Skip to main content
Top
Published in: Sports Medicine - Open 1/2016

Open Access 01-12-2016 | Review Article

Musculoskeletal Lower Limb Injury Risk in Army Populations

Authors: Kimberley A. Andersen, Paul N. Grimshaw, Richard M. Kelso, David J. Bentley

Published in: Sports Medicine - Open | Issue 1/2016

Login to get access

Abstract

Injuries are common within military populations, with high incidence rates well established in the literature. Injuries cause a substantial number of working days lost, a significant cost through compensation claims and an increased risk of attrition. In an effort to address this, a considerable amount of research has gone into identifying the most prevalent types of injury and their associated risk factors. Collective evidence suggests that training and equipment contribute to a large proportion of the injuries sustained. In particular, the large loads borne by soldiers, the high intensity training programs and the influence of footwear have been identified as significant causative factors of lower limb injury in military populations. A number of preventative strategies have been developed within military bodies around the world to address these issues. The relative success of these strategies is highly variable; however, with advancements in technology, new approaches will become available and existing strategies may become more effective.
Literature
1.
go back to reference Almeida SA, Williams KM, Shaffer RA, Brodine SK. Epidemiological patterns of musculoskeletal injuries and physical training. Med Sci Sports Exerc. 1999;31(8):1176–82.CrossRefPubMed Almeida SA, Williams KM, Shaffer RA, Brodine SK. Epidemiological patterns of musculoskeletal injuries and physical training. Med Sci Sports Exerc. 1999;31(8):1176–82.CrossRefPubMed
2.
go back to reference Cowan DN, Bedno SA, Urban N, Yi B, Niebuhr DW. Musculoskeletal injuries among overweight army trainees: incidence and health care utilization. Occup Med. 2011;61(4):247–52.CrossRef Cowan DN, Bedno SA, Urban N, Yi B, Niebuhr DW. Musculoskeletal injuries among overweight army trainees: incidence and health care utilization. Occup Med. 2011;61(4):247–52.CrossRef
3.
go back to reference Kaufman KR, Brodine S, Shaffer R. Military training-related injuries: surveillance, research, and prevention. Am J Prev Med. 2000;18(3 Suppl):54–63.CrossRefPubMed Kaufman KR, Brodine S, Shaffer R. Military training-related injuries: surveillance, research, and prevention. Am J Prev Med. 2000;18(3 Suppl):54–63.CrossRefPubMed
4.
go back to reference Jones BH, Cowan DN, Tomlinson JP, Robinson JR, Polly DW, Frykman PN. Epidemiology of injuries associated with physical training among young men in the army. Med Sci Sports Exerc. 1993;25(2):197–203.CrossRefPubMed Jones BH, Cowan DN, Tomlinson JP, Robinson JR, Polly DW, Frykman PN. Epidemiology of injuries associated with physical training among young men in the army. Med Sci Sports Exerc. 1993;25(2):197–203.CrossRefPubMed
5.
go back to reference Swedler DI, Knapik JJ, Williams KW, Grier TL, Jones BH. Risk factors for medical discharge from united states army basic combat training. Mil Med. 2011;176(10):1104–10.CrossRefPubMed Swedler DI, Knapik JJ, Williams KW, Grier TL, Jones BH. Risk factors for medical discharge from united states army basic combat training. Mil Med. 2011;176(10):1104–10.CrossRefPubMed
6.
go back to reference Davidson PL, Chalmers DJ, Wilson BD, McBride D. Lower limb injuries in New Zealand Defence Force personnel: descriptive epidemiology. Aust N Z J Public Health. 2008;32(2):167–73.CrossRefPubMed Davidson PL, Chalmers DJ, Wilson BD, McBride D. Lower limb injuries in New Zealand Defence Force personnel: descriptive epidemiology. Aust N Z J Public Health. 2008;32(2):167–73.CrossRefPubMed
7.
go back to reference Finestone A, Milgrom C. How stress fracture incidence was lowered in the Israeli army: a 25-yr struggle. Med Sci Sports Exerc. 2008;40(11S):S623–S9.CrossRefPubMed Finestone A, Milgrom C. How stress fracture incidence was lowered in the Israeli army: a 25-yr struggle. Med Sci Sports Exerc. 2008;40(11S):S623–S9.CrossRefPubMed
8.
go back to reference Jones BH, Thacker SB, Gilchrist J, Kimsey CD, Sosin DM. Prevention of lower extremity stress fractures in athletes and soldiers: a systematic review. Epidemiol Rev. 2002;24(2):228–47.CrossRefPubMed Jones BH, Thacker SB, Gilchrist J, Kimsey CD, Sosin DM. Prevention of lower extremity stress fractures in athletes and soldiers: a systematic review. Epidemiol Rev. 2002;24(2):228–47.CrossRefPubMed
9.
go back to reference Knapik JJ, Brosch LC, Venuto M, Swedler DI, Bullock SH, Gaines LS, et al. Effect on injuries of assigning shoes based on foot shape in air force basic training. Am J Prev Med. 2010;38(1 Suppl):S197–211.CrossRefPubMed Knapik JJ, Brosch LC, Venuto M, Swedler DI, Bullock SH, Gaines LS, et al. Effect on injuries of assigning shoes based on foot shape in air force basic training. Am J Prev Med. 2010;38(1 Suppl):S197–211.CrossRefPubMed
10.
go back to reference Milgrom C, Giladi M, Stein M, Kashtan H, Margulies J, Chisin R, et al. Stress fractures in military recruits: a prospective study showing an unusually high incidence. J Bone Joint Surg Br. 1985;67B(5):732–5. Milgrom C, Giladi M, Stein M, Kashtan H, Margulies J, Chisin R, et al. Stress fractures in military recruits: a prospective study showing an unusually high incidence. J Bone Joint Surg Br. 1985;67B(5):732–5.
11.
go back to reference Orr RM, Pope R, Johnston V, Coyle J. Load carriage: minimising soldier injuries through physical training: a narrative review. Journal of Military and Veterans’ Health. 2010;18(3):31–28. Orr RM, Pope R, Johnston V, Coyle J. Load carriage: minimising soldier injuries through physical training: a narrative review. Journal of Military and Veterans’ Health. 2010;18(3):31–28.
12.
go back to reference Defence Health Service Branch. Australian Defence Force health status report. In: Department of Defence, editor. Canberra, Australia: Defence Publishing Service, Department of Defence; 2000 Defence Health Service Branch. Australian Defence Force health status report. In: Department of Defence, editor. Canberra, Australia: Defence Publishing Service, Department of Defence; 2000
13.
go back to reference Shorten MR. Running shoe design: protection and performance. In: Pedoe DT, editor. Marathon medicine. London: Royal Society of Melbourne; 2000. p. 159–69. Shorten MR. Running shoe design: protection and performance. In: Pedoe DT, editor. Marathon medicine. London: Royal Society of Melbourne; 2000. p. 159–69.
14.
go back to reference Knapik JJ, Montain SJ, Mcgraw S, Grier T, Ely M, Jones BH. Stress fracture risk factors in basic combat training. Int J Sports Med. 2012;33(11):940–6.CrossRefPubMed Knapik JJ, Montain SJ, Mcgraw S, Grier T, Ely M, Jones BH. Stress fracture risk factors in basic combat training. Int J Sports Med. 2012;33(11):940–6.CrossRefPubMed
15.
go back to reference Dixon SJ, Waterworth C, Smith CV, House CM. Biomechanical analysis of running in military boots with new and degraded insoles. Med Sci Sports Exerc. 2003;35(3):472–9.CrossRefPubMed Dixon SJ, Waterworth C, Smith CV, House CM. Biomechanical analysis of running in military boots with new and degraded insoles. Med Sci Sports Exerc. 2003;35(3):472–9.CrossRefPubMed
16.
go back to reference Knapik J, Reynolds K. Load carriage in military operations: a review of historical, physiological, biomechanical and medical aspects. In: Friedl K, Santee WR, editors. Military quantitative physiology: problems and concepts in military operational medicine. Office of the Surgeon General and the Borden Institute, Ft. Detrick, MD 2012: 303-37 Knapik J, Reynolds K. Load carriage in military operations: a review of historical, physiological, biomechanical and medical aspects. In: Friedl K, Santee WR, editors. Military quantitative physiology: problems and concepts in military operational medicine. Office of the Surgeon General and the Borden Institute, Ft. Detrick, MD 2012: 303-37
17.
go back to reference Orr RM. The Australian army load carriage context: a challenge for defence capability. Annual Military Pharmacy Specialist Interest Group Conference; Oct, 2012; Brisbane, Australia 2012. Orr RM. The Australian army load carriage context: a challenge for defence capability. Annual Military Pharmacy Specialist Interest Group Conference; Oct, 2012; Brisbane, Australia 2012.
18.
go back to reference Saunders PU, Pyne DB, Telford RD, Hawley JA. Factors affecting running economy in trained distance runners. Sports Med. 2004;34(7):465–85.CrossRefPubMed Saunders PU, Pyne DB, Telford RD, Hawley JA. Factors affecting running economy in trained distance runners. Sports Med. 2004;34(7):465–85.CrossRefPubMed
19.
go back to reference van Dijk J. Chapter 3-common military task: Marching: NATO Research and Technology Organisation; 2009. Report No.: RTO-TR-HFM-080. van Dijk J. Chapter 3-common military task: Marching: NATO Research and Technology Organisation; 2009. Report No.: RTO-TR-HFM-080.
20.
go back to reference Gardner LI, Dziados JE, Jones BH, Brundage JF, Harris JM, Sullivan R, et al. Prevention of lower extremity stress fractures—a controlled trial of a shock absorbent insole. Am J Public Health. 1988;78(12):1563–7.CrossRefPubMedPubMedCentral Gardner LI, Dziados JE, Jones BH, Brundage JF, Harris JM, Sullivan R, et al. Prevention of lower extremity stress fractures—a controlled trial of a shock absorbent insole. Am J Public Health. 1988;78(12):1563–7.CrossRefPubMedPubMedCentral
21.
go back to reference Knapik JJ, Trone DW, Swedler DI, Villasenor A, Bullock SH, Schmied E, et al. Injury reduction effectiveness of assigning running shoes based on plantar shape in marine corps basic training. Am J Sports Med. 2010;38(9):1759–67.CrossRefPubMed Knapik JJ, Trone DW, Swedler DI, Villasenor A, Bullock SH, Schmied E, et al. Injury reduction effectiveness of assigning running shoes based on plantar shape in marine corps basic training. Am J Sports Med. 2010;38(9):1759–67.CrossRefPubMed
22.
go back to reference Milgrom C, Finestone A, Schlamkovitch N, Wosk J, Laor A, Voloshin A, et al. Prevention of overuse injuries of the foot by improved shoe shock attenuation. Clin Orthop. 1992;281:189–92.PubMed Milgrom C, Finestone A, Schlamkovitch N, Wosk J, Laor A, Voloshin A, et al. Prevention of overuse injuries of the foot by improved shoe shock attenuation. Clin Orthop. 1992;281:189–92.PubMed
23.
go back to reference Finestone A, Milgrom C, Evans R, Yanovich R, Constantini N, Moran DS. Overuse injuries in female infantry recruits during low-intensity basic training. Med Sci Sports Exerc. 2008;40(11S):S630–S5.CrossRefPubMed Finestone A, Milgrom C, Evans R, Yanovich R, Constantini N, Moran DS. Overuse injuries in female infantry recruits during low-intensity basic training. Med Sci Sports Exerc. 2008;40(11S):S630–S5.CrossRefPubMed
25.
go back to reference Orr RM, Pope R. Optimizing the physical training of military trainees. Strength Cond J. 2015;37(4):53–9.CrossRef Orr RM, Pope R. Optimizing the physical training of military trainees. Strength Cond J. 2015;37(4):53–9.CrossRef
26.
go back to reference Finestone A, Milgrom C, Wolf O, Petrov K, Evans R, Moran D. Epidemiology of metatarsal stress fractures versus tibial and femoral stress fractures during elite training. Foot Ankle Int. 2011;32(1):16–20.CrossRefPubMed Finestone A, Milgrom C, Wolf O, Petrov K, Evans R, Moran D. Epidemiology of metatarsal stress fractures versus tibial and femoral stress fractures during elite training. Foot Ankle Int. 2011;32(1):16–20.CrossRefPubMed
27.
go back to reference Jones BH, Bovee MW, Harris JM, Cowan DN. Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am J Sports Med. 1993;21(5):705–10.CrossRefPubMed Jones BH, Bovee MW, Harris JM, Cowan DN. Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am J Sports Med. 1993;21(5):705–10.CrossRefPubMed
28.
go back to reference Cowan DN, Jones BH, Robinson JR. Foot morphologic characteristics and risk of exercise-related injury. Arch Fam Med. 1993;2(7):773–7.CrossRefPubMed Cowan DN, Jones BH, Robinson JR. Foot morphologic characteristics and risk of exercise-related injury. Arch Fam Med. 1993;2(7):773–7.CrossRefPubMed
29.
go back to reference Knapik JJ, Jones BH, Hauret K, Darakjy S, Piskator E. A review of the literature on attrition from the military services: risk factors for attrition and strategies to reduce attrition. Aberdeen Proving Ground, MD: U.S. Army Center for Health Promotion and Preventative Medicine; 2004. Report No.: 12-HF-01Q9A-04. Knapik JJ, Jones BH, Hauret K, Darakjy S, Piskator E. A review of the literature on attrition from the military services: risk factors for attrition and strategies to reduce attrition. Aberdeen Proving Ground, MD: U.S. Army Center for Health Promotion and Preventative Medicine; 2004. Report No.: 12-HF-01Q9A-04.
30.
go back to reference Pope RP, Herbert RD, Kirwan JD, Graham BJ. A randomized trial of preexercise stretching for prevention of lower-limb injury. Med Sci Sports Exerc. 2000;32(2):271–7.CrossRefPubMed Pope RP, Herbert RD, Kirwan JD, Graham BJ. A randomized trial of preexercise stretching for prevention of lower-limb injury. Med Sci Sports Exerc. 2000;32(2):271–7.CrossRefPubMed
31.
go back to reference Pope RP. Prevention of pelvic stress fractures in female army recruits. Mil Med. 1999;164(5):370–3.PubMed Pope RP. Prevention of pelvic stress fractures in female army recruits. Mil Med. 1999;164(5):370–3.PubMed
32.
go back to reference Bell NS, Mangione TW, Hemenway D, Amoroso PJ, Jones BH. High injury rates among female army trainees—a function of gender? Am J Prev Med. 2000;18(3 Suppl):141–6.CrossRefPubMed Bell NS, Mangione TW, Hemenway D, Amoroso PJ, Jones BH. High injury rates among female army trainees—a function of gender? Am J Prev Med. 2000;18(3 Suppl):141–6.CrossRefPubMed
33.
go back to reference Dean C. The modern warrior’s combat load, dismounted operations in afghanistan. Natick, MA: US Army Center for Army Lessons Learned; 2004 Dean C. The modern warrior’s combat load, dismounted operations in afghanistan. Natick, MA: US Army Center for Army Lessons Learned; 2004
34.
go back to reference Orr RM, Pope R, Coyle J, Johnston V. Occupational loads carried by Australian soldiers on military operations. Journal of Health Safety and Environment. 2015;31(1):451–67. Orr RM, Pope R, Coyle J, Johnston V. Occupational loads carried by Australian soldiers on military operations. Journal of Health Safety and Environment. 2015;31(1):451–67.
35.
go back to reference Department of the Army. U.S Army Field Manual no. 21-18, foot marches. Washington, DC: Department of the Army; 1990. Department of the Army. U.S Army Field Manual no. 21-18, foot marches. Washington, DC: Department of the Army; 1990.
36.
go back to reference Foissac M, Millet GY, Geyssant A, Freychat P, Belli A. Characterization of the mechanical properties of backpacks and their influence on the energetics of walking. J Biomech. 2009;42(2):125–30.CrossRefPubMed Foissac M, Millet GY, Geyssant A, Freychat P, Belli A. Characterization of the mechanical properties of backpacks and their influence on the energetics of walking. J Biomech. 2009;42(2):125–30.CrossRefPubMed
37.
go back to reference Soule RG, Goldman RF. Energy cost of loads carried on the head, hands, or feet. J Appl Physiol. 1969;27:687–90.PubMed Soule RG, Goldman RF. Energy cost of loads carried on the head, hands, or feet. J Appl Physiol. 1969;27:687–90.PubMed
38.
go back to reference Orr RM, Johnston V, Coyle J, Pope R. Reported load carriage injuries of the Australian army soldier. J Occup Rehabil. 2015;25(2):316–22.CrossRefPubMed Orr RM, Johnston V, Coyle J, Pope R. Reported load carriage injuries of the Australian army soldier. J Occup Rehabil. 2015;25(2):316–22.CrossRefPubMed
39.
go back to reference Orr RM, Pope R, Johnston V, Coyle J. Soldier occupational load carriage: a narrative review of associated injuries. Int J Inj Contr Saf Promot. 2014;21(4):388–96.CrossRefPubMed Orr RM, Pope R, Johnston V, Coyle J. Soldier occupational load carriage: a narrative review of associated injuries. Int J Inj Contr Saf Promot. 2014;21(4):388–96.CrossRefPubMed
40.
go back to reference Booth CK, Probert B, Forbes-Ewan C, Coad RA. Australian army recruits in training display symptoms of overtraining. Mil Med. 2006;171(11):1059–64.CrossRefPubMed Booth CK, Probert B, Forbes-Ewan C, Coad RA. Australian army recruits in training display symptoms of overtraining. Mil Med. 2006;171(11):1059–64.CrossRefPubMed
41.
go back to reference Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88.CrossRefPubMed Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc. 2004;36(4):674–88.CrossRefPubMed
42.
go back to reference Braunstein B, Arampatzis A, Eysel P, Bruggemann GP. Footwear affects the gearing at the ankle and knee joints during running. J Biomech. 2010;43(11):2120–5.CrossRefPubMed Braunstein B, Arampatzis A, Eysel P, Bruggemann GP. Footwear affects the gearing at the ankle and knee joints during running. J Biomech. 2010;43(11):2120–5.CrossRefPubMed
43.
go back to reference Lieberman DE, Venkadesan M, Werbel WA, Daoud AI, D’Andrea S, Davis IS, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010;463(7280):531–5.CrossRefPubMed Lieberman DE, Venkadesan M, Werbel WA, Daoud AI, D’Andrea S, Davis IS, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners. Nature. 2010;463(7280):531–5.CrossRefPubMed
44.
go back to reference Paquette MR, Zhang S, Baumgartner LD. Acute effects of barefoot, minimal shoes and running shoes on lower limb mechanics in rear and forefoor strike runners. Footwear Sci. 2013;5(1):9–18.CrossRef Paquette MR, Zhang S, Baumgartner LD. Acute effects of barefoot, minimal shoes and running shoes on lower limb mechanics in rear and forefoor strike runners. Footwear Sci. 2013;5(1):9–18.CrossRef
45.
go back to reference Hamill J, Bensel CK. Biomechanical analysis of military boots: Phase 1. Materials testing of military and commercial footwear. Technical Report. Natick, MA: U.S. Army Natick Research; 1992. Report No.: NATICK-TR-93/006. Hamill J, Bensel CK. Biomechanical analysis of military boots: Phase 1. Materials testing of military and commercial footwear. Technical Report. Natick, MA: U.S. Army Natick Research; 1992. Report No.: NATICK-TR-93/006.
46.
go back to reference Hamill J, Bensel CK. Biomechanical analysis of military boots: Phase 2. Volume 1. Human user testing of military and commercial footwear. Technical Report. Natick, MA: U.S. Army Natick Research; 1996. Report No.: NATICK-TR-96/011-VOL-1. Hamill J, Bensel CK. Biomechanical analysis of military boots: Phase 2. Volume 1. Human user testing of military and commercial footwear. Technical Report. Natick, MA: U.S. Army Natick Research; 1996. Report No.: NATICK-TR-96/011-VOL-1.
47.
go back to reference Chiou SS, Turner N, Zwiener J, Weaver DL, Haskell WE. Effect of boot weight and sole flexibility on gait and physiological responses of firefighters in stepping over obstacles. Hum Factors. 2012;54:373–86.CrossRefPubMed Chiou SS, Turner N, Zwiener J, Weaver DL, Haskell WE. Effect of boot weight and sole flexibility on gait and physiological responses of firefighters in stepping over obstacles. Hum Factors. 2012;54:373–86.CrossRefPubMed
48.
go back to reference Arndt A, Westblad P, Ekenman I, Lundberg A. A comparison of external plantar loading and in vivo local metatarsal deformation wearing two different military boots. Gait Posture. 2003;18:20–6.CrossRefPubMed Arndt A, Westblad P, Ekenman I, Lundberg A. A comparison of external plantar loading and in vivo local metatarsal deformation wearing two different military boots. Gait Posture. 2003;18:20–6.CrossRefPubMed
49.
go back to reference Bohm H, Hosl M. Effect of boot shaft stiffness on stability joint energy and muscular co-contraction during walking on uneven surface. J Biomech. 2010;43(13):2467–72.CrossRefPubMed Bohm H, Hosl M. Effect of boot shaft stiffness on stability joint energy and muscular co-contraction during walking on uneven surface. J Biomech. 2010;43(13):2467–72.CrossRefPubMed
50.
go back to reference Cikajlo I, Matjačić Z. The influence of boot stiffness on gait kinematics and kinetics during stance phase. Ergonomics. 2007;50(12):2171–82.CrossRefPubMed Cikajlo I, Matjačić Z. The influence of boot stiffness on gait kinematics and kinetics during stance phase. Ergonomics. 2007;50(12):2171–82.CrossRefPubMed
51.
go back to reference Krumm D, Schwanitz S, Odenwald S. Development and reliability quantification of a novel test set-up for measuring footwear. Sports Engineering. 2013;16(1):13–9.CrossRef Krumm D, Schwanitz S, Odenwald S. Development and reliability quantification of a novel test set-up for measuring footwear. Sports Engineering. 2013;16(1):13–9.CrossRef
52.
go back to reference Perl DP, Daoud AI, Lieberman DE. Effects of footwear and strike type on running economy. Med Sci Sports Exerc. 2012;44(7):1335–43.CrossRefPubMed Perl DP, Daoud AI, Lieberman DE. Effects of footwear and strike type on running economy. Med Sci Sports Exerc. 2012;44(7):1335–43.CrossRefPubMed
53.
go back to reference Roy JP, Stefanyshyn DJ. Shoe midsole longitudinal bending stiffness and running economy, joint energy, and emg. Med Sci Sports Exerc. 2006;38(3):562–9.CrossRefPubMed Roy JP, Stefanyshyn DJ. Shoe midsole longitudinal bending stiffness and running economy, joint energy, and emg. Med Sci Sports Exerc. 2006;38(3):562–9.CrossRefPubMed
54.
go back to reference Hamill J, Bensel CK. Biomechanical analysis of military boots: Phase 3. Recommendations for the design of future military boots. Technical Report. Natick, MA: U.S. Army Natick Research; 1996. Report No.: NATICK-TR-96/013. Hamill J, Bensel CK. Biomechanical analysis of military boots: Phase 3. Recommendations for the design of future military boots. Technical Report. Natick, MA: U.S. Army Natick Research; 1996. Report No.: NATICK-TR-96/013.
55.
go back to reference Harman E, Frykman P, Pandorf C, LaFiandra M, Smith T, Bensel C et al. A comparison of 2 current-issue army boots, 5 prototype military boots, and 5 commercial hiking boots: performance, efficiency, biomechanics, comfort and injury. Technical Report. Natick, MA: Military Performance Division, U.S. Army Research Institute of Environmental Medicine; 1999. Report No.: T00-3. Harman E, Frykman P, Pandorf C, LaFiandra M, Smith T, Bensel C et al. A comparison of 2 current-issue army boots, 5 prototype military boots, and 5 commercial hiking boots: performance, efficiency, biomechanics, comfort and injury. Technical Report. Natick, MA: Military Performance Division, U.S. Army Research Institute of Environmental Medicine; 1999. Report No.: T00-3.
56.
go back to reference Williams KM, Brodine SK, R. A S, Hagy J, Kaufman K. Biomechanical properties of infantry combat boot development. Technical Report. San Diego, CA: Naval Health Research Center; 1997. Report No.: 97-26. Williams KM, Brodine SK, R. A S, Hagy J, Kaufman K. Biomechanical properties of infantry combat boot development. Technical Report. San Diego, CA: Naval Health Research Center; 1997. Report No.: 97-26.
57.
go back to reference Bonacci J, Saunders PU, Hicks A, Rantalainen T, Vincenzino BT, Spratford W. Running in a minimalist and lightweight shoe is not the same as running barefoot-a biomechanical study. Br J Sports Med. 2013;47:397–2.CrossRef Bonacci J, Saunders PU, Hicks A, Rantalainen T, Vincenzino BT, Spratford W. Running in a minimalist and lightweight shoe is not the same as running barefoot-a biomechanical study. Br J Sports Med. 2013;47:397–2.CrossRef
58.
go back to reference Lohman EB, Sackiriyas KSB, Swen RW. A comparison of the spatiotemporal parameters, kinematics, and biomechanics between shod, unshod, and minimally supported running as compared to walking. Phys Ther Sport. 2011;12(4):151–63.CrossRefPubMed Lohman EB, Sackiriyas KSB, Swen RW. A comparison of the spatiotemporal parameters, kinematics, and biomechanics between shod, unshod, and minimally supported running as compared to walking. Phys Ther Sport. 2011;12(4):151–63.CrossRefPubMed
59.
go back to reference Knapik JJ, Jones BH, Steelman RA. Physical training in boots and running shoes: a historical comparison of injury incidence in basic combat training. Mil Med. 2015;180(3):321–8.CrossRefPubMed Knapik JJ, Jones BH, Steelman RA. Physical training in boots and running shoes: a historical comparison of injury incidence in basic combat training. Mil Med. 2015;180(3):321–8.CrossRefPubMed
60.
go back to reference Davidson PL, Wilson SJ, Chalmers DJ, Wilson BD, McBride D. Examination on interventions to prevent common lower-limb injuries in the New Zealand Defense Force. Mil Med. 2009;174(11):1196–202.CrossRefPubMed Davidson PL, Wilson SJ, Chalmers DJ, Wilson BD, McBride D. Examination on interventions to prevent common lower-limb injuries in the New Zealand Defense Force. Mil Med. 2009;174(11):1196–202.CrossRefPubMed
61.
go back to reference Sherrard J, Lenne M, Cassell E, Stokes M, Ozanne-Smith J. Injury prevention during physical activity in the Australian Defence Force. J Sci Med Sport. 2004;7(1):106–17.CrossRefPubMed Sherrard J, Lenne M, Cassell E, Stokes M, Ozanne-Smith J. Injury prevention during physical activity in the Australian Defence Force. J Sci Med Sport. 2004;7(1):106–17.CrossRefPubMed
62.
go back to reference Knapik JJ, Darakjy S, Swedler D, Amoroso P, Jones BH. Parachute ankle brace and extrinsic injury risk factors during parachuting. Aviation, Space, and Environmental Medicine. 2008;79:4:408-15 Knapik JJ, Darakjy S, Swedler D, Amoroso P, Jones BH. Parachute ankle brace and extrinsic injury risk factors during parachuting. Aviation, Space, and Environmental Medicine. 2008;79:4:408-15
63.
go back to reference Knapik JJ, Spiess A, Swedler D, Grier T, Darakjy S, Amoroso P et al. Injury risk factors in parachuting and acceptability of the parachute ankle brace. Aviation, Space, and Environmental Medicine. 2008;79:7:689-94 Knapik JJ, Spiess A, Swedler D, Grier T, Darakjy S, Amoroso P et al. Injury risk factors in parachuting and acceptability of the parachute ankle brace. Aviation, Space, and Environmental Medicine. 2008;79:7:689-94
64.
go back to reference Grier T, Knapik J, Swedler D, Jones BH. Influence of a viscoelastic insole on foot, knee and back pain among members of the United States army band. Aberdeen Proving Ground, MD: U.S. Army Center for Health Promotion and Preventive Medicine; 2010. Report No.: 12-HF-97G010-09. Grier T, Knapik J, Swedler D, Jones BH. Influence of a viscoelastic insole on foot, knee and back pain among members of the United States army band. Aberdeen Proving Ground, MD: U.S. Army Center for Health Promotion and Preventive Medicine; 2010. Report No.: 12-HF-97G010-09.
Metadata
Title
Musculoskeletal Lower Limb Injury Risk in Army Populations
Authors
Kimberley A. Andersen
Paul N. Grimshaw
Richard M. Kelso
David J. Bentley
Publication date
01-12-2016
Publisher
Springer International Publishing
Published in
Sports Medicine - Open / Issue 1/2016
Print ISSN: 2199-1170
Electronic ISSN: 2198-9761
DOI
https://doi.org/10.1186/s40798-016-0046-z

Other articles of this Issue 1/2016

Sports Medicine - Open 1/2016 Go to the issue