Skip to main content
Top
Published in: Sports Medicine - Open 1/2015

Open Access 01-12-2015 | Original Research Article

Synchronized personalized music audio-playlists to improve adherence to physical activity among patients participating in a structured exercise program: a proof-of-principle feasibility study

Authors: David A Alter, Mary O’Sullivan, Paul I Oh, Donald A Redelmeier, Susan Marzolini, Richard Liu, Mary Forhan, Michael Silver, Jack M Goodman, Lee R Bartel

Published in: Sports Medicine - Open | Issue 1/2015

Login to get access

Abstract

Background

Preference-based tempo-pace synchronized music has been shown to reduce perceived physical activity exertion and improve exercise performance. The extent to which such strategies can improve adherence to physical activity remains unknown. The objective of the study is to explore the feasibility and efficacy of tempo-pace synchronized preference-based music audio-playlists on adherence to physical activity among cardiovascular disease patients participating in a cardiac rehabilitation.

Methods

Thirty-four cardiac rehabilitation patients were randomly allocated to one of two strategies: (1) no music usual-care control and (2) tempo-pace synchronized audio-devices with personalized music playlists + usual-care. All songs uploaded onto audio-playlist devices took into account patient personal music genre and artist preferences. However, actual song selection was restricted to music whose tempos approximated patients’ prescribed exercise walking/running pace (steps per minute) to achieve tempo-pace synchrony. Patients allocated to audio-music playlists underwent further randomization in which half of the patients received songs that were sonically enhanced with rhythmic auditory stimulation (RAS) to accentuate tempo-pace synchrony, whereas the other half did not. RAS was achieved through blinded rhythmic sonic-enhancements undertaken manually to songs within individuals’ music playlists. The primary outcome consisted of the weekly volume of physical activity undertaken over 3 months as determined by tri-axial accelerometers. Statistical methods employed an intention to treat and repeated-measures design.

Results

Patients randomized to personalized audio-playlists with tempo-pace synchrony achieved higher weekly volumes of physical activity than did their non-music usual-care comparators (475.6 min vs. 370.2 min, P < 0.001). Improvements in weekly physical activity volumes among audio-playlist recipients were driven by those randomized to the RAS group which attained weekly exercise volumes that were nearly twofold greater than either of the two other groups (average weekly minutes of physical activity of 631.3 min vs. 320 min vs. 370.2 min, personalized audio-playlists with RAS vs. personalized audio-playlists without RAS vs. non-music usual-care controls, respectively, P < 0.001). Patients randomized to music with RAS utilized their audio-playlist devices more frequently than did non-RAS music counterparts (P < 0.001).

Conclusions

The use of tempo-pace synchronized preference-based audio-playlists was feasibly implemented into a structured exercise program and efficacious in improving adherence to physical activity beyond the evidence-based non-music usual standard of care. Larger clinical trials are required to validate these findings.

Trial registration

ClinicalTrials.gov ID (NCT01752595)
Appendix
Available only for authorised users
Literature
1.
go back to reference Woodcock J, Franco OH, Orsini N, Roberts I. Non-vigorous physical activity and all-cause mortality: systematic review and meta-analysis of cohort studies. Int J Epidemiol. 2011;40(1):121–38.CrossRefPubMed Woodcock J, Franco OH, Orsini N, Roberts I. Non-vigorous physical activity and all-cause mortality: systematic review and meta-analysis of cohort studies. Int J Epidemiol. 2011;40(1):121–38.CrossRefPubMed
2.
go back to reference Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil. 2008;15(3):239–46.CrossRefPubMed Nocon M, Hiemann T, Muller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of physical activity with all-cause and cardiovascular mortality: a systematic review and meta-analysis. Eur J Cardiovasc Prev Rehabil. 2008;15(3):239–46.CrossRefPubMed
3.
go back to reference Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22(1):7–14.PubMed Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian adults: accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22(1):7–14.PubMed
4.
go back to reference Heran BS, Chen JM, Ebrahim S, Moxham T, Oldridge N, Rees K, Thompson DR, Taylor RS, Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2011;7:CD001800. Heran BS, Chen JM, Ebrahim S, Moxham T, Oldridge N, Rees K, Thompson DR, Taylor RS, Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2011;7:CD001800.
5.
go back to reference West RR, Jones DA, Henderson AH. Rehabilitation after myocardial infarction trial (RAMIT): multi-centre randomised controlled trial of comprehensive cardiac rehabilitation in patients following acute myocardial infarction. Heart. 2012;98(8):637–44.CrossRefPubMed West RR, Jones DA, Henderson AH. Rehabilitation after myocardial infarction trial (RAMIT): multi-centre randomised controlled trial of comprehensive cardiac rehabilitation in patients following acute myocardial infarction. Heart. 2012;98(8):637–44.CrossRefPubMed
6.
go back to reference Davies P, Taylor F, Beswick A, Wise F, Moxham T, Rees K, Ebrahim S, Promoting patient uptake and adherence in cardiac rehabilitation. Cochrane Database Syst Rev. 2010;7:CD007131.PubMed Davies P, Taylor F, Beswick A, Wise F, Moxham T, Rees K, Ebrahim S, Promoting patient uptake and adherence in cardiac rehabilitation. Cochrane Database Syst Rev. 2010;7:CD007131.PubMed
7.
go back to reference Chase JA. Systematic review of physical activity intervention studies after cardiac rehabilitation. J Cardiovasc Nurs. 2011;26(5):351–8.CrossRefPubMed Chase JA. Systematic review of physical activity intervention studies after cardiac rehabilitation. J Cardiovasc Nurs. 2011;26(5):351–8.CrossRefPubMed
8.
go back to reference Yamashita S, Iwai K, Akimoto T, Sugawara J, Kono I. Effects of music during exercise on RPE, heart rate and the autonomic nervous system. J Sports Med Phys Fitness. 2006;46(3):425–30.PubMed Yamashita S, Iwai K, Akimoto T, Sugawara J, Kono I. Effects of music during exercise on RPE, heart rate and the autonomic nervous system. J Sports Med Phys Fitness. 2006;46(3):425–30.PubMed
9.
go back to reference Anshel MH, Marisi D. Effect of music and rhythm on physical performance. Res Q. 1978;49(2):109–13.PubMed Anshel MH, Marisi D. Effect of music and rhythm on physical performance. Res Q. 1978;49(2):109–13.PubMed
10.
go back to reference Cervellin G, Lippi G. From music-beat to heart-beat: a journey in the complex interactions between music, brain and heart. Eur J Intern Med. 2011;22(4):371–4.CrossRefPubMed Cervellin G, Lippi G. From music-beat to heart-beat: a journey in the complex interactions between music, brain and heart. Eur J Intern Med. 2011;22(4):371–4.CrossRefPubMed
11.
go back to reference Clark IN, Taylor NF, Baker F. Music interventions and physical activity in older adults: a systematic literature review and meta-analysis. J Rehabil Med. 2012;44(9):710–9.CrossRefPubMed Clark IN, Taylor NF, Baker F. Music interventions and physical activity in older adults: a systematic literature review and meta-analysis. J Rehabil Med. 2012;44(9):710–9.CrossRefPubMed
12.
go back to reference Karageorghis CI, Mouzourides DA, Priest DL, Sasso TA, Morrish DJ, Walley CJ. Psychophysical and ergogenic effects of synchronous music during treadmill walking. J Sport Exerc Psychol. 2009;31(1):18–36.PubMed Karageorghis CI, Mouzourides DA, Priest DL, Sasso TA, Morrish DJ, Walley CJ. Psychophysical and ergogenic effects of synchronous music during treadmill walking. J Sport Exerc Psychol. 2009;31(1):18–36.PubMed
13.
go back to reference Fritz TH, Hardikar S, Demoucron M, Niessen M, Demey M, Giot O, Li Y, Haynes JD, Villringer A, Leman M, Musical agency reduces perceived exertion during strenuous physical performance. Proc Natl Acad Sci U S A. 2013;110(44):17784–9. Fritz TH, Hardikar S, Demoucron M, Niessen M, Demey M, Giot O, Li Y, Haynes JD, Villringer A, Leman M, Musical agency reduces perceived exertion during strenuous physical performance. Proc Natl Acad Sci U S A. 2013;110(44):17784–9.
14.
go back to reference Karageorghis C, Jones L, Stuart DP. Psychological effects of music tempi during exercise. Int J Sports Med. 2008;29(7):613–9.CrossRefPubMed Karageorghis C, Jones L, Stuart DP. Psychological effects of music tempi during exercise. Int J Sports Med. 2008;29(7):613–9.CrossRefPubMed
15.
go back to reference Simpson SD, Karageorghis CI. The effects of synchronous music on 400-m sprint performance. J Sports Sci. 2006;24(10):1095–102.CrossRefPubMed Simpson SD, Karageorghis CI. The effects of synchronous music on 400-m sprint performance. J Sports Sci. 2006;24(10):1095–102.CrossRefPubMed
16.
go back to reference Terry PC, Karageorghis CI, Saha AM, D’Auria S. Effects of synchronous music on treadmill running among elite triathletes. J Sci Med Sport. 2012;15(1):52–7.CrossRefPubMed Terry PC, Karageorghis CI, Saha AM, D’Auria S. Effects of synchronous music on treadmill running among elite triathletes. J Sci Med Sport. 2012;15(1):52–7.CrossRefPubMed
17.
go back to reference Thaut MH, Kenyon GP, Schauer ML, McIntosh GC. The connection between rhythmicity and brain function. IEEE Eng Med Biol Mag. 1999;18(2):101–8.CrossRefPubMed Thaut MH, Kenyon GP, Schauer ML, McIntosh GC. The connection between rhythmicity and brain function. IEEE Eng Med Biol Mag. 1999;18(2):101–8.CrossRefPubMed
18.
go back to reference Leman M, Moelants D, Varewyck M, Styns F, van NL Martens JP. Activating and relaxing music entrains the speed of beat synchronized walking. PLoS One. 2013;8(7):e67932.PubMedCentralCrossRefPubMed Leman M, Moelants D, Varewyck M, Styns F, van NL Martens JP. Activating and relaxing music entrains the speed of beat synchronized walking. PLoS One. 2013;8(7):e67932.PubMedCentralCrossRefPubMed
19.
go back to reference Khalfa S, Roy M, Rainville P, Dalla BS, Peretz I. Role of tempo entrainment in psychophysiological differentiation of happy and sad music? Int J Psychophysiol. 2008;68(1):17–26.CrossRefPubMed Khalfa S, Roy M, Rainville P, Dalla BS, Peretz I. Role of tempo entrainment in psychophysiological differentiation of happy and sad music? Int J Psychophysiol. 2008;68(1):17–26.CrossRefPubMed
20.
go back to reference Potteiger JA, Schroeder JM, Goff KL. Influence of music on ratings of perceived exertion during 20 minutes of moderate intensity exercise. Percept Mot Skills. 2000;91(3 Pt 1):848–54.CrossRefPubMed Potteiger JA, Schroeder JM, Goff KL. Influence of music on ratings of perceived exertion during 20 minutes of moderate intensity exercise. Percept Mot Skills. 2000;91(3 Pt 1):848–54.CrossRefPubMed
21.
go back to reference van der Vlist B, Bartneck C, Maueler S. moBeat: using interactive music to guide and motivate users during aerobic exercising. Appl Psychophysiol Biofeedback. 2011;36(2):135–45.PubMedCentralCrossRefPubMed van der Vlist B, Bartneck C, Maueler S. moBeat: using interactive music to guide and motivate users during aerobic exercising. Appl Psychophysiol Biofeedback. 2011;36(2):135–45.PubMedCentralCrossRefPubMed
22.
go back to reference Molinari M, Leggio MG, De MM, Cerasa A, Thaut M. Neurobiology of rhythmic motor entrainment. Ann N Y Acad Sci. 2003;999:313–21.CrossRefPubMed Molinari M, Leggio MG, De MM, Cerasa A, Thaut M. Neurobiology of rhythmic motor entrainment. Ann N Y Acad Sci. 2003;999:313–21.CrossRefPubMed
23.
go back to reference Lima-Silva AE, Silva-Cavalcante MD, Pires FO, Bertuzzi R, Oliveira RS, Bishop D. Listening to music in the first, but not the last 1.5 km of a 5-km running trial alters pacing strategy and improves performance. Int J Sports Med. 2012;33(10):813–8.CrossRefPubMed Lima-Silva AE, Silva-Cavalcante MD, Pires FO, Bertuzzi R, Oliveira RS, Bishop D. Listening to music in the first, but not the last 1.5 km of a 5-km running trial alters pacing strategy and improves performance. Int J Sports Med. 2012;33(10):813–8.CrossRefPubMed
24.
go back to reference Mendonca C, Oliveira M, Fontes L, Santos J. The effect of instruction to synchronize over step frequency while walking with auditory cues on a treadmill. Hum Mov Sci. 2014;33:33–42.CrossRefPubMed Mendonca C, Oliveira M, Fontes L, Santos J. The effect of instruction to synchronize over step frequency while walking with auditory cues on a treadmill. Hum Mov Sci. 2014;33:33–42.CrossRefPubMed
25.
go back to reference Sejdic E, Jeffery R, Vanden KA, Chau T. An investigation of stride interval stationarity while listening to music or viewing television. Hum Mov Sci. 2012;31(3):695–706.CrossRefPubMed Sejdic E, Jeffery R, Vanden KA, Chau T. An investigation of stride interval stationarity while listening to music or viewing television. Hum Mov Sci. 2012;31(3):695–706.CrossRefPubMed
26.
go back to reference Creel SC. Similarity-based restoration of metrical information: different listening experiences result in different perceptual inferences. Cogn Psychol. 2012;65(2):321–51.CrossRefPubMed Creel SC. Similarity-based restoration of metrical information: different listening experiences result in different perceptual inferences. Cogn Psychol. 2012;65(2):321–51.CrossRefPubMed
27.
go back to reference Honing H. Without it no music: beat induction as a fundamental musical trait. Ann N Y Acad Sci. 2012;1252:85–91.CrossRefPubMed Honing H. Without it no music: beat induction as a fundamental musical trait. Ann N Y Acad Sci. 2012;1252:85–91.CrossRefPubMed
28.
go back to reference Kenyon GP, Thaut MH. Rhythm-driven optimization of motor control. In: Thaut MH, editor. Rhythm, Music, and the brain: scientific foundations and clinical applications. 1st ed. New York: Routledge; 2008. p. 85–112. Kenyon GP, Thaut MH. Rhythm-driven optimization of motor control. In: Thaut MH, editor. Rhythm, Music, and the brain: scientific foundations and clinical applications. 1st ed. New York: Routledge; 2008. p. 85–112.
29.
go back to reference Will U, Berg E. Brain wave synchronization and entrainment to periodic acoustic stimuli. Neurosci Lett. 2007;424(1):55–60.CrossRefPubMed Will U, Berg E. Brain wave synchronization and entrainment to periodic acoustic stimuli. Neurosci Lett. 2007;424(1):55–60.CrossRefPubMed
30.
go back to reference Nozaradan S, Peretz I, Mouraux A. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J Neurosci. 2012;32(49):17572–81.CrossRefPubMed Nozaradan S, Peretz I, Mouraux A. Selective neuronal entrainment to the beat and meter embedded in a musical rhythm. J Neurosci. 2012;32(49):17572–81.CrossRefPubMed
31.
go back to reference Nakamura PM, Pereira G, Papini CB, Nakamura FY, Kokubun E. Effects of preferred and nonpreferred music on continuous cycling exercise performance. Percept Mot Skills. 2010;110(1):257–64.CrossRefPubMed Nakamura PM, Pereira G, Papini CB, Nakamura FY, Kokubun E. Effects of preferred and nonpreferred music on continuous cycling exercise performance. Percept Mot Skills. 2010;110(1):257–64.CrossRefPubMed
32.
go back to reference Macnay SK. The influence of preferred music on the perceived exertion, mood, and time estimation scores of patients participating in a cardiac rehabilitation exercise program. Mus Ther Perspect. 1995;13:91–6.CrossRef Macnay SK. The influence of preferred music on the perceived exertion, mood, and time estimation scores of patients participating in a cardiac rehabilitation exercise program. Mus Ther Perspect. 1995;13:91–6.CrossRef
33.
go back to reference Popescu M, Otsuka A, Ioannides AA. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study. Neuroimage. 2004;21(4):1622–38.CrossRefPubMed Popescu M, Otsuka A, Ioannides AA. Dynamics of brain activity in motor and frontal cortical areas during music listening: a magnetoencephalographic study. Neuroimage. 2004;21(4):1622–38.CrossRefPubMed
34.
go back to reference Hammill BG, Curtis LH, Schulman KA, Whellan DJ. Relationship between cardiac rehabilitation and long-term risks of death and myocardial infarction among elderly Medicare beneficiaries. Circulation. 2010;121(1):63–70.PubMedCentralCrossRefPubMed Hammill BG, Curtis LH, Schulman KA, Whellan DJ. Relationship between cardiac rehabilitation and long-term risks of death and myocardial infarction among elderly Medicare beneficiaries. Circulation. 2010;121(1):63–70.PubMedCentralCrossRefPubMed
35.
go back to reference Alter DA, Zagorski B, Marzolini S, Forhan M, Oh PI. On-site programmatic attendance to cardiac rehabilitation and the healthy-adherer effect. Eur J Prev Cardiol. 2014. doi: 10.1177/2047487314544084. Alter DA, Zagorski B, Marzolini S, Forhan M, Oh PI. On-site programmatic attendance to cardiac rehabilitation and the healthy-adherer effect. Eur J Prev Cardiol. 2014. doi: 10.1177/2047487314544084.
36.
go back to reference Hogan T, Sundaram M. Rhythmic auditory stimulation in generalized epilepsy. Electroencephalogr Clin Neurophysiol. 1989;72(5):455–8.CrossRefPubMed Hogan T, Sundaram M. Rhythmic auditory stimulation in generalized epilepsy. Electroencephalogr Clin Neurophysiol. 1989;72(5):455–8.CrossRefPubMed
37.
go back to reference Forhan M, Zagorski BM, Marzonlini S, Oh P, Alter DA. Predicting exercise adherence for patients with obesity and diabetes referred to a cardiac rehabilitation and secondary prevention program. Can J Diabetes. 2013;37(3):189–94.CrossRefPubMed Forhan M, Zagorski BM, Marzonlini S, Oh P, Alter DA. Predicting exercise adherence for patients with obesity and diabetes referred to a cardiac rehabilitation and secondary prevention program. Can J Diabetes. 2013;37(3):189–94.CrossRefPubMed
39.
go back to reference Chen JL, Zatorre RJ, Penhune VB. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage. 2006;32(4):1771–81.CrossRefPubMed Chen JL, Zatorre RJ, Penhune VB. Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. Neuroimage. 2006;32(4):1771–81.CrossRefPubMed
40.
go back to reference Beekman AT, Deeg DJ, Van LJ, Braam AW, De Vries MZ, Van TW. Criterion validity of the Center for Epidemiologic Studies Depression scale (CES-D): results from a community-based sample of older subjects in The Netherlands. Psychol Med. 1997;27(1):231–5.CrossRefPubMed Beekman AT, Deeg DJ, Van LJ, Braam AW, De Vries MZ, Van TW. Criterion validity of the Center for Epidemiologic Studies Depression scale (CES-D): results from a community-based sample of older subjects in The Netherlands. Psychol Med. 1997;27(1):231–5.CrossRefPubMed
41.
go back to reference Lorig KR, Sobel DS, Ritter PL, Laurent D, Hobbs M. Effect of a self-management program on patients with chronic disease. Eff Clin Pract. 2001;4(6):256–62.PubMed Lorig KR, Sobel DS, Ritter PL, Laurent D, Hobbs M. Effect of a self-management program on patients with chronic disease. Eff Clin Pract. 2001;4(6):256–62.PubMed
42.
go back to reference Hedeker D, Gibbons RD, Waternaux C. Sample size estimation for longitudinal designs with attrition. J Educ Behav Stat. 1999;24:70–93.CrossRef Hedeker D, Gibbons RD, Waternaux C. Sample size estimation for longitudinal designs with attrition. J Educ Behav Stat. 1999;24:70–93.CrossRef
43.
go back to reference Slootmaker SM, Chin A Paw JM, Schuit AJ, van Mechelen W, Koppes LL. Concurrent validity of the PAM accelerometer relative to the MTI Actigraph using oxygen consumption as a reference. Scand J Med Sci Sports. 2009;19(1):36–43. Slootmaker SM, Chin A Paw JM, Schuit AJ, van Mechelen W, Koppes LL. Concurrent validity of the PAM accelerometer relative to the MTI Actigraph using oxygen consumption as a reference. Scand J Med Sci Sports. 2009;19(1):36–43.
44.
go back to reference Brownley KA, McMurray RG, Hackney AC. Effects of music on physiological and affective responses to graded treadmill exercise in trained and untrained runners. Int J Psychophysiol. 1995;19(3):193–201.CrossRefPubMed Brownley KA, McMurray RG, Hackney AC. Effects of music on physiological and affective responses to graded treadmill exercise in trained and untrained runners. Int J Psychophysiol. 1995;19(3):193–201.CrossRefPubMed
45.
go back to reference Hayakawa Y, Miki H, Takada K, Tanaka K. Effects of music on mood during bench stepping exercise. Percept Mot Skills. 2000;90(1):307–14.CrossRefPubMed Hayakawa Y, Miki H, Takada K, Tanaka K. Effects of music on mood during bench stepping exercise. Percept Mot Skills. 2000;90(1):307–14.CrossRefPubMed
46.
go back to reference Lim HB, Atkinson G, Karageorghis CI, Eubank MR. Effects of differentiated music on cycling time trial. Int J Sports Med. 2009;30(6):435–42.CrossRefPubMed Lim HB, Atkinson G, Karageorghis CI, Eubank MR. Effects of differentiated music on cycling time trial. Int J Sports Med. 2009;30(6):435–42.CrossRefPubMed
47.
go back to reference Bellebaum C, Koch B, Schwarz M, Daum I. Focal basal ganglia lesions are associated with impairments in reward-based reversal learning. Brain. 2008;131(Pt 3):829–41.CrossRefPubMed Bellebaum C, Koch B, Schwarz M, Daum I. Focal basal ganglia lesions are associated with impairments in reward-based reversal learning. Brain. 2008;131(Pt 3):829–41.CrossRefPubMed
48.
50.
go back to reference Ferrier S, Blanchard CM, Vallis M, Giacomantonio N. Behavioural interventions to increase the physical activity of cardiac patients: a review. Eur J Cardiovasc Prev Rehabil. 2011;18(1):15–32.PubMed Ferrier S, Blanchard CM, Vallis M, Giacomantonio N. Behavioural interventions to increase the physical activity of cardiac patients: a review. Eur J Cardiovasc Prev Rehabil. 2011;18(1):15–32.PubMed
51.
go back to reference Rhodes RE. Bridging the physical activity intention-behaviour gap: contemporary strategies for the clinician. Appl Physiol Nutr Metab. 2014;39(1):105–7.CrossRefPubMed Rhodes RE. Bridging the physical activity intention-behaviour gap: contemporary strategies for the clinician. Appl Physiol Nutr Metab. 2014;39(1):105–7.CrossRefPubMed
52.
go back to reference Mangeri F, Montesi L, Forlani G, Dalle GR, Marchesini G. A standard ballroom and Latin dance program to improve fitness and adherence to physical activity in individuals with type 2 diabetes and in obesity. Diabetol Metab Syndr. 2014;6:74.PubMedCentralCrossRefPubMed Mangeri F, Montesi L, Forlani G, Dalle GR, Marchesini G. A standard ballroom and Latin dance program to improve fitness and adherence to physical activity in individuals with type 2 diabetes and in obesity. Diabetol Metab Syndr. 2014;6:74.PubMedCentralCrossRefPubMed
54.
go back to reference Edworthy J, Waring H. The effects of music tempo and loudness level on treadmill exercise. Ergonomics. 2006;49(15):1597–610.CrossRefPubMed Edworthy J, Waring H. The effects of music tempo and loudness level on treadmill exercise. Ergonomics. 2006;49(15):1597–610.CrossRefPubMed
55.
go back to reference Karageorghis CI, Terry PC, Lane AM, Bishop DT, Priest DL. The BASES Expert Statement on use of music in exercise. J Sports Sci. 2012;30(9):953–6.CrossRefPubMed Karageorghis CI, Terry PC, Lane AM, Bishop DT, Priest DL. The BASES Expert Statement on use of music in exercise. J Sports Sci. 2012;30(9):953–6.CrossRefPubMed
56.
go back to reference Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC, Chan HT, Tsao CK, Tsai DS, Wu X, Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378(9798):1244–53. Wen CP, Wai JP, Tsai MK, Yang YC, Cheng TY, Lee MC, Chan HT, Tsao CK, Tsai DS, Wu X, Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378(9798):1244–53.
57.
go back to reference Franco OH, de Laet C, Peeters A, Jonker J, Mackenbach J, Nusselder W. Effects of physical activity on life expectancy with cardiovascular disease. Arch Intern Med. 2005;165(20):2355–60. Franco OH, de Laet C, Peeters A, Jonker J, Mackenbach J, Nusselder W. Effects of physical activity on life expectancy with cardiovascular disease. Arch Intern Med. 2005;165(20):2355–60.
58.
go back to reference Moy ML, Teylan M, Weston NA, Gagnon DR, Garshick E. Daily step count predicts acute exacerbations in a US cohort with COPD. PLoS One. 2013;8(4):e60400.PubMedCentralCrossRefPubMed Moy ML, Teylan M, Weston NA, Gagnon DR, Garshick E. Daily step count predicts acute exacerbations in a US cohort with COPD. PLoS One. 2013;8(4):e60400.PubMedCentralCrossRefPubMed
59.
go back to reference LaCroix AZ, Leveille SG, Hecht JA, Grothaus LC, Wagner EH. Does walking decrease the risk of cardiovascular disease hospitalizations and death in older adults? J Am Geriatr Soc. 1996;44(2):113–20.CrossRefPubMed LaCroix AZ, Leveille SG, Hecht JA, Grothaus LC, Wagner EH. Does walking decrease the risk of cardiovascular disease hospitalizations and death in older adults? J Am Geriatr Soc. 1996;44(2):113–20.CrossRefPubMed
Metadata
Title
Synchronized personalized music audio-playlists to improve adherence to physical activity among patients participating in a structured exercise program: a proof-of-principle feasibility study
Authors
David A Alter
Mary O’Sullivan
Paul I Oh
Donald A Redelmeier
Susan Marzolini
Richard Liu
Mary Forhan
Michael Silver
Jack M Goodman
Lee R Bartel
Publication date
01-12-2015
Publisher
Springer International Publishing
Published in
Sports Medicine - Open / Issue 1/2015
Print ISSN: 2199-1170
Electronic ISSN: 2198-9761
DOI
https://doi.org/10.1186/s40798-015-0017-9

Other articles of this Issue 1/2015

Sports Medicine - Open 1/2015 Go to the issue