serap C, Ozgur V, Sukran D. Determination of the anti-oxidative capacity and bioactive compounds in green seaweed Ulva rigida C. Agardh. Int J Food Prop. 2011;11:44–52. Gamze Y, Serap C, Ozgur V, Sukran D. Determination of the anti-oxidative capacity and bioactive compounds in green seaweed Ulva rigida C. Agardh. Int J Food Prop. 2011;11:44–52.
6.
go back to reference Jyh-Horng S, Guey-Horng W, Ping-Jyun S, Chang-Yih D. New cytotoxic oxygenated fucosterols from the brown Alga Turbinaria conoides. J Nat Prod. 1999;62(2):224–7.CrossRef Jyh-Horng S, Guey-Horng W, Ping-Jyun S, Chang-Yih D. New cytotoxic oxygenated fucosterols from the brown Alga Turbinaria conoides. J Nat Prod. 1999;62(2):224–7.CrossRef
7.
go back to reference Nabanita C, Ghosh T, Sinha S, Kausik C, Karmakar P, Bimalendu R. Polysaccharides from Turbinaria conoides: structural features and antioxidant capacity. Food Chem. 2010;118(3):823–9.CrossRef Nabanita C, Ghosh T, Sinha S, Kausik C, Karmakar P, Bimalendu R. Polysaccharides from Turbinaria conoides: structural features and antioxidant capacity. Food Chem. 2010;118(3):823–9.CrossRef
8.
go back to reference Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan K, Annadurai G. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostructure Chem. 2013;3:44.CrossRef Rajeshkumar S, Malarkodi C, Gnanajobitha G, Paulkumar K, Vanaja M, Kannan K, Annadurai G. Seaweed-mediated synthesis of gold nanoparticles using Turbinaria conoides and its characterization. J Nanostructure Chem. 2013;3:44.CrossRef
10.
go back to reference Ananthi S, Gayathri V, Veeresh Kumar S, Meenakshi B, Vasanthi HR. Attenuation of inflammation by marine algae Turbinaria ornata in cotton pellet induced Granuloma mediated by fucoidan like sulphated polysaccharide. Carbohydr Polym. 2016;151:1261–8.CrossRef Ananthi S, Gayathri V, Veeresh Kumar S, Meenakshi B, Vasanthi HR. Attenuation of inflammation by marine algae Turbinaria ornata in cotton pellet induced Granuloma mediated by fucoidan like sulphated polysaccharide. Carbohydr Polym. 2016;151:1261–8.CrossRef
11.
go back to reference Chakraborty K, Praveen NK, Vijayan KK, Syda Rao G. Evaluation of phenolic contents and antioxidant activities of brown seaweeds belonging to Turbinaria spp. (Phaeophyta, Sargassaceae) collected from Gulf of Mannar. Asian Pac J Trop Biomed. 2013;3(1):8–16.CrossRefPubMedPubMedCentral Chakraborty K, Praveen NK, Vijayan KK, Syda Rao G. Evaluation of phenolic contents and antioxidant activities of brown seaweeds belonging to Turbinaria spp. (Phaeophyta, Sargassaceae) collected from Gulf of Mannar. Asian Pac J Trop Biomed. 2013;3(1):8–16.CrossRefPubMedPubMedCentral
12.
go back to reference Hu X, Jiang X, Hwang H, Liu S, Guan H. Antitumour activities of alginate-derived oligosaccharides and their sulphated substitution derivatives. Eur J Phycol. 2004;39:67–71.CrossRef Hu X, Jiang X, Hwang H, Liu S, Guan H. Antitumour activities of alginate-derived oligosaccharides and their sulphated substitution derivatives. Eur J Phycol. 2004;39:67–71.CrossRef
13.
go back to reference Shahidi F. Nutraceuticals and functional foods: whole versus processed foods. Trends Food Sci Tech. 2009;0:376–87.CrossRef Shahidi F. Nutraceuticals and functional foods: whole versus processed foods. Trends Food Sci Tech. 2009;0:376–87.CrossRef
14.
go back to reference Jemal A, Bray F, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed Jemal A, Bray F, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61:69–90.CrossRefPubMed
15.
go back to reference Fabregat I. Dysregulation of apoptosis in hepatocellular carcinoma cells. World Gastroenterol J. 2009;15:513–20.CrossRef Fabregat I. Dysregulation of apoptosis in hepatocellular carcinoma cells. World Gastroenterol J. 2009;15:513–20.CrossRef
16.
go back to reference Khan N, Adhami VM, Mukhtar H. Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocr Relat Cancer. 2010;17:39–52.CrossRef Khan N, Adhami VM, Mukhtar H. Apoptosis by dietary agents for prevention and treatment of prostate cancer. Endocr Relat Cancer. 2010;17:39–52.CrossRef
17.
go back to reference Gupta P, Bansal MP, Koul A. Spectroscopic characterization of lycopene extract from Lycopersicum esculentum (Tomato) and its evaluation as a chemopreventive agent against experimental hepatocarcinogenesis in mice. Phytother Res. 2013;27(3):448–56.CrossRefPubMed Gupta P, Bansal MP, Koul A. Spectroscopic characterization of lycopene extract from Lycopersicum esculentum (Tomato) and its evaluation as a chemopreventive agent against experimental hepatocarcinogenesis in mice. Phytother Res. 2013;27(3):448–56.CrossRefPubMed
18.
go back to reference Arumugam P, Ramamurthy P, Santhiya ST, Ramesh A. Antioxidant activity measured in different solvent fractions obtained from Mentha spicata linn.: ananalysis by ABTS.+ decolorization assay. Asia Pacific J Clin Nutr. 2006;15:20–4. Arumugam P, Ramamurthy P, Santhiya ST, Ramesh A. Antioxidant activity measured in different solvent fractions obtained from Mentha spicata linn.: ananalysis by ABTS.+ decolorization assay. Asia Pacific J Clin Nutr. 2006;15:20–4.
19.
go back to reference Allen ST. Chemical analysis of ecological material. New York: Blackwell Scientific Publication; 1974. p. 313. Allen ST. Chemical analysis of ecological material. New York: Blackwell Scientific Publication; 1974. p. 313.
20.
go back to reference Harbone JR. Phytochemical methods. A guide to modern techniques of plant analysis. London: Charpan and Hall; 1976. p. 78. Harbone JR. Phytochemical methods. A guide to modern techniques of plant analysis. London: Charpan and Hall; 1976. p. 78.
21.
go back to reference Mackeen MM, Ali AM, El-sharkawy SH, Manap MY, Salleh KM, Lajis NH, Kawazu K. Antimicrobial and cytotoxic properties of some Malaysian traditional vegetables. Pharmace Biol. 1997;35:174–8.CrossRef Mackeen MM, Ali AM, El-sharkawy SH, Manap MY, Salleh KM, Lajis NH, Kawazu K. Antimicrobial and cytotoxic properties of some Malaysian traditional vegetables. Pharmace Biol. 1997;35:174–8.CrossRef
22.
go back to reference Tota S, Kumura M, Ohnishi M. Effects of phenol carboxylic acids on superoxide anion and lipid peroxidation induced by superoxide anion. Planta Med. 1991;57:8–10.CrossRef Tota S, Kumura M, Ohnishi M. Effects of phenol carboxylic acids on superoxide anion and lipid peroxidation induced by superoxide anion. Planta Med. 1991;57:8–10.CrossRef
23.
go back to reference Decker EA, Welch B. Role of ferritin as lipid oxidation catalyst in muscle food. J Agric Food Chem. 1990;38:674–7.CrossRef Decker EA, Welch B. Role of ferritin as lipid oxidation catalyst in muscle food. J Agric Food Chem. 1990;38:674–7.CrossRef
24.
go back to reference Mosmann TJ. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immolunol Meth. 1983;65:55–63.CrossRef Mosmann TJ. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immolunol Meth. 1983;65:55–63.CrossRef
25.
go back to reference Darzynkiewicz Z, Bedner E, Smolewski P. Flow cytometry in analysis of cell cycle and apoptosis. Sem Hematol. 2001;38:179–93.CrossRef Darzynkiewicz Z, Bedner E, Smolewski P. Flow cytometry in analysis of cell cycle and apoptosis. Sem Hematol. 2001;38:179–93.CrossRef
26.
go back to reference Liu TY, Tan ZJ, Jiang L, Gu JF, Wu XS, Cao Y, et al. Curcumin induces apoptosis in gallbladder carcinoma cell line GBC-SD cells. Cancer Cell Inter. 2013;13:64.CrossRef Liu TY, Tan ZJ, Jiang L, Gu JF, Wu XS, Cao Y, et al. Curcumin induces apoptosis in gallbladder carcinoma cell line GBC-SD cells. Cancer Cell Inter. 2013;13:64.CrossRef
27.
go back to reference Sridharan MC, Dhamotharan R. Antibacterial activity of marine brown alga Turbinaria conoides. J Chem Pharmaceut Res. 2012;4(4):2292–4. Sridharan MC, Dhamotharan R. Antibacterial activity of marine brown alga Turbinaria conoides. J Chem Pharmaceut Res. 2012;4(4):2292–4.
28.
go back to reference Senthilkumar P, Sudha S. Antibacterial properties of Turbinaria conoides from Gulf of Mannar Coast. Int J Pharm Sci Rev Res. 2012;17(1):74–6. Senthilkumar P, Sudha S. Antibacterial properties of Turbinaria conoides from Gulf of Mannar Coast. Int J Pharm Sci Rev Res. 2012;17(1):74–6.
29.
go back to reference Vijayabaskar P, Shiyamala V. Antibacterial activities of brown marine Algae (Sargassum wightii and Turbinaria ornata) from the Gulf of Mannar Biosphere Reserve. Adv Bio Res. 2011;5(2):99–102. Vijayabaskar P, Shiyamala V. Antibacterial activities of brown marine Algae (Sargassum wightii and Turbinaria ornata) from the Gulf of Mannar Biosphere Reserve. Adv Bio Res. 2011;5(2):99–102.
30.
go back to reference Gupta S, Abu-Ghannam N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov Food Sci Emerg Technol. 2011;12:600–9.CrossRef Gupta S, Abu-Ghannam N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov Food Sci Emerg Technol. 2011;12:600–9.CrossRef
31.
go back to reference Umayaparvathi S, Arumugam M, Balasubramanian T, Meenakshi S. In-vitro antioxidant properties and FTIR analysis of two seaweeds of Gulf of Mannar. Asian Pac J Trop Biomed. 2012;1 Suppl 1:S66–70. Umayaparvathi S, Arumugam M, Balasubramanian T, Meenakshi S. In-vitro antioxidant properties and FTIR analysis of two seaweeds of Gulf of Mannar. Asian Pac J Trop Biomed. 2012;1 Suppl 1:S66–70.
32.
go back to reference Kumar CS, Ganesan P, Bhaskar N. In-vitro antioxidant activities of three selected brown seaweeds of India. Food Chem. 2008;107:707–13.CrossRef Kumar CS, Ganesan P, Bhaskar N. In-vitro antioxidant activities of three selected brown seaweeds of India. Food Chem. 2008;107:707–13.CrossRef
33.
go back to reference Jin X, Chen Q, Tang SS, Zou JJ, Chen KP, Zhang T, Xiao XL. Investigation of quinocetone-induced genotoxicity in HepG2 cells using the comet assay, cytokinesis-block micronucleus test and RAPD analysis. Toxicol In Vitro. 2009;23:1209–14.CrossRefPubMed Jin X, Chen Q, Tang SS, Zou JJ, Chen KP, Zhang T, Xiao XL. Investigation of quinocetone-induced genotoxicity in HepG2 cells using the comet assay, cytokinesis-block micronucleus test and RAPD analysis. Toxicol In Vitro. 2009;23:1209–14.CrossRefPubMed
34.
go back to reference Gambato G, Caroline OS, Frozza ÉG, Baroni MS, et al. Brown Algae Himantothallus grandifolius (Desmarestiales, Phaeophyceae) Suppresses Proliferation and Promotes Apoptosis-Mediated Cell Death in Tumor Cells. Adv Bio Chem. 2014;4:98–108.CrossRef Gambato G, Caroline OS, Frozza ÉG, Baroni MS, et al. Brown Algae Himantothallus grandifolius (Desmarestiales, Phaeophyceae) Suppresses Proliferation and Promotes Apoptosis-Mediated Cell Death in Tumor Cells. Adv Bio Chem. 2014;4:98–108.CrossRef
35.
go back to reference Qiu L, Liu M, Pan K. A triple staining method for accurate cell cycle analysis using multiparameter flow cytometry. Molecules. 2013;18:15412–21.CrossRefPubMed Qiu L, Liu M, Pan K. A triple staining method for accurate cell cycle analysis using multiparameter flow cytometry. Molecules. 2013;18:15412–21.CrossRefPubMed
36.
go back to reference Sun XB, Wang SM, Li T, Yang YQ. Anticancer activity of Linalool Terpenoid: apoptosis induction and cell cycle arrest in prostate cancer cells. Tropic J Pharmaceut Res. 2015;14(4):619–25.CrossRef Sun XB, Wang SM, Li T, Yang YQ. Anticancer activity of Linalool Terpenoid: apoptosis induction and cell cycle arrest in prostate cancer cells. Tropic J Pharmaceut Res. 2015;14(4):619–25.CrossRef
Metadata
Title
Antibacterial, antioxidant and anticancer properties of Turbinaria conoides (J. Agardh) Kuetz
Authors
Arumugama Ponnan
Kavipriya Ramu
Murugan Marudhamuthu
Ramar Marimuthu
Kamalakannan Siva
Murugan Kadarkarai
Publication date
01-12-2017
Publisher
Springer Berlin Heidelberg
Published in
Clinical Phytoscience / Issue 1/2017
Electronic ISSN: 2199-1197
DOI
https://doi.org/10.1186/s40816-017-0042-y

Other articles of this Issue 1/2017

Clinical Phytoscience 1/2017 Go to the issue